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1. Introduction

The works of [1-4] paved the way for the study of bicomplex numbers. These numbers
offer a commutative alternative to the skew field of quaternions. As they generalise complex
numbers more closely and accurately than quaternions, they are a topic of interest. The
book [5] of Price will give the reader a deep insight to the concept of bicomplex algebra
and function theory. Extensions in this area have resulted in some significant applications
in several fields of mathematical sciences as well as some components of science and
technology, as reported in [6]. In this area, various researchers have reported interesting
results. Amongst all of them, Luna-Elizaarraras et al. [7] developed an important work
on the elementary functions of bicomplex numerals. They introduced the algebra of
bicomplex numbers as a generalisation of the field of complex numbers, describing how to
define elementary functions in such algebra as polynomials, exponential functions, and
trigonometric functions, as well as their inverse functions such as roots, logarithms, and
inverse trigonometric functions.

The Banach contraction principle [8] paved the way for development of metric fixed-
point theory. Subsequently, fixed point results were reported by various researchers for
conformal mappings in the setting of various topological spaces (see [9-23]). The introduc-
tion of complex valued metric spaces and the fixed-point results proved there on by Azam
et al. [24] gave the scope for further research in these spaces, and various fixed-point results
were reported by many researchers in the recent past. Most recently, Gunaseelan et al. [25]
established CFPT on CPMS, and Rajagopalan et al. [26] reported the application of fixed-
point results on CPMS to find analytical solutions to integral equations.

In the sequel work of [27], Choi et al. defined bicomplex-valued metric space and
proved some fixed-point results connected with two weakly compatible maps. Later,
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Jebril et al. [28] proved some common fixed-point theorems under rational contractions
for a pair of mappings in bicomplex-valued metric spaces. In 2021, Datta et al. [29,30] and
Beg et al. [31] established fixed-point results for bicomplex-valued metric spaces. Recently,
Gunaseelan et al. [32] introduced and established fixed-point results in the setting of
tricomplex-valued metric spaces. In the present work, some new fixed-point results with
their applications are established using control functions in the setting of tricomplex-valued
metric spaces.

This paper is organised as follows. Section 2 presents some basic concepts and defini-
tions with suitable examples which are vital for establishing the main results. In Section 3,
we present our main results and some corollaries that are consequences of our main results.
Our results are supported by suitable examples. An application based on the derived
fixed-point results is given in Section 4.

2. Preliminaries

Throughout this paper, Cy, Cq, C;, and C3 denote the families of real, complex, bicom-
plex, and tricomplex numbers, respectively. Price [5] defined the bicomplex numbers as

B = dq1 + q2i1 + q3i2 + qai1iz,
where q1, 42, q3, 94 € Cp and i; and ip are independent units such that i‘% = i% = —1and

iriy = ipiy.
We define the set of bicomplex numbers as

Co=A{p: = a1+ @it + a3i2 + qsi1i2, 91, 92,93, 94 € Co},
In other words, they are defined as
Co={p:p=01+i26,06,,6, € Ci},

where 61 = q1 + qpi1 € Cy and 6, = g3 + q4i1 € Cyq. Price [5] defined the tricomplex
numbers as

w = q1 + q2i1 + qai2 + q4j1 + 95i3 + dej2 + q7/3 + dsis,
where q1, 92, 93, 94, 95, 96, 97, 98 € Cp and independent units i1, 1y, i3, i4, j1, jo» and j3 are such
thati? = i2 = —1,iy = iyj3 = i1iaiz, jo = i1i3 = i3i1,j3 = 1,j1 = i1ip = ipiy, and j2 = 1.
We define the set of tricomplex numbers as

Cs = {w: w = q1 + q2iy + q3iz + qaj1 + 95i3 + qej2 + q7j3 + dsis,
41,92, 93, 94, 95, 96, 97, 98 € Co},

In other words, they are defined as
Cs ={w: w =y +izuz, 1, 42 € Co},

where 1 = 01+ 6y € Cpand pp = 03+ 0475 € Cp. If w = pg +ispp and 0 = £1 + 3L
are any two tricomplex numbers, then their sum is

wto= (u1+izp) £ (L1 +i3L) = 1 £ L1 +is(p2 £ £2)
and their product is

w.0 = (p1 +isp2) (L1 +13L2) = (1 €1 — p2La) +iz(p1 Lo + p2Ly).
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There are four idempotent elements in C3, which are 0,1,f; = #, and f, = 17713
Hence, f; and f; are nontrivial such that f; +f» = 1 and f;f» = 0. Every tricomplex numeral

M1 + i3pp can be expressed as an union of f; and f,, where

w = p1 +izpy = (p1 — iop2)f1 + (1 + iopi2)f2.

