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1. Introduction

Since Alber and Guerre-Delabrere [1] introduced a class of strongly compressed maps
called weakly contracted maps on closed convex sets of Hilbert spaces and proved that it
was an iterative operator on Hilbert spaces that extended the Banach principle, which was
formerly applied to strongly contracted maps alone, Rhoades [2] extended these works
to arbitrary Banach spaces and proved that their conclusions still held. On the basis of
the conclusions proposed by the previous authors, Chuanxi Zhu [3] succeeded in gaining
some results, which were related to the common fixed point of four mappings under a
generalized weak contraction of a partially ordered metric space. Inspired by this research,
we demonstrate that the results still hold when the space is replaced by a b2 metric space [4]
consisting of a b-metric space [5–8] and a 2-metric space [9–15].

Simultaneously, we found that the authors [4,16–18] discussed and obtained the com-
mon fixed point theorem for a limited mapping family in the b2 metric space, but they
largely studied it under explicit or semiexplicit contraction conditions. Notwithstanding,
by introducing implicit contraction conditions, the authors [19] discussed the common
fixed point problem in the metric space and gained better results. Consequently, if one
continues to introduce a new class of functions in the b2 metric space and establish implicit
contraction conditions, is it feasible to obtain the presence and uniqueness theorems for
common fixed points of many mappings.

Through the analysis presented above, this paper attempts to establish a new gen-
eralized weak contraction condition in the b2 metric space to demonstrate that when the
metric space is replaced by the b2 metric space, there are still common points between
various mappings, and uniqueness can still be proven. In addition, we establish an implicit
contraction condition in the b2 metric space and obtain that there still exist unique fixed
points between various mappings in the b2 metric space when the explicit or semiexplicit
contraction condition is changed to an implicit contraction condition.

The following core ideas are necessary for comprehending and validating our ma-
jor findings.
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Definition 1 ([5]). Assume that X is a nonempty set, R+ denotes the set of all non-negative
numbers, and s ≥ 0 is a specified real number, then b : X2 → R+ is a b-metric on X, if the
following requirements hold true for any x, y, z ∈ X:

(1) b(x, y) = 0 if and only if x = y;
(2) b(x, y) = b(y, x);
(3) b(x, z) ≤ s[b(x, y) + b(y, z)].

In this scenario, a pair of (X, b) is referred to as a b-metric space with the parameter s.

Definition 2 ([14]). Assume that X is a nonempty set. A function d : X3 → [0,+∞) is a 2-metric
if and only if the following conditions are satisfied for all x, y, z ∈ X:

(1) If x 6= y, then there is a point z ∈ X such that d(x, y, z) 6= 0;
(2) d(x, y, z) = 0 if at least two of the three points are equal;
(3) d(x, y, z) = d(x, z, y) = d(y, z, x) (symmetry about three variables);
(4) d(x, y, z) ≤ d(x, y, u) + d(y, z, u) + d(z, x, u), for all u ∈ X.

Then, (X, d) is referred to as a 2-metric space.

Example 1 ([15]). Let X = {1, 2, 3} and d(x, y, z) = min{|x − y|, |y − z|, |z − x|} for all
x, y, z ∈ X. Then, (X, d) is a 2-metric space.

b2 metric spaces are introduced as an extension of 2-metric spaces and b-metric spaces,
and are described in detail below.

Definition 3 ([4]). Assume that X is a nonempty set and λ > 1 is a given real number. Suppose
that the following criteria are met for the function d : X3 → R, for all a, b, c ∈ X :

(b1) If a 6= b, then there is a point c ∈ X such that d(a, b, c) 6= 0;
(b2) If at least two of three points a, b, c are the same, then d(a, b, c) = 0;
(b3) d(a, b, c) = d(b, a, c) = d(c, a, b) (symmetry about three variables);
(b4) d(a, b, c) ≤ λ[d(a, b, u) + d(b, c, u) + d(c, a, u)], u ∈ X.

The d in X is thus termed b2 metric, the pair (X, d) is referred to as a b2 metric space
with the parameter λ in this case. Obviously, for λ = 1, a b2 metric reduces to a 2-metric.

In [4], Zead Mustafa also gave some basic properties about b2 metric spaces after
giving the definition of b2 metric spaces in 2014.

Definition 4 ([4]). Assume a sequence {xn} in b2-metric space (X, d).

