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Abstract: Link prediction is an important problem in network data mining, which is dedicated
to predicting the potential relationship between nodes in the network. Normally, network link
prediction based on supervised classification will be trained on a dataset consisting of a set of positive
samples and a set of negative samples. However, well-labeled training datasets with positive and
negative annotations are always inadequate in real-world scenarios, and the datasets contain a large
number of unlabeled samples that may hinder the performance of the model. To address this problem,
we propose a positive-unlabeled learning framework with network representation for network link
prediction only using positive samples and unlabeled samples. We first learn representation vectors
of nodes using a network representation method. Next, we concatenate representation vectors of node
pairs and then feed them into different classifiers to predict whether the link exists or not. To alleviate
data imbalance and enhance the prediction precision, we adopt three types of positive-unlabeled
(PU) learning strategies to improve the prediction performance using traditional classifier estimation,
bagging strategy and reliable negative sampling. We conduct experiments on three datasets to
compare different PU learning methods and discuss their influence on the prediction results. The
experimental results demonstrate that PU learning has a positive impact on predictive performances
and the promotion effects vary with different network structures.

Keywords: network link prediction; positive-unlabeled learning; network representation learning;
supervised classification

MSC: 68T07

1. Introduction

The growing number of complex systems including social networks, biological infor-
mation networks and paper citation networks can be represented as network structures,
which has injected new vitality into the development of network data mining. Various
network-based data mining problems are now being studied, such as heterogeneous net-
work analysis [1–3], community discovery [4,5] and network visualization [6]. Link pre-
diction is one of the most interesting network-related problems whose purpose is to infer
whether there are new relationships or interactions between nodes based on the attributes
of nodes in the network and the observed links [7,8]. Plenty of methods and technologies
have been proposed to solve this problem using the hidden information of the network
topology to predict potential links and estimate the evolution of the network [9].

Traditional link prediction in the network can be seen as a supervised classification
problem, which is trained on the datasets consisting of a set of positive samples and negative
samples. Generally, node pairs with links in the network are considered as positive samples,
while ones without links are negative samples. However, these negative samples are not
always accurate because the links between nodes may not have been observed. Thus,
the unobserved links need to be regarded as unlabeled samples, and their labels may be
positive or negative. This non-traditional training set only containing positive samples and
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unlabeled samples naturally appears in many real-world applications [10]. For example,
the medical information records usually list the diagnosed diseases of the patient, not the
diseases that he/she does not have. Therefore, the absence of a diagnostic record does not
mean that the patient does not have the disease [11].

In order to solve the above problem, positive-unlabeled (PU) learning is proposed to
learn a binary classifier based on positive data and unlabeled data [12]. We assume that each
unlabeled sample may belong to a positive or negative class. In recent years, there has been
a surge of attention in positive-unlabeled learning [13–18]. The previous work is mainly
divided into three categories: (1) The most commonly used positive-unlabeled learning
method is a two-step strategy [13]. This kind of method first selects some samples from the
unlabeled data that are very different from the positive samples and marks them as reliable
negative samples [19–23]. Then, it uses the positive sample set and the reliable negative
samples to build the supervised learning classifier [24]. (2) Another type of method treats
all unlabeled data as negative instances and then uses standard classification techniques to
learn the classifiers [16]. (3) There is also a type of method which weights the unlabeled
data, assuming that each unlabeled instance can be regarded as a weighted positive instance
and a weighted negative instance, such as weighted logistic regression [25] and weighted
support vector machine [16]. In addition, some methods choose to discard the unlabeled set
and only use the positive sample set for training [26] or adopt semi-supervised learning [27].
For example, the one-class SVM algorithm [28] is dedicated to constructing a maximum
area that approximately covers the set of positive samples.