This notation of w represents the idempotent of the tricomplex numeral, and the
coefficients of the complex numerals wy = (p1 — izp2) and wy = (u1 + ixpn) are the
idempotent components of the bicomplex numeral w.

An element w = pj + izyy € Cj is invertible if there exists ¢ in C3 such that wo =1,
and ¢ is called the inverse (multiplicative) of w.

Therefore, w is the inverse (multiplicative) of 9. An element having an inverse in C3 is
called non-singular, and the element not having an inverse in Cj is the singular element of
Cs.

An element w = 1 +ispp € Cj is nonsingular if |;¢% + ]/t%| # 0 and singular if
it + 3] = 0.

The inverse of w is defined as

-1 P — i3p2
w T =0="=—"C=
Rt
The norm ||.|| of Cj is a positive real-valued function, and ||.|| : C3 — C; is defined by

. 1
llwll = [l +ispal| = {Ipl® + [p2f?}2

1
|(p1 — iapi2) |* + | (1 + i2p2) 1] 2
2

1
=P+ B+ R+ GG+ R g+ ad)2,

where w = q1 + q2i1 + q312 + d4j1 + 9513 + dej2 + q7j3 + qsis = p1 + izp2 € Cs. Clearly, C3
is a Banach space, as the linear space Cj is complete.

If w, 0 € Cs, then ||wo|| < 2||w]|||e|| holds instead of ||wol| < ||w]|||e]|, and then Cj3
is not Banach algebra.

The partial order relation =<;, on Cj is defined as follows. Let C3 be the set of tricomplex
numerals and w = p1 +i3pz and ¢ = £ + 3£, € C3. Then, w =, ¢ if u1 =;, £1 and
H2 =i, £2;in other words, w =;; ¢ if one of the bellow axioms is fullfilled:

(@ =L, p =Ly
(b) 1<, L1, p2 = Ly
(©  u1=2L, 2 <, L2
(d) 1 <i, £, 2 <y Lo
In particular, w 3, 0 if w =;; 0, where w # ¢ when one of (b), (c), or (d) holds and
w <, ¢ only if (d) holds.
Given any two tricomplex numerals w, ¢ € Cg, the following holds:
D) w =y eif flw|] < loll;
@ Nlw+oll < lwl[+]loll;
3 |[lawl| = |q|l|w||, where g € Cy’;
4)  woll < 2||w||||o||, and the equality holds only when at least one of w and ¢ is
non-singular;
(5)  |lw Y| = ||w||7! if w is a non-singular;

(6) ||%|| = %, if ¢ is non-singular.

We now recall some basic concepts and notations which will be used in the sequel:

Definition 1 ([32]). Let 3 be non-empty set. Amap ¢: R x ¥ — Cy is a tricomplex-valued metric
if the following holds:
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(CM1) 0=y 6(t,n) forallT,n € R,and g(t,57) =0 T=1;
(CM2)  ¢(t,n7) =c¢(n,T) forall t,n € R;
(CM3)  ¢(t,1) =iy ¢(T,0) +6(e ) forall .17, € R.

In this case, we say (R, ¢) is a TVMS.

Example 1. Let R = C3 be a set of tricomplex numbers. Define ¢: C3 x C3 — Cs. Under
¢(01,02) = [t — w| +i3|m — 12,
where 01 = Ty + i3%1 and 02 = Tr + i3y, then (C3,¢) isa TVMS.

Example 2. Let R = Cs. Define a mapping ¢: R x R — C3 by ¢(01,02) = ¢|01 — 02|, where
1€ [0, %]. Then, (R, g) is a complete valued metric space.

