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Abstract: In this paper we, prove that if the product Xn of a space X has certain tightness-type
properties, then the space of permutation degree SPnX has these properties as well. It is proven that
the set tightness (T-tightness) of the space of permutation degree SPnX is equal to the set tightness
(T-tightness) of the product Xn.
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1. Introduction

At the Prague Topological Symposium in 1981, V.V. Fedorchuk [1] posed the following
general problem in the theory of covariant functors, which determined a new direction for
research in the field of Topology:

• Let P be some geometric property and F be a covariant functor. If a topological space
X has the property P , then whether F(X) has the same property P , or vice versa,
whether F(X) has the property P , does it follow that the topological space X has the
property P as well?

In our case, P is some tightness-type property, X is a topological T1-space, and F is
the functor of the G-permutation degree SPn

G.
In [1,2] V.V. Fedorchuk and V.V. Filippov investigated the functor of the G-permutation

degree and proved that this functor is a normal functor in the category of compact spaces
and their continuous mappings.

In recent research, a number of authors have investigated the behaviour of cer-
tain cardinal invariants under the influence of various covariant functors. For example,
in [3–8] the authors investigated several cardinal invariants under the influence of weakly
normal, seminormal, and normal functors.

In [4,5], the authors discussed certain cardinal and geometric properties of the space of
the permutation degree SPnX. They proved that if the product Xn has some Lindelǒf-type
properties, then the space SPnX has these properties as well. Moreover, they showed
that the functor SPn

G preserves both the homotopy and retraction of topological spaces.
In addition, they proved that if the spaces X and Y are homotopically equivalent, then
the spaces SPn

GX and SPn
GY are homotopically equivalent as well. As a result, it has been

proven that the functor SPn
G is a covariant homotopy functor.

The current paper is devoted to the investigation of cardinal invariants such as the T-
tightness, set tightness, functional tightness, mini-tightness (or weak functional tightness),
and other topological properties of the space of permutation degree. We mention here that
tightness-type properties of function spaces have been studied previously in [9,10].
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The concepts of functional tightness and mini-tightness (or weak functional tightness)
of a topological space were first introduced and studied by A.V. Arkhangel’skii in [11]. As
it turned out, cardinal invariants such as mini-tightness and functional tightness are similar
to each other in many ways, and for many natural and classical cases they even coincide.
Moreover, there is an example of a topological space with countable mini-tightness and
uncountable functional tightness; see [12].

In [13], the action of closed and R-quotient mappings on functional tightness was
investigated. The authors proved that R-quotient mappings do not increase functional
tightness. Furthermore, in [13] the authors proved that the functional tightness of the
product of two locally compact spaces does not exceed the product of the functional
tightness of those spaces.

Throughout this paper, all spaces referred to are topological spaces and κ is an infinite
cardinal number; furthermore, regular spaces need not be T1.

2. Definitions and Notations

The following are definitions and notions needed in the rest of this paper.

Definition 1 (see [14]). Let A be a subset of a topological space X; the tightness of A with
respect to X is the cardinal number

t(A, X) = min{κ : ∀C ⊂ X, such that A ∩ C 6= ∅ ∃C0 ∈ [C]≤κ with A ∩ C0 6= ∅}.

If A = {x}, we briefly write t(x, X) instead of t({x}, X). The tightness of X is defined as
t(X) = sup{t(x, X) : x ∈ X}.

Definition 2 ([15]; see as well [16,17]). Let X be a topological space; then, the set tightness at a
point x ∈ X, denoted by ts(x, X), is the smallest cardinal number κ such that whenever x ∈ C \ C,
where C ⊂ X, there exists a family γ of subsets of C such that |γ| ≤ κ and x ∈ ⋃ γ \⋃ γ. The set
tightness of X is defined as ts(X) = sup{ts(x, X) : x ∈ X}.

It is clear that for any topological space X we have ts(x, X) ≤ t(x, X) and ts(X) ≤ t(X).