However, to deal with the positive-unlabeled link prediction task, these methods
require a well-prepared feature deriving from the network structure. Link prediction meth-
ods based on network structure have attracted more and more attention in recent years.
Compared with the attribute information of nodes, the network structure has the advantage
of easier access and higher reliability [29]. Meanwhile, this kind of method is generalized
for networks with similar structures to avoid learning specific parameter combinations
for different networks. Consequently, a popular strategy making use of network topology
structures is network representation learning (i.e., graph embedding or network embed-
ding). A satisfying representation of a network is expected to have a good ability to capture
inherent structures of the network for predicting possible but unobserved links [30]. There
have been a surge of network representation learning methods applied successfully in
various networks for link prediction [31–34]. DeepWalk [35] is a shallow model that learns
vertex representations from a network, which samples the graph structure into a stream
of random walks. Then, a Skip-gram model is trained to predict the path of the random
walk. LINE [33] defines a loss function to capture both 1-step and 2-step local structure
information and models a joint probability distribution and a conditional probability distri-
bution, respectively. Node2vec [31] learns a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving network neighborhoods of nodes
using a flexible sampling strategy. SDNE [34] uses a semi-supervised deep autoencoder
model to model non-linearity in a network structure. In addition, many researchers have in-
vestigated the homogeneous and heterogeneous network embedding methods to learn the
fine-tuned features for link prediction or classification problems [36–42]. To sum up, there
still exists some improvements for the network link prediction: (1) The method should
deal with the non-traditional training data only with positive and unlabeled samples.
(2) The method should consider learning high-quality features from the network structure.

Motivated by the previous network representation learning methods to acquire well-
prepared features, we present a positive-unlabeled learning framework with network
representation for the network link prediction in the case of the non-traditional training
data in this study. The proposed positive-unlabeled learning framework consists of two
modules: (1) In the network representation module, we adopt a semi-supervised structural
deep network embedding model to learn the embeddings of nodes for high-quality features,
which can capture the local and global network structure by optimizing the first-order
and second-order proximity simultaneously. (2) In the PU learning module, we adopt
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three positive-unlabeled learning strategies to improve the prediction performance us-
ing traditional classifier estimation, bagging strategy and reliable negative sampling. In
the experiment, we evaluate the proposed framework with different PU learning meth-
ods on several datasets. Our positive-unlabeled learning framework has been proven to
achieve good results with only positive data and unlabeled data, which are able to use the
information in the unlabeled data set to help classifiers produce better performances.

The main contributions of our work are summarized as follows:
(1) We propose a convincing positive-unlabeled learning framework with the semi-

supervised network representation learning for link prediction, to deal with the non-
traditional training data.

(2) We adopt three positive-unlabeled learning strategies to improve the prediction perfor-
mance using traditional classifier estimation, bagging strategy and reliable negative sampling.

(3) Extensive experimental results demonstrate that the proposed positive-unlabeled
learning framework has a positive impact on predictive performances with different net-
work structure. The rest of the paper is organized as follows. Section 2 introduces problem
definitions and our proposed network link prediction framework. Section 3 presents the
experimental settings and results analysis. Finally, we conclude our work in Section 4.

2. Materials and Methods

We first formulate the network link prediction problem in Section 2.1. In Section 2.2, we
present the overview of our framework. After that, we introduce the network representation
module and positive-unlabeled learning module in Sections 2.3 and 2.4.

2.1. Problem Definition

We aim to design a positive-unlabeled learning framework to improve the network
link prediction performances through different learning strategies.

The input of our framework is a homogeneous network G = (V, E), where
V = {v1, v2, . . . , vn} is a set of nodes, and E =

{
en

i,j=1

}
represents a set of observed

edges. The network G can be represented by an adjacency matrix ∈ RN×N , where Ai,j = 1
if there is an edge between vi and vj, otherwise Ai,j = 0. Given a network G = (V, E),
network representation aims at learning a mapping function f : vi → yi , where yi is used
as the feature of node vi.

The difference between traditional classifier learning and positive-unlabeled learning
is shown in Figure 1. The training data used in traditional binary classification is composed
of two fully labeled sets, which are positive samples and negative samples. However, the
available training data is usually a set of incomplete positive samples and a set of unlabeled
samples with positives and negatives. The real data set is generally a non-traditional
training set that is not completely labeled. The positive-unlabeled learning problem is how
to learn an accurate classifier given a non-traditional training set.
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2.2. Overview

We demonstrate the architecture of our proposed framework which has two modules:
a network representation module and a positive-unlabeled learning module, shown in
Figure 2. We first input the network data into the network representation module (Figure 2a)
to obtain the representation vector for each node. Then, we concatenate representation
vectors of node pairs and feed them into different classifiers to make binary classification
(i.e., to predict whether the link between a node pair exist or not). For alleviating data
imbalance and boosting the prediction precision, we present a positive-unlabeled learning
module which adopts three types of positive-unlabeled learning strategies (Figure 2b–d) to
improve the model and compare their prediction performances.
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Figure 2. The architecture of our proposed framework consists of two modules: network represen-
tation module and positive-unlabeled learning module, as shown in (a). The positive-unlabeled
learning module adopts three strategies to enhance the performance of predictive model (traditional
classifier estimation is shown in (b), bagging strategy is shown in (c) and reliable negative sampling
is shown in (d)).