Definition 2 ([32]). Suppose that (R,¢) is a TVMS:

1. Asequence {1y} is a Cauchy if for every 0 <;, 3 € Cs, there exists an integer N such that
6(Ta, Tm) =iy 3 forall x,m > N;
2. {w} converges to T € R if for every 0 <;, 3 € C3, and there exists an integer N such that

6(Ta, T) =iy 3 for all « > N'. We denote this as T, LN
3. (R, ¢) is complete if every Cauchy sequence in R converges in R.

Lemma 1 ([32]). A sequence {7y} ina TVMS (R, ¢) converges to T if and only if ||¢(Ta, T)|| — O
as o — +o0.

Lemma 2 ([32]). Let (R, ¢) bea TVMS, and let {7, } be a sequence in R. Then, {1y} is Cauchy if
and only if ||¢(Ta, Tatm)|| — 04as & — +oo.

In the next section, we present our main results, where we establish fixed-point results
in the setting of a TVMS using control functions.

3. Main Results
Henceforth, let (%, ¢) be a TVMS:

Proposition 1. Let S, Q: R — R. Let 19 € R be a map. Define the sequence {1, } by

Tat1 =S T,
Topt2 =QTont1, foralla =0,1,2,. .. 1)

Let there exist a map f: ¥ x ® x R — [0,1) such that §(QST,y,r) < f(t,4,r) and
f(t,S9n,r) < f(t,n,x), forallt,y € R, and for a fixed element, y € R and « = 0,1,2,...
Then, we have

f(TZU(I 77/3:) S f(TO/ 77/;) and f(T/ TZ(X-‘rl/I) S f(T/ leI)-

Proof. Let7,7 € Randa =10,1,2,...
Then, we have

f(2u, 17,1) =F(QS8Ta—2,1,1) < f(T2—2,1,1)
:f(QSTZIX—4/ 77/ ;) S e S f(TO/ 77/ ;)

Similarly, we have

(T, Tat1, 1) =f(T, SQmoa—1,1) < f(T, Toa—1,1)
:f(T/ SQTZa—?ﬂ I) S .. < f(T’ T, F)
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O
The above proposition is validated through the following example:

Example 3. Let R = {1,1,1,1,%,...}. Definec: R x R — Czas g(t,17) = i3]t — 1. Then,
clearly (R, ) is a TVMS. Define self-mappings S and Q by

1 1

Choose {t,} as T, = Hl,zx—O 1,2,3,...,and then 19 =1 € R.

Clearly, STy = Tg11 and QToy 1 = Tont2-

Consider a mapping f: R x R x R — [0,1) by f(t,1,x) = T+ L +rforall T, € Rand
for fixedy = 1 € R. Then, j(t,n,8) = T + & + 1.

Undoubtedly, we have

f(QST,n,x) <f(t,n,x) and §(t,59n, 1) <§(7,1,1).

forall T,n € R and for fixed r € N.
Consider the following:

_ 1 1
H(r2w ,%) = 6(2¢+1) ' 8
= f(10,7,1)-

That is, §(Tou, 11,1) < f(10,7,1),0 =0,1,2,...... ,Vn € R, and fory = % € R. One should
also consider

—_

O [N~
_|_
@ =

1
- i<
S2nt2) T3°

T,T,L)-

+

N
+

f(T/ Ton+1s I) ;
=(

That is, §(T, Tag+1,1) < f(T,70,1),2a =0,1,2,... Y71 € R, and for fixed xr = % e RN.
Thus, Proposition 1 is verified.

Lemma 3. Let {7} be a sequence in Rand b € [0,1). If ta = ||g(Ta, Ta+1)]| satisfies
to < bry—1, foralla € N.
then {1, } is a Cauchy sequence.
Proof. Leth € [0,1). Then, we have
to < breo1 < HPreo <Ll < bh"ro, Vo € N.
For m,« € N such that m > &, we have

6 (Ta, T )|l < ¥+ Eai1+-on- . + tm-1
B (14+h+b 4.+ g

4

<
=1-p

Thus, we have ||g(Ta, Tm)|| = 0 as & — 400, and so {1, } is Cauchy. O

Yo-

Now, we present our main theorem.
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Theorem 1. Let (R, ) be a CTVMS (short for complete TVMS) and S, Q: R — R. If there exist
mappings §,3,B,v: ® x R x R — [0,1) such that for all T, € R, we have