Definition 3 ([17,18]). For a topological space X, the T-tightness of X, denoted by T(X), is the
smallest cardinal number κ such that whenever {Fα}α∈Λ is an increasing sequence of closed subsets
of X with c f (Λ) > κ then

⋃
α∈Λ Fα is closed.

Let κ be an infinite cardinal and let X and Y be topological spaces. A mapping
f : X → Y is said to be κ-continuous if for every subspace A of X such that |A| ≤ κ the
restriction f � A is continuous. A mapping f : X → Y is said to be strictly κ-continuous if
for every subspace A of X with |A| ≤ κ there exists a continuous mapping g : X → Y such
that f � A = g � A.

Definition 4 ([11]; see as well [13,19,20]). The functional tightness to(X) of a space X is the
smallest infinite cardinal number κ such that every κ-continuous real-valued function on X is
continuous.

In [13], the following theorem was proven:

Theorem 1. If X is a locally compact space, then to(X×Y) ≤ to(X)to(Y).

Note that per Theorem 1, to(Xn) = to(X) for every compact space X and every n ∈ N.

Definition 5 ([11]). The weak functional tightness (or minitightness) tm(X) of a space X is the
smallest infinite cardinal number κ such that every strictly κ-continuous real-valued function on X
is continuous.
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Clearly, every strictly κ-continuous mapping is κ-continuous. Therefore, for any
topological space X we have

tm(X) ≤ to(X) ≤ t(X).

In [19], the following theorems were provided:

Theorem 2 ([19], Theorem 2.14). If X is a locally compact space, then, for every space Y,

tm(X×Y) ≤ tm(X)tm(Y).

Theorem 3 ([19], Theorem 2.7, Corollary 2.8). For any two spaces X and Y,

tm(X×Y) ≤ tm(X)χ(Y).

If Y is first countable, tm(X×Y) = tm(X).

The set of all non-empty closed subsets of a topological space X is denoted by expX.
The family of all sets of the form

O〈U1, U2, . . . , Un〉 =
{

F : F ∈ expX, F ⊂
n⋃

i=1

Ui, F ∩Ui 6= ∅, i = 1, . . . , n
}

,

where U1, U2, . . . , Un are open subsets of X generates a base of the topology on the set
expX. This topology is called the Vietoris topology. The set expX with the Vietoris topology
is called the exponential space or hyperspace of a space X. We put [2]

expnX = {F ∈ expX : |F| ≤ n}.

Let Sn denote the permutation group of the set {1, 2, . . . , n}, and let G be a subgroup of
Sn. The group G acts on the n-th power Xn of a space X as permutation of coordinates. Two
points (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Xn are considered to be G-equivalent if there exists
a permutation σ ∈ G such that yi = xσ(i). This relation is called the symmetric G-equivalence
relation on X. The G-equivalence class of an element x = (x1, x2, . . . , xn) ∈ Xn is denoted
by [x]G = [(x1, x2, . . . , xn)]G. The sets of all orbits of actions of the group G is denoted
by SPn

GX. Thus, points of the space SPn
GX are finite subsets (equivalence classes) of the

product Xn.
Consider the quotient mapping πs

n,G : Xn → SPn
GX defined by

πs
n,G((x1, x2, . . . , xn)) = [(x1, x2, . . . , xn)]G

and endow the sets SPn
GX with the quotient topology. This space is called the space of the

n–G-permutation degree, or simply the space of the G-permutation degree of space X.

Let f : X → Y be a continuous mapping. For an equivalence class [(x1, x2, . . . , xn)]G ∈
SPn

GX, we can say that

SPn
G f [(x1, x2, . . . , xn)]G = [( f (x1), f (x2), . . . , f (xn))]G.

In this way, we have the mapping SPn
G f : SPn

GX → SPn
GY. It is easy to check that the

mapping SPn
G constructed in this way is a normal functor in the category of compacta. This

functor is called the functor of the G-permutation degree.
When G = Sn, we omit the index or prefix G in all the above definitions. In particular,

we speak about the space SPnX of the permutation degree, the functor SPn, and the quotient
mapping πs

n.
Equivalence relations by which one obtains spaces SPn

GX and expnX are called the
symmetric and hypersymmetric equivalence relations, respectively.
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While any symmetrically equivalent points in Xn are hypersymmetrically equivalent,
in general, the converse is not correct. For example, while for x 6= y points (x, x, y), (x, y, y)
are hypersymmetrically equivalent, they are not symmetrically equivalent.