2.3. Network Representation Module

Network representation aims to convert the network data into a low dimensional space
with network information preserved, where each vertex is represented as a fixed-length,
low-dimensional vector which can be used for features for nodes in the network. In this
work, we adopt the SDNE [34], a semi-supervised deep model, to learn the embeddings of
nodes for high-quality features and competitive performances.

SDNE can capture the local and global network structure by optimizing the first-order
and second-order proximity simultaneously. The objective function is given as follows:

L = αL1 + L2 + λLreg

= α
n

∑
i,j=1

Ai,j‖ y(L)
i − y(L)

j ‖
2

2
+

n

∑
i=1
‖ (x̂i − xi)

⊙
bi ‖

2

2
+ λLreg (1)

where L1 is to exploit the first-order proximity, L2 is to preserve the second-order proximity
and Lreg is an L2-norm regularizer term to avoid over-fitting. y(L)

i is the final hidden
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representation vector generated by y(l)i = σ
(

W ly(l−1)
i + b(l)

)
, l = 2, . . . , L.

⊙
denotes the

Hadamard product. bi =
{

bi,j
}n

j=1, if Ai,j = 1, bi,j = 1, otherwise, bi,j = β > 1.
After the optimization of the objective function, for each node, we obtain representa-

tion vectors {ri}n
1 which capture both local and global structures.

2.4. Positive-Unlabeled Learning Module

In this work, we adopt and compare three positive-unlabeled learning strategies to
improve the model performances. Here, we introduce these three strategies in detail.

2.4.1. Positive-Unlabeled Learning Using Traditional Classifier Estimation

Let x be an instance in the data set, and y the true binary label of the instance x. If x is a
positive sample, then y = 1, otherwise y = 0. Let s be the labeled state of an instance in the
data set. If x is a positive instance of a set P, then it is labeled, s = 1, otherwise s = 0. We
assume that the non-traditional training set is extracted from the distribution p(x, y, s) [16],
including the labeled sample set P 〈x, s = 1〉 and unlabeled sample set U 〈x, s = 0〉.

The labeled (s = 1) set and the unlabeled (s = 0) set are used as the input of the standard
training method. The resulting function g(x) = p(s = 1|x) is called a non-traditional classifier.

The function f (x) trained on the traditional training set consisting of the positive (y = 1)
sample set and the negative (y = 0) sample set is called a traditional classifier, and its learning
goal is to make f (x) = p(y = 1|x) . The goal of the positive-unlabeled learning is to learn a
standard binary classifier on the non-traditional training set, that is, to estimate the classification
result of the traditional classifier f (x) through the non-traditional classifier g(x).

According to the property of the non-traditional training set, only positive samples in
the training set are marked. It means that when a certain instance x satisfies y = 0, it will
not appear in the marked set, as shown in Formula (2).

p(s = 1|x, y = 0) = 0 (2)

We follow the same assumption of the previous research, the marked positive instance
is completely randomly selected from all positive instances. The “completely random
selection” hypothesis shows that if y = 1, the probability of each positive instance being
labeled is the same constant, independent of x itself. The property can be determined using
Formula (3).

p(s = 1|x, y = 1) = p(s = 1|y = 1) (3)

Here, let c = p(s = 1|y = 1). c is the fixed probability that a positive instance is
marked. According to Formulas (2) and (3), an important conclusion can be drawn for
extracting the traditional classifier f (x) from g(x), as shown in Formula (4).

p(y = 1|x) = p(s = 1|x)/c
f (x) = g(x)/c

(4)

The proof is as follows:

p(s = 1|x) = p(y = 1∧ s = 1|x)
= p(y = 1|x) p(s = 1|y = 1, x)
= p(y = 1|x) p(s = 1|y = 1)

(5)

The conclusion shows that when the instance satisfies a certain distribution, the
classification model trained based on the positive samples and the unlabeled samples
but considered as the negative samples, there is a fixed constant coefficient c between the
predicted result and the true probability of the instance being a positive instance.