(a)

f(AST,1,¢

3(QST, 1,1

( <f(t,n,x) and §(t,SQn,r) < §(7,1,1),
(
(
(

<
<3i(t,1,x) and 3(t,89n,xr) <3(t,1,1),

< B(t,n,xr) and B(t,S9n,xr) < B(T,1,1),
<v(t,1,x) and v(t,S59y,r) < (T, 1,1),

B(AST, 1, ¢
Y(QST,1,1) <

— — — ~—

(b)

6(St, Qn) Zif(t,m,0)c(t,n) +3(T,1,x)
¢(7,87)6(n, Q) ¢(n,87)g(T, Q1)
Tremn POy

¢(t,87)g(t, Qn) +¢(1, Qn)g(n,S7) | .
L e SR e e G

(c)

(T, +3(tne) +i(T ) + (T <1, ®)
then S and Q have a unique common fixed point.

Proof. Let 7,57 € R. From Equation (2), we have

¢(t,871)¢(ST, QST)

6(87,Q87) =i f(r, ST (v, ST) +3(T, ST0) T s

¢(8t,871)g(T, QST)
+h(TST) 1+4¢(7,S1)

" {g(T, S1)¢(t, QST) +¢(ST, QST)6(ST,S7) }
14¢(7, QST) +6(S7,87)

+9(t,87,1)

,S St, 0S8
= f(T/ ST,X)G(T, ST) —1—3(7, ST,;) + Q(T : i)s((f/gg T)
¢(t, 8T)g(t, QST)
+7(7, 87,5 T, 050

so that

T,87)¢(ST, QST)

l6(ST, Q87)]| < §(x, 87, 1)|¢(t, S7)|| + 3(t, ST, H

1+¢(7,S7)
s
= ite )t 50|+ 50,570 | S (s, 087
(e, 2T et o,

which implies that

(ST, Q8T)[| < §(7, 87,0)lg (T, ST)]|
+3(7, 87,0)[l6(ST, QST)||
+ (7, ST0)llg(T, ST )
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Similarly, from Equation (2) we have

6(SQn, Qn) =i, 1(Qn,m,1)6(Qn, 1) +3(Q1,1,1)

c(Qn,SQn) c(1,SQn)s(Qn, Qn)
“T+¢(r,Qn) TrQnn T +¢(Q1n,1)

c(Qn, SQn)g(Qn, Qn) +¢(n, Qn)g(n, SQn) }
+7(Q’7’77’?>{ 1+46(Qn, Qn) +¢(ny,SQn) ’

By applying the same treatment as above, we get

I16(SQn, QI < §(Qn,1,0)llc(Qu, n)l|
+3(Qn,1m,1)|6(Qn, SQn)||
+2(Qnm,0)ll¢(n, Qn)ll. ©)

Let 1p € R and {7, } be defined by Equation (1). We claim {1, } is Cauchy.

From Proposition 1 and the inequalities in Equations (4) and (5), forall: = 0,1,2, ..
we obtain

ll6(t2i1, )| = [|6(SQr2-1, Qr2r-1)|]
<§(Qmu-1,T-1,0)|6(Qr2-1, T21-1) ||
+3(Qmu-1, -1, 1) |6 (Qrai-1, S Q1a1-1) |
+7(Qt2-1, 21, 1) |16 (QT2—-1, T21-1) |
= f(72, T 1, ¥l 6 (T2-1, 20 ||
+3(720 71, 0) |6 (T2, T2011) ||
+ 7(720 21, 0) |6 (T2-1, 720 ||
< (10, 21, 0) |6 (T2-1, T21) ||
+3(10, 721, 8) |6 (T2, T2 ||
+ (%0, -1, 0) |6 (21, T21) ||
< f(o, 7, 0|l (t2—1, ) || +3(70, 71, 1) 6 (201, T20) |
+ (0, 7, 1)l (T2—1, T20) [,

which yields that

{f(TOI T, I) + IY(TO/ T, ;>

<
||g(T21+1/ T21)|| = 1-— 3(1’0, T1,I)

I

Similarly, one can obtain

{f(TOI 1, F) —+ ’)/(TOI T, ?)
1-—- 3(1—0/ 7, I)

llo(t242, T2t1) || < ) |6 (T2, T241) ]

— fome)+v(n,mr)
LetP = @) < 1.