The G-symmetric equivalence class [(x1, x2, . . . , xn)]G uniquely determines the hyper-
symmetric equivalence class [(x1, x2, . . . , xn)]hc

G containing it. Thus, we have the mapping

πh
n,G : SPn

GX → expnX,

representing the functor expn as the factor functor of the functor SPn
G [1,2].

3. Results

The functor of the G-permutation degree SPn
G preserves the κ-continuity of the map-

pings, i.e., the following holds.

Theorem 4. If f : X → Y is a κ-continuous mapping, then the mapping SPn
G f : SPn

GX → SPn
GY

is κ-continuous as well.

Proof. Consider an arbitrary subset SPn
GA of SPn

GX, such that |SPn
GA| ≤ κ. We can prove

that the restriction of the mapping SPn
G f onto the set SPn

GA is continuous.
If we say

M = pri((π
s
n,G)

←(SPn
GA)),

where pri : Xn → X is defined as

pri(z1, z2, . . . , zn) = zi,

for any (z1, z2, . . . , zn) ∈ Xn, 1 ≤ i ≤ n, and πs
n,G : Xn → SPn

GX, it is clear that M ⊂ X and
|M| ≤ κ. Take an arbitrary element [x]G = [(x1, x2, . . . , xn)]G from SPn

GA; then,

SPn
G f ([x]G) = [( f (x1), f (x2), . . . , f (xn))]G ∈ SPn

GY.

Suppose W is a neighborhood of the orbit SPn
G f ([x]G) in SPn

GY. Per the definition of the quo-
tient mapping, there exist neighborhoods V1, V2, . . . , Vn of the points f (x1), f (x2), . . . , f (xn)
such that [V1 × V2 × . . .× Vn]G ⊂ W. In this case, we have x1, x2, . . . , xn ∈ M. Because
M ⊂ X and |M| ≤ κ, we find that f � M : M→ Y is continuous. By continuity of f on M,
there exist neighborhoods U1, U2, . . . , Un of the points x1, x2, . . . , xn satisfying f (Uj) ⊂ Vj
for all j = 1, 2, . . . , n. Then,

SPn
G f [U1 ×U2 × . . .×Un]G = [ f (U1)× f (U2)×, . . . ,× f (Un)]G ⊂W.

This means that the restriction SPn
G f � SPn

GA is continuous at the point [x]G. As SPn
GA and

[x]G were arbitrary, the theorem is proven.

Theorem 5. For every topological space X we have

ts
((

πs
n,G
)←

([x]G), Xn) ≤ ts([x]G, SPn
GX).

Proof. Let ts
(
[x]G,SPn

GX
)
= κ and C ⊂ Xn satisfying

(
πs

n,G

)←
([x]G) ⊂ C \ C. Then, we

have [x]G ∈ SPn
GC \ SPn

GC. This means that there exists a family γ′ ⊂ SPn
GC such that

|γ′| ≤ κ and [x]G ∈
⋃

γ′ \ ⋃ γ′. For every SPn
GS ∈ γ′, we can choose a set S ⊂ C ⊂ Xn

such that πs
n,G(S) = SPn

GS. Let γ =
{

S : SPn
GS ∈ γ′

}
be a family obtained in this way. It is

clear that |γ| ≤ κ and
(

πs
n,G

)←
([x]G)

⋂
(
⋃

γ) = ∅; thus, by the closedness of the mapping

πs
n,G, we have

(
πs

n,G

)←
([x]G)

⋂(⋃
γ
)
6= ∅. This means that ts

((
πs

n,G

)←
([x]G), Xn

)
≤ κ.

Theorem 5 is therefore proven.
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Theorem 6. If X is a regular space, then ts(Xn) = ts(SPn
GX).