The value of the constant c = p(s = 1|y = 1) can be estimated using a trained classifier
and a validation set of instances. Suppose that the validation set selected from the overall
distribution in the same way as the non-traditional training set is H and the subset of
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labeled positive instances from H is P. The estimator e of c is the average value of the
non-traditional classifier g(x) for x in P. The estimator e = 1

n ∑x∈P g(x), where n is the
cardinality of P. Figure 2b demonstrates the flowchart.

2.4.2. Positive-Unlabeled Learning Using Bagging Strategy

As the amount of data between the labeled positive instances and the unlabeled
instances is too large, the performance obtained by simply using the iteratively trained
classifier is not stable [19]. Positive-unlabeled learning uses the bagging strategy [17],
which can solve the problem of the imbalance in the number of positive instances and
unlabeled instances. The Bagging method trains by dividing the unlabeled set into random
sub-samples, and then transforming the positive-unlabeled learning problem into a series
of supervised binary classification problems. In the scenario of positive-unlabeled learning,
unlabeled data may contain potential positive instances, so the unlabeled data set is
contaminated. This empirical pollution refers to the number or proportion of real positive
instances in the unlabeled data set. When the unlabeled data is mainly composed of
negative instances, the prediction performance of the learned classifier may be better than
that on a data set containing more positive samples in the unlabeled data. The characteristic
of the positive-unlabeled learning leads to unstable performances of the classifier, which
can be well used by bagging strategies, especially when the number of positive samples is
limited and the proportion of negative samples in the unlabeled data is small.

We present a bagging positive-unlabeled learning, whose goal is to obtain a function
that can give the probability that an instance in the data set belongs to a positive instance.
Here, we define P and U as the positive data and unlabeled data in the training set, and Y
is the complete set containing the training data and test data (P, U ⊆ Y). The test data from
Y may contain instances that do not appear in the two sets, so P ∪U is not equal to Y.

The bagging positive-unlabeled learning can learn a function h : Y → R on the pos-
itive sample set P and the unlabeled sample set U, which produces the probability that
the instance in Y is predicted to be positive. The method is shown in Figure 2c, and we
provide the implementation in Algorithm 1. Firstly, we perform random sub-sampling
from U to obtain Ut. Then, each sub-sample Ut combined with P are fed into a training set
to learn multiple classifiers. Since the sub-samples of the unlabeled set U are randomly
selected, the empirical pollution is somewhat different; thus, it may eventually lead to
different performances of the classifiers. Therefore, the aggregation operation is used to
aggregate the prediction results of the above-trained classifiers. In general, a simple mean
aggregation is the most common method.

Algorithm 1. Bagging positive-unlabeled learning

Input: Positive sample set P, unlabeled set U, sub-sample size K, the number of sub-samples T.
Output: Function h: Y → R .
Steps:
% Initialization: generate subsample from U;
For t = 1 to T do

Randomly select a subsample Ut of size K from U;
Train a classifier ht using P and Ut;

End For
% Aggregate the prediction results of the above-trained classifiers;
The mean of the predicted scores of the instance x on each classifier:

h = aggregator({ht(x), t ∈ (1, . . . , T)})

2.4.3. Positive-Unlabeled Learning Using Reliable Negative Sampling

The reliable negative sampling method is the most common strategy for solving
positive-unlabeled learning problems. The goal is to select a reliable negative sample set
RN from the unlabeled set U, and then learn classifiers iteratively on the set of positive
samples P and reliable negative samples RN [24] (shown in Figure 2d). Several techniques
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are proposed to extract reliable negative samples from the unlabeled sample set, such as
Spy [18], Cosine-Rocchio [43], 1DNF [11] and Rocchio [21].

In this paper, the Spy is used to preliminarily select reliable negative samples. First,
we randomly select a small number of positive samples S from the positive sample set
P, and put them into the unlabeled set U as a spy to establish new data sets PS and US,
respectively. Then, a classifier is trained based on PS and US. After that, we can obtain
several negative predictions as the reliable negative samples RN using the trained classifier.