Since f(TO/ a, Zf) + 5(T0r a, ?) + 7(T01 i, ;) + AB(TOI T, F) <1,
we have, [|¢(Tat2, T[] < Pllg(T2 Tart1)
or, in fact, ||¢(Tu+1, T)|| < Pllg(Ta1, T) ||V € N.
Clearly, {1, } is a Cauchy sequence in (R, ¢) by Lemma 3.
Since ¥t is complete, there exists ¢ € 3t such that 7, — g as @ — +oo0.
We now claim that ¢ is a fixed point of S.
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Using Equation (2) and Proposition 1, we have

¢(0,S0) =i, 6(0, Qant1) +6(Quv1,S0)
= Q(Ql T2a+2) + Q(SQ/ QTsz-H)
=i; 6(0, 2ay2) + (0 2041, 8)6(0, T2at1) +3(0, T2at1,¥)
« 6(0,S0)c(T2u+1, Qoa+1)
1+ Q(Q’ T2¢x+1)
y ¢(mu+1,S0)5(0, Q0 11)
1+6(0 20-1)
{c(0, S0)s(0, Quau+1) + ¢(T2a+1, Qou+1)6 (201, 50) }
1+¢(0, Q1) + (2011, S0)
=iy 6(0, 2 12) + (0, 11,8)6(0, T2at1) +3(0,T1,1)
% 6(0,80)6(tu 11, T2u12)
1+ Q(Ql 72a+1)
¢(2u+1,50)6(0, T2at2)
Thlem ) 1+¢(0, 12u12)
% {Q(QI SQ)Q(Q/ TZa+2) + Q(T2a+1, T21x+2)g(Tsz+1/ SQ)}
1+6(0, Tut2) +6(2a41,S0)

+ B(0, T2a+1,1)

+7(0, T2a+1,1)

X

+ ’)/(QI 7, P)

which upon letting & — +o0 gives ¢(0,S0) = 0 = So = 0.
We now prove that ¢ is a fixed point of Q.
From Equation (2), we have

(0, Q0) =iy 6(0, Son) + ¢(STon, Qo)
=is (0, 2a+1) + f(20, 0,8)6 (120, 0) + 3(T20, 0, 1)
6(T2n, ST22)6(0, Qo) c(0, ST4)c (120, Qo)
+ TtX/ 7
8 1+€(TZD(/Q) 'B( 20:€ ;) 1+Q(T2041Q)
(20, ST20 )6 (120, Qo) + ¢(0, Q0)5(0, ST2n) }
+ xr s
(00 ”{ 1+ ¢(T20, Q0) + (0, S0
=i Q(Q, Tat1) + f(T0, Q,P)Q(Tzlx, Q) +3(70, Q,I)
(20 T2at1)6(0, Qo) (0 tu+1)6(T20, Qo)
>< + 7 7
1+ Q(TZDU Q) ﬁ(TO 0 I) 1+ Q(T2zx/ Q)
6(T20, T2a+1)6 (20, Qo) + (0, Qo)s(0, Tat1) }
+ Yy 7
(¢ ”{ 1+ ¢(ta, 90) + ¢(0, T2011)

which upon making a« — 400, we get ¢(0, Qo) = 0.
Thus, Qo = 0.
From the above, it is clear that ¢ is a common fixed point of S and Q.
Uniqueness follows from Equation (2) based on Equation (3).
The proof is complete. [

Example 4. Let R = [0,1] and ¢: R x R — C3 be defined by ¢(t,17) = |t — 57|35 Then, (R, ¢)

isa CTVMS. Let S, Q: R — R be self-maps given by S(t) = % and Q(n) = L. Furthermore, for
all T, € R and for fixed x = § € R, we define the functions f,3,8,v: R x R x R — [0,1) by

f(T,1m,8) = <T + 1 +zc), s(tx) = <%

5 6 117
TZUZIZ T3173;3
ﬁ(T/ ;7/;) - 11 7 rY(T/ 17/;) - 11 .
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Clearly, §(t,n,x) + 3(t,n,8) + B(T,n,8) + v(t,n,8) < 1 forall T,y € R and for a fixed

=1€eR
f(QST,1,1) = f<Q<;),m> = f(ZTS,mzc)