Proof. Let κ = ts(Xn), C ⊂ SPn
GX and [y]G ∈ C \ C. By virtue of the closedness of

πs
n,G,

(
πs

n,G

)←
([y]G) ∩

(
πs

n,G

)←
(C) 6= ∅. Let x be an isolated point of

(
πs

n,G

)←
([y]G) ∩(

πs
n,G

)←
(C). Clearly, x ∈

(
πs

n,G

)←
(C) \

(
πs

n,G

)←
(C). Because ts(Xn) = κ, there exists a

family γ ⊂
(

πs
n,G

)←
(C) such that |γ| = κ and x ∈ ⋃

γ \ ⋃ γ. The set{(
πs

n,G

)←
([y]G)

⋂(⋃
γ
)}
\ {x} is closed and discrete in

(
πs

n,G

)←
([y]G); hence, Xn. Due

to the regularity of X, there exists a closed neighbourhood U of x such that
U
⋂{{(

πs
n,G

)←
([y]G)

⋂(⋃
γ
)}
\ {x}

}
= ∅. Let γ′ = {B

⋂
U : U ∈ γ}; then, it is clear

that x ∈ ⋃ γ′ and
(

πs
n,G

)←
([y]G)

⋂(⋃
γ′
)
= ∅. Let γ′′ =

{
πs

n,G(B) = SPn
GB : B ∈ γ′

}
.

By the closedness of πs
n,G, we have [y]G /∈ ⋃ γ′′; however, clearly [y]G ∈

⋃
γ′′ and |γ′′| = κ.

This means that ts(SPn
GX) = κ. Theorem 6 is therefore proven.

Proposition 1. For any topological space X, we have T(SPn
GX) ≤ T(Xn).

Proof. Assume that T(Xn) = κ. This means that for every increasing sequence {Fα}α∈Λ
of closed subsets of Xn with c f (Λ) > κ, we find that

⋃
α∈Λ Fα is closed. Because the

quotient mapping πs
n,G : Xn → SPn

GX is closed onto mapping, it follows immediately that
{SPn

G(Fα)}α∈Λ is an increasing sequence of closed subsets of SPn
GX and that

⋃
α∈Λ SPn

G(Fα)
is closed. This means that T(SPn

GX) ≤ κ. Proposition 1 is therefore proven.

Theorem 7. If X is a regular space, then T(SPn
GX) = T(Xn).

Proof. According to Proposition 1, it suffices to show the following equality: T(SPn
GX) ≥

T(Xn).
Assume that T(SPn

GX) = κ and {Fα}α∈Λ is an increasing sequence of closed subsets of
Xn such that c f (Λ) > κ. Put F =

⋃
α∈Λ Fα and suppose that there exists a point x ∈ F \ F.

Let F′α = (πs
n,G)

←([x]G)
⋂

Fα for every α ∈ Λ; the family {F′α}α∈Λ is an increasing
sequence of closed subsets of (πs

n,G)
←([x]G). Because (πs

n,G)
←([x]G) is finite, we find that

the set
⋃

α∈Λ F′α = F
⋂
(πs

n,G)
←([x]G) is closed in Xn.

By regularity of X (and hence Xn), there exist two disjoint open sets U and V in Xn

such that x ∈ U and F
⋂
(πs

n,G)
←([x]G) ⊂ V.

Let F′′α = Fα \ V for every α ∈ Λ. It is clear that x ∈ ⋃α∈Λ F′′α and (πs
n,G)

←([x]G)
⋂

(
⋃

α∈Λ F′′α ) = ∅. The family {SPn
G(F′′α )}α∈Λ is an increasing sequence of closed subsets of

SPn
GX. Because T(SPn

GX) = κ, the set
⋃

α∈Λ SPn
G(F′′α ) =

⋃
α∈Λ πs

n,G(F′′α ) = πs
n,G(

⋃
α∈Λ F′′α )

must be closed, and per the continuity of πs
n,G,

πs
n,G(x) = [x]G ∈ πs

n,G(
⋃

α∈Λ

F′′α ) = πs
n,G(

⋃
α∈Λ

F′′α ).