If the reliable negative samples RN contain most of the negative instances, we can
simply learn a basic classifier on positive sample set P and RN. However, the number of
reliable negative samples identified by the abovementioned Spy technique is usually very
small. Hence, we use the iterative learning strategy to train the classifier and continuously
increase the number of reliable negative samples until it converges. The classifier runs
iteratively based on sample sets P, RN, and Q, where Q = U − RN. In each iteration, the
set P as positive instances and the set RN as negative instances are used to build a new
classifier f . Then, we use f to classify the samples in Q. Samples having been classified
as negative instances are deleted from Q and added to RN. The iteration stops when no
sample in Q is classified as a negative instance. The classifier f of the last iteration is the
final classifier to make predictions.

3. Results

In this section, we illustrate the experiment datasets and present the performances of
the different strategies of positive-unlabeled learning in detail.

3.1. Datasets

We select three different types of network data sets shown in Table 1, including the
bioinformatic network DrugBank, the social network Karate and the citation network Cora.

Table 1. The characteristics of the three experimental datasets.

Dataset Node Link Average
Degree

Clustering
Coefficient

Assortativity
Coefficient Type

DrugBank 812 165,802 408.3793 0.6469 −0.2031 Bioinformatic
network

Karate 34 156 9.1765 0.5706 −0.4756 Social
network

Cora 2708 10,556 7.7962 0.2407 −0.0659 Citation
network

(1) DrugBank [44] is a drug knowledge database, which contains rich drug information,
such as drug types, chemical substructures, targets, enzymes and drug interactions. We
only use the drug interactions in the database to construct a drug-drug interaction network,
with a total of 812 drug nodes and 165,802 drug-drug interactions.

(2) Karate data set [45] is a well-known social network of university karate clubs,
which has been widely investigated in social network analysis. The network has 34 nodes,
78 edges and 2 communities.

(3) Cora data set [46] is composed of computer science papers, including a total of
2708 articles in different research fields, such as neural networks, machine learning, etc.
Each paper is cited by at least one paper. The citation relationships between papers form a
citation network.

In this section, we need to construct the unlabeled data set. Firstly, we select some linked
node pairs randomly and label them as non-link ones. Then, the polluted positive samples
are added to the negative sample set. We call the contamination of the positive samples in the
unlabeled set empirical pollution. In the following experiments, the proportion of empirical
pollution can be adjusted to measure the stability performance of the positive-unlabeled learning
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methods. The source code and data are available at https://github.com/naodandandan/PU-
for-link-prediction (accessed on 10 September 2022).

3.2. Results

We present three categories of positive-unlabeled learning methods in the paper,
i.e., (1) the Standard-PU (positive-unlabeled learning using traditional classifier estimation),
(2) the Bagging-PU (positive-unlabeled learning using bagging strategy) and (3) the TwoStep-PU
(positive-unlabeled learning using reliable negative sampling). In this section, to evaluate the
performance of different positive-unlabeled learning methods, we adopt k-fold cross-validation
and several widely used metrics, including Accuracy, F1-score (F1), Area Under ROC curve
(AUC) and Area Under the Precision-Recall Curve (AUPR). Cross-validation can effectively
avoid the random prediction errors caused by the selection of the training set and the test set.

First, we perform experiments to explore the performance of each positive-unlabeled
learning method with five different classifiers, i.e., Random Forest (RF), Support Vector
Machine (SVM), Logistic Regression (LR), Decision Tree (DT) and Naive Bayes (NB). The
experimental results are shown in Table 2. Compared to the other classifiers, the random
forest classifier RF performs the best with all the positive-unlabeled learning methods.
Among them, the classification performances of the Standard-PU method on RF increase by
5.61%, 11.07% and 12.03% on the scores of AUPR, AUC and F1, respectively. In addition, for
the classifiers SVM, LR and DT, the Bagging-PU method brings the greatest improvement,
increasing by 29.11%, 6.93% and 15.54% on the scores of AUPR, respectively. For the
NB classifier, the TwoStep-PU method generates the most obvious improvement, but the
AUPR has only increased by 0.54%. It can be seen that enhancement brought by the
positive-unlabeled learning methods on the NB classifier is not obvious.