Now consider
| i

T
= —_ <— —_ = .
s TetEs gt tr=fTny

That is, §(QST,1,t) < f(t,1,1) for all T,17 € R and for a fixedy = § € R.
In addition, consider

f(t,SQn,r) = f(T,S(Z>,x> = f(T, 2175x)

—f_|_7; —+ <7—|——]—|— =T, n,zx).
5 210 ;_5 6 ¢ f(//F)

That is, f(t,SQy,x) < §(t,1,¢) forall T, € R and for a fixedr = § € R.
Similarly, we can show that

39St 1) <3(t,nx) and 3(t,SQn,x) <3(7,1,1)
B(QST,i,x) < B(t,m,x) and P(T,S9n,x) < B(T,1,¥)
Y(QST,7,8) < y(T,m,x) and y(T,5Qn,x) < ¥(T,1,1).

Finally, we assert that Equation (2) also holds.
Before proceeding further, it may be noted that for all T,n € R, we have

, ¢(t,87),6(11, Q1) ¢(11,87),6(7, On)
0 Zie(T ), (5T, Qn), I+¢(t,n) 7~ 1+g(ty)
6(t,87),¢(7, Q) +6(1, Qn), 6y, ST)
1+¢(7, Qn) +¢(1,ST)

7

It is sufficient to show that

6(St,Qn) =iy f(t,1,80)5(T, 7).

Consider
6(St,9n) g(;g) = g—g e = i ¢35
1 e T n 1 i
=i 2|7 eBe =< (5+6+4> T—1|eB6 forall T,n € RN.

=f(t,n,0)¢(t,n), forall T,m € R andfor p= % e R

That is, (ST, Qn) =4, f(T,1,8)5(T, ) forall T,y € Rand forr = } € R.
By choosing 3 = 0, 8 = 0,y = 0 in Theorem 1, we have the following:

Corollary 1. Let (R,¢) bea CTVMS and S, Q: R — R. If there exist maps f: ® x R x R —
[0,1) such that

f(QST,1,1) < f(T,1,¢) and §(t,8Qn,¢) < f(T,1,1),
satisfying
6(St, Qn) =i, f(T,1,0)¢(T, 1),
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forall T, € R and for a fixedy € R,
then S and Q have a unique common fixed point.
The following corollary is obtained by setting 3 = = v = 0 in Theorem 1:

Corollary 2. Let (R,g) bea CTVMS and S, Q: R — R. If there exist maps f,y: R x R x R —
[0,1) such that for all T,57 € R and for a fixed x € R, we have

f(QST,1,8) < f(T,1,x) and §(T,SQn,x) < §(T,7,1),
Y(QST,1,8) < ¥(t,1,8) and v(7,S9n, 1) < ¥(T,1,1),

and
f(t,7,8)+ (T, <1,
also satisfying

6(ST,Qn) =if(t,n,8)6(t, 1) + (7, 1,1)

. ST 81)6(T, Q) +6(1, Qn)g (1, ST)
1+¢(7,9Qn) +¢(n,S7)

then S and Q have a unique common fixed point.
Letting 3 = v = 0 in Theorem 1 results in the following corollary:

Corollary 3. Let (R,g) bea CTVMS and S, Q: R — R. If there exist maps f,f: R x R x R —
[0,1) such that for all T,57 € R and for a fixed x € R, we have

f(T, 1, F) + IB(T/ 7, F) <1

and

f(QST,n,x) <§(7,1,x) and §(T,SQn,x) < f(T,1,1),
B(QST, 11,x) < B(T,1,x) and B(T,SQn,x) < B(T,1,1),

also satisfying

¢(n,87)g(z, Q)
1+¢(t,n)

(ST, Q) Zii(Tn,0)e(t,n) + B(T,7,¥)
then S and Q have a unique common fixed point.