However, this is impossible because

(πs
n,G)

←([x]G)
⋂
(
⋃

α∈Λ

F′′α ) = ∅.

This proves that F is closed, and thus T(Xn) ≤ κ. Theorem 7 is therefore proven.

If, in the above theorem, the space X is Hausdorff, then the mapping πs
n,G is perfect

and the assumption about the regularity of X could be weakened.

Corollary 1. If X is Hausdorff and T(SPn
GX) ≤ κ, then T(Xn) ≤ κ.
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Corollary 2. If X is a locally compact Hausdorff space, then T(SPn
GX) ≤ T(Xn) ≤ T(X).

Proposition 2. Let X be any topological space; then,

(a) to(SPn
GX) ≤ to(Xn);

(b) tm(SPn
GX) ≤ tm(Xn).

Proof. Let f be a κ-continuous (strictly κ-continuous) real-valued function on SPn
GX and

to(Xn) = κ (resp. tm(Xn) = κ). Then, the composition g = f ◦ πs
n,G is a κ-continuous

(strictly κ-continuous) real-valued function on Xn. In both cases, we find that g is con-
tinuous. By continuity of πs

n,G and g = f ◦ πs
n,G, it follows that f is continuous; hence,

to(SPn
GX) ≤ κ = to(Xn) (tm(SPn

GX) ≤ κ = tm(Xn)). Proposition 2 is therefore proven.

From Proposition 2 and from Theorems 1 and 2, we have the following statement.

Corollary 3. Let X be a locally compact space; then,

(a) to(SPn
GX) ≤ to(Xn) ≤ to(X);

(b) tm(SPn
GX) ≤ tm(Xn) ≤ tm(X).

It follows immediately from Theorem 3 that:

Corollary 4. For every first countable space X, tm(SPn
GX) ≤ tm(Xn) ≤ tm(X).

Let us now recall the earlier definitions.
The weak tightness tc(X) of a space X is the smallest (infinite) cardinal κ such that the

following condition is fulfilled.
If a set A ⊂ X is not closed in X, then there is a point x ∈ A \ A, a set B ⊂ A, and a set

C ⊂ X for which x ∈ B, B ⊂ C, and |C| ≤ κ.
We can say that A ⊂ X is a set of type Gκ in X if there is a family γ of open sets in

X such that A = ∩γ and |γ| ≤ κ. A set A ⊂ X is called κ-placed in X if for each point
x ∈ X \ A there is a set P of type Gκ in X such that x ∈ P ⊂ X \ A.

Put q(X) = min{κ ≥ ω : is κ − placed in βX}; q(X) is called the Hewitt–Nachbin
number of X. We can say that X is a Qκ−space if q(X) ≤ κ.

Proposition 3. Let X be a compact space; then, q(SPn
GX) ≤ d(X).

Proof. It is known (see [14]) that, for any Tychonoff space X, the following relations hold:

q(X) = tm(Cp(X)) = to(Cp(X)), to(X) ≤ tc(X) ≤ d(X).

Thus, we have

q(SPn
GX) = tm(Cp(SP

n
GX)) = to(Cp(SP

n
GX)) ≤ tc(Cp(SP

n
GX))

≤ d(Cp(SP
n
GX)) ≤ d(SPn

GX) = d(X).

Proposition 3 is therefore proven.

Corollary 5. Let X be a compact and separable space; then, q(SPn
GX) ≤ ω, i.e., the space SPn

GX is
a Qω-space.

4. Conclusions

An important question in topology is, if F is a functor and P is a topological property,
whether if a space X has the property P , then F(X) has the same or some other property.
This paper is devoted to a study of preservation of tightness-type cardinal invariants (T-
tightness, set-tightness, functional tightness, minitightness, weak tightness) of a space X
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(and its n-th power Xn) under influence of the functor SPn of n-permutation degree. It is
shown that, for certain classes of spaces, some of these cardinal functions are equal for Xn

and SPnX. We hope that these results may be a first step in the investigation of similar
problems for other known functors.
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