Table 2. The performance of positive-unlabeled learning methods using different classifiers on the
DrugBank dataset.

Classifier Methods AUPR AUC F1 Accuracy

RF

N/A 0.8857 0.8527 0.8254 0.9246

Standard-PU 0.9353 0.9471 0.9247 0.9624

Bagging-PU 0.9085 0.9506 0.8999 0.9463

TwoStep-PU 0.9210 0.9399 0.9097 0.9545

SVM

N/A 0.4842 0.6136 0.3918 0.7094

Standard-PU 0.6230 0.5468 0.4288 0.3436

Bagging-PU 0.6252 0.4993 0.4018 0.2514

TwoStep-PU 0.5782 0.6783 0.5160 0.7129

LR

N/A 0.6465 0.6214 0.3961 0.8016

Standard-PU 0.6902 0.7804 0.6419 0.7814

Bagging-PU 0.6913 0.7817 0.6409 0.7765

TwoStep-PU 0.6838 0.7463 0.5753 0.6519

DT

N/A 0.7815 0.7786 0.7012 0.8743

Standard-PU 0.8056 0.8269 0.7619 0.8898

Bagging-PU 0.9030 0.9452 0.8935 0.9430

TwoStep-PU 0.8259 0.8345 0.7793 0.8997

NB

N/A 0.6786 0.7697 0.6288 0.7735

Standard-PU 0.6789 0.7700 0.6284 0.7716

Bagging-PU 0.6795 0.7705 0.6262 0.7650

TwoStep-PU 0.6822 0.7694 0.6143 0.7345

https://github.com/naodandandan/PU-for-link-prediction
https://github.com/naodandandan/PU-for-link-prediction
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Then, we conduct the experiments to compare several network representation learning
models using different positive-unlabeled learning strategies on the DrugBank dataset.
The advanced comparison methods are Deepwalk [35], GF [47], Node2vec [31], LINE [33].
Extensive experimental results are shown in Table 3. We can find the SDNE model achieves
the best predictive performance on each positive-unlabeled learning strategies, which
demonstrates that our proposed framework can obtain high-quality representations from
the network datasets to make effective predictions.

Table 3. The performance of several network representation learning models using different positive-
unlabeled learning strategies on the DrugBank dataset.

Methods Models AUPR AUC F1 Accuracy

Standard-PU

Deepwalk 0.8880 0.9252 0.8752 0.9350

GF 0.7952 0.8597 0.7697 0.8752

Node2vec 0.8877 0.9268 0.8752 0.9345

LINE 0.9149 0.9281 0.8998 0.9505

SDNE 0.9353 0.9471 0.9247 0.9624

Bagging-PU

Deepwalk 0.8917 0.9378 0.8806 0.9357

GF 0.8090 0.8826 0.7831 0.8747

Node2vec 0.8905 0.9388 0.8793 0.9345

LINE 0.9051 0.9452 0.8958 0.9446

SDNE 0.9085 0.9506 0.8999 0.9463

TwoStep-PU

Deepwalk 0.8856 0.9049 0.8658 0.9340

GF 0.8017 0.8494 0.7736 0.8856

Node2vec 0.8860 0.9078 0.8675 0.9343

LINE 0.9082 0.9265 0.8937 0.9470

SDNE 0.9210 0.9399 0.9097 0.9545

After that, we evaluate the generalization capability of the positive-unlabeled learning
methods on different network datasets. The random forest classifier outperforms other
classifiers in the above experiment. Thus, the three positive-unlabeled learning methods
are used to train a random forest classifier on the biological information network DrugBank,
the social network Karate and the citation network Cora. As shown in Table 4, Standard-PU
method outperforms other PU learning methods in terms of AUPR and F1 in three datasets.
In the DrugBank and Karate datasets, the Bagging-PU method performs the worst, falling
behind the Standard-PU method by 1.55% and 2.06%, respectively, in terms of AUPR. In
the Cora dataset, TwoStep-PU method produces the poorest result which lags behind that
of Standard-PU method by 14.84% in terms of AUPR. This may result from the differences
among network structures of the three datasets. Specifically, for the DrugBank dataset,
the Karate dataset and Cora dataset, proportions of linked ones in all node pairs reach
0.2518, 0.1390 and 0.0014, respectively. Thus, the difference in the number and proportion
of positive samples may have impact on performances of PU learning methods.
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Table 4. The performance of different positive-unlabeled learning methods on three datasets.