Corollary 4. Let (R,¢) bea CTVMS and S, Q: R — R. If there existsamap §,3: R x R x R —
[0,1) such that for all T,57 € R and for a fixed x € R, we have

f(t,1,0) +3(T,1,0) <1,

and

f(QST,1,8) < (7, 1,1) and §(7,SQn,x) < §(T,1,1),
3(QST,n,1) <3(t,1,x) and 3(t,S5Qn,x) < 3(T,1,1),
also satisfying

¢(7,87)g(T, Q1)
1+¢(7,7)

¢(St, Qn) =iy f(T,1,0)¢(T, 1) +3(T, 1, 1)

then S and Q have a unique common fixed point.
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Theorem 2. Let (R,g) bea CTVMS and Q: R — R. If there exist mappings f,3: R x R x R —
[0,1) such that for all T,17 € R and for a fixed ¢y € R, we have

(a)

f(Qt,1,xv) < f(t,n,8) and §(T,Qn,x) < §(T,7,1),
39t n,r) <3(t,mr) and 3(7,Qn,x) <3(t,1,1);

(b)

¢(n, Q)1 +¢6(t, Q1)] . ©)
1+¢(T,n) ’

Q(QT, Qﬂ) ji3 f(Tr 77,;)(;('[, 77) +3(T, 77/?)

(c)
f(t,17,8) +3(t,m,1) < 1.
then Q has a unique fixed point.

Proof. Let 19 € R and {7}/ by Tu11 = Qa.
From the condition in Equation (6), we have

6(Tat1, Tur2) = 6(Qw, QTyy1)
=iy Pt T 1, 0)6 (T, Tat1) +3(Tw, Tt 1, 1)
% 6(Tat1, Qrar1)[1 + ¢(Ta, Q)]
1+ Q(Ttxr TaJrl)
= f(Ter Tat1s ?)Q(Tﬂw Ttx-l-l) + 3(TDU Tat+1s ?)
» 6(Tat1, Tat1)[1 + 6(Ta, )] @)
1+ 6(Tw, Tat1)

In other words, we have

¢ (Tat1, Ter2) Sis (T Tt 1, 1)6(Tws Tat1) + 3(Tas Tt 1,8)6 (Tat 1, Tat2)- (8)

Now, we have

f(Ta Tat1,8) = F(QTa1, Tat1,X)
S f(Ta—lzTa—H/ ;) = f(QTtX72/ Tu—1s I)
S f(Ta72/ Ta+1s ?) - f(T,X,:}, Ta+1s P)

< (10, Tas1,1),
and similarly
3(Ta, Tar1,8) < 3(T0, Tat1, X)-
Then, from Equation (8), we have
(Tt Tat2) =iy F(T0, Tt 0)6 (T Tagr) +3(T0, Tas 1, 1)6(Tar 1, Tat)-
Arguing the same as above, we obtain

G(Tar1, Tat2) =iy F(10, 70, 1) 6 (Tas Tar1) + 3(T0, 70, 1) 6 (Tas 1, Tat2)-
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Therefore, we have

e (a1, Tws2) | < F(70, 0, 0) |16 (T, Tast) || + 3(70, 0, )16 (Tat1, Tar2) [,

which implies

f To, To, & )
et ] < i )l

foralla =0,1,2,... By letting 1 = % < 1, then

e (Tar1, Tar2) | < tll6(Tas Tat) ||, foralla = 0,1,2,...

Using Lemma 3, {1, } is Cauchy in (R, ¢). Since R is complete, there exists 0 € R s.t.
Ty — 0 as & — +o00. We claim that ¢ € Q is a fixed point. From Equation (6), we have

(0, Qo) =i, (0, Q) + (9T, Qo)
(0, Q) + (T, 0,1)6(Ta, 0)

Q(Qf QQ) [1 + Q(szr QToc)}
ol e )T o)

6(0, tat1) + (10, 0,1)¢(Ta, 0)

+3(T0/ 0,t ) (QI Qg)fgzgg’;(’;“)’ QTIX)]

which, on making & — 4-o00, reduces to

(0, Qo) =i, 3(10,0,1)5(0, Qo).

so that

(0, Qo) < 3(70,0,)|l5(0, Qoll,

which is a contradiction since 3(1, 0,1) < 1.
Therefore, ||g(0, Qo)|| = 0. Hence, 0 = Qo, and ¢ is a fixed point of Q.
Uniqueness follows from the condition in Equation (8). This completes the proof. [

The following example validates Theorem 2:

Example 5. Let R = [0,1] and ¢: R x R — C3 be defined by ¢(t,7) = |t — 5|3, Then, (R, ¢)
isa CTVMS. Let Q: R — R be defined by Q(t) = %. Functions f,3: ® x ¥ x R — [0,1] are

defined as f(t,1,v) = (3 + L +1),3(T,7,1) = ngéxz forall T, € R and for fixedr = 3 € R.