(1) If lim
n→∞

d(xn, x, α) = 0 for all α ∈ X, then the sequence {xn} is b2-convergent to x ∈ X,
denoted by lim

n→∞
xn = x.

(2) If lim
n,m→∞

d(xn, xm, α) = 0 for all α ∈ X, then the sequence {xn} is b2-Cauchy sequence.

(3) If all b2-Cauchy sequences are b2-convergent, then the pair (X, d) is b2-complete.

Definition 5 ([20]). Let (X, ωλ) be a modular metric space and let C be a nonempty subset of X.
If A, S: C → C are two mappings, then A and S are said to be:

(1) Commuting if ASx = SAx, for all x ∈ C;
(2) Weakly commuting if ωλ(ASx, SAx) ≤ ωλ(Ax, Sx), for all x ∈ C;
(3) Compatible if lim

n→∞
ωλ(ASxn, SAxn) = 0 for each sequence {xn} in C such that lim

n→∞
Axn =

lim
n→∞

Sxn;

(4) Noncompatible if there exists a sequence {xn} in C such that lim
n→∞

Axn = lim
n→∞

Sxn but

lim
n→∞

ωλ(ASxn, SAxn) is either nonzero or nonexistent;

(5) Weakly compatible if they commute at their coincidence points, that is, ASx = SAx whenever
Ax = Sx, for some x ∈ C.
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We write the following definition in the b2 metric space, following Definition 5.

Definition 6. Let X be a nonempty set and (X, d) be a b2 metric space. If A, B: X → X are two
mappings, then A and B are said to be:

(1) Commuting if ABx = BAx, for all x ∈ X;
(2) Compatible if lim

n→∞
d(ABxn, BAxn, α) = 0 for each sequence {xn} in X such that lim

n→∞
Axn =

lim
n→∞

Bxn;

(3) Noncompatible if there exists a sequence {xn} in X such that lim
n→∞

Axn = lim
n→∞

Bxn but

lim
n→∞

d(ABxn, BAxn, α) is either nonzero or nonexistent;

(4) Weakly compatible if they commute at their coincidence points, that is, ABx = BAx whenever
Ax = Bx, for some x ∈ X.

Example 2 ([4]). Let X = [0, ∞) and d(x, y, z) = [xy + yz + zx]p if x 6= y 6= z 6= x, and oth-
erwise d(x, y, z) = 0, where p ≥ 1 is a real number. Evidently, from the convexity of function
f (x) = xp for x ≥ 0, then by Jensen’s inequality, we have

(a + b + c)p ≤ 3p−1(ap + bp + cp).

Therefore, one can obtain the result that (X, d) is a b2-metric space with s = 3p−1.

Example 3 ([21]). Let (X, d) be a 2-metric space and ρ(x, y, w) = (d(x, y, w))p, where p ≥ 1 is
a real number. We see that ρ is a b2-metric with s = 3p−1. In view of the convexity of f (x) = xp

on [0, ∞) for p ≥ 1 and Jensen’s inequality, we have

(a + b + c)p ≤ 3p−1(ap + bp + cp).

Therefore, condition (b4) of Definition 3 is satisfied and ρ is a b2-metric on X.

Example 4 ([4]). Let a mapping d : R3 → [0, ∞) be defined by

d(x, y, z) = min{|x− y|, |y− z|, |z− x|}.

Then, d is a 2-metric on R, i.e., the following inequality holds:

d(x, y, z) ≤ d(x, y, t) + d(y, z, t) + d(z, x, t),

for arbitrary real numbers x, y, z, t. Using the convexity of the function f (x) = xp on [0, ∞) for
p ≥ 1, we obtain that

dp(x, y, z) = [min{|x− y|, |y− z|, |z− x|}]p

is a b2-metric on R with s < 3p−1.

2. Expansive Mappings

It is vital to highlight that the majority of past scholarly study results concern con-
tracted fixed point results in b-metric spaces and 2-metric spaces, whereas relatively few
results concern expansive fixed-point results in these two types of spaces. Furthermore,
the research on expansive mappings is a highly intriguing research topic in the theory
of fixed points, so influenced by the literature [3], we propose to introduce generalized
(φ, f )λ-expansive mappings into a b2 metric space.

Definition 7. We define Φ to be the set of functions φ, φ : R+
6 → R+ satisfying the below situations:

(1) φ is a continuous and nondecreasing function;
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(2) For hi ∈ [0,+∞), i = 1, 2, . . . , 6, φ(h1, h2, h3, h4, h5, h6) > min{h