Dataset Methods AUPR AUC F1 Accuracy

DrugBank

RF 0.8857 0.8527 0.8254 0.9246

Standard-PU(RF) 0.9353 0.9471 0.9247 0.9624

Bagging-PU(RF) 0.9085 0.9506 0.8999 0.9463

TwoStep-PU(RF) 0.9210 0.9399 0.9097 0.9545

Karate

RF 0.6226 0.6170 0.3759 0.8904

Standard-PU(RF) 0.6745 0.8429 0.6281 0.8681

Bagging-PU(RF) 0.6344 0.8215 0.5506 0.8119

TwoStep-PU(RF) 0.6527 0.7884 0.6203 0.8841

Cora

RF 0.5810 0.5687 0.2414 0.9566

Standard-PU(RF) 0.5926 0.8202 0.5697 0.9487

Bagging-PU(RF) 0.5267 0.8350 0.3430 0.8409

TwoStep-PU(RF) 0.5155 0.7372 0.5026 0.9504

Finally, we study whether the positive-unlabeled learning method can improve the
classification performance of the classifier on positive samples and unlabeled data. We
select the Random Forest classifier as the classifier in all three types of PU learning methods.
Then, we use Standard-PU, Bagging-PU, TwoStep-PU and the Random Forest classifiers
without PU learning for training on the DrugBank dataset and compare their results on the
test dataset. As shown in Figure 3, the positive-unlabeled learning method greatly improves
the performance of the classifier when the number of contaminated positive samples in the
unlabeled set (i.e., hidden_num) increases. Among them, the classification performance
of the Bagging-PU method changes more slowly with the increase of the proportion of
empirical pollution in the unlabeled set, which indicates that the performance of the
Bagging-PU method on the DrugBank dataset is more stable than the two other methods.
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3.3. Parameter Analysis

It can be found that the Random Forest classifier performs best compared to other
classifiers. Thus, in this section, we discuss the parameters in network representation and
the Random Forest classifier.

There are two key parameters in our experiment: dimension of representation
vector d and the number of estimators in the Random Forest classifier. We consider
the combinations of parameters on the DrugBank dataset: d ∈ {8, 16, 32, 64, 128},
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k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}. We implement 3-CV to evaluate per-
formances of our model with different parameter settings using AUPR and F1 metrics.
Finally, we adopt d = 64, k = 100 as the optimal parameters for our model in the follow-
ing experiments.

We fix k = 100 to investigate the influence of d. In Figure 4 (Left), it can be seen that
the performance of our model increases with the increase of the value of d, then decreases
after reaching the peak (d = 64). Then, we fix d = 64 to discuss the number of estimators k.
As shown in Figure 4 (Right), the performance of our model increases as k increases from
10 to 100, followed by decreasing, and then reached the peak again when k = 120. Our
model obtains the best performance when k = 100 and k = 120, but for reasonable time
cost, we choose k = 100 as the optimal parameter.
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4. Conclusions

In this paper, we present a positive-unlabeled learning framework with network
representation for unlabeled learning from positive samples. We introduce three types
of positive-unlabeled learning methods to improve predictive performances and design
experiments to compare their contributions on different datasets for the network link
prediction task. In our framework, the SDNE model is proven more effective to learn
representations from network data than the other advanced models. Moreover, the PU
learning methods can achieve good results, which are able to use the information in the
unlabeled data set to help classifiers produce better performances. Among them, Standard-
PU with Random Forest classifier achieves the best performance compared with other PU
learning methods. the two-step method is the most commonly used PU learning technique,
due to its conciseness and interpretability [12]. In addition, the Bagging PU learning
method has also improved the effect of the classifier, but it is of less efficiency when the
amount of data is large.

PU learning is a special case of standard semi-supervised learning, which is related
to many areas of machine learning, such as single-class classification and learning with
missing data. Given that PU data naturally appear in many real-world scenarios, PU
learning will be a promising and active research direction in the field of machine learning
in the future [48].
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