Clearly, §(t,7,v) +3(7,7,¢) <1
Consider

3
f(Qt,1,1) = f(?m) % - g +1<

a3

N
Ll eN]

= (T, 1,1)

and

3
+7 <f(t,n,1).
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Similarly, we can show that
3(Qum,x) <3(t,0) 3(T, Qnx) <3(T,7,%)
Now, for verifying Equation (6), one needs to note that

0 ji3 Q(T,ﬂ),Q(QT, Qﬂ)/ 9(17/ QW) [1 + Q(T/ QT)]

,forallt,; € R

1+¢(T,7)
Now, it is sufficient to show that (Qt, Qn) =y, f(T,7,8)6(T,17).
Consider
TN 1 i 7 3 in T
¢(Qt, Q) :€<7r7) =zt eBo <y i ¢3o

T—1 ¢ = f(T,1,0)6(T, 1),

T 3
=i (4+Z+4>

forallt,n € Randforr =3 € R.
Thus all axioms of Theorem 2 are satisfied, and T = 0 € R is the unique fixed point of Q.

4. Application

In this section, we give an application using Theorem 1.

Let R = C[®1, D;] be a family of all real continuous functions on [®1, P,] equipped
with the metric g(7,7) = (14i3)(|T(Q) —(Q)|) forall 7,57 € C[®1, P;] and Q € [Dy, Dy,
where |.| is the usual real modulus. We define the functions f: & x ® x ® — [0,1) by

f(t,,8) = <;+Z+x).

Clearly, f(7,1,r) < 1forall 7,57 € R and for a fixed ¢ = 411 € R. Then, (R,¢) is a
CTVMS. Now, we consider the system of the non-linear Fredholm integral equation

1 @,
T(Q) :n(Q)vLm/q)l 1(9Q,s,7(s))ds

and

1 ®,
T =0 + / 12(9,s,7(s))ds,
(Q)=0(Q) + g [, “1(@5 7))
where Q, s € [®1, ;). Assume that i1,y : [P, Py X [P, Dy] X R — Rand v : [&g, D] —
R are continuous, where v(Q) is a given function in R. We define a partial order =, inCj3
asT 2, nift <.

Theorem 3. Suppose that (R, ¢) isa CTVMS equipped with the metric g(t, 1) = (1+1i3)(|7(Q) —
n(Q)|) forallt,n € R, Q € [®1, Dy, and S, Q : R — R is a continuous operator on R defined by

1 20
§7(Q) =0(Q) + g —5- /q) 0(Q,s,7(s))ds. ©)
and
1 )
Qr(Q) = v(Q) + g [D 12(Q,5,7(s))ds. (10)
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If there exists f < 1 such that for all T, € R with T # yand s, Q € [®q, Dy, satisfying the
following inequality:

1(Q5,7(s)) = 2(Q,5,7(5))| <§(7,1,2)[7(Q) = 1n(Q)], (11)
then the integral operators defined by Equations (9) and (10) have a unique common solution.

Proof. Consider

(1 +i5)(ST(Q) ~ Qn(Q)]) = |©12f1;1 (| 7 nee s vtenas

< o ([ @)

—lz(QIS/W(ﬁ))ldS)
A+ (e [ [
SMU 7(Q) - n(Q)ls)

Dy

[ (0,5, m(s))ds

.Cbl

< Ropd ")) - (@l

(T, 61+ 13)|T(Q) —1(9)|
|Dy — Dy @,

IN

Therefore, we have

¢(St, Tn)) < (T, 1,v)6(T, 7).

Thus, the axioms of Theorem 2 are satisfied with f < 1. 3 = f = ¢ = 0, and so the
integral operators S and 7 defined by Equations (9) and (10) have a unique common
solution. [J

5. Conclusions

In this paper, we established some common fixed-point theorems on a TVMS using
control functions. Our results were validated using suitable examples, and we presented
an application on the TVMS to find a unique common solution to integral-type contraction.
It will be quite interesting to extend our results in the setting of a TVMS using other
contractive conditions such as cyclic contractions, multi-valued contractions, etc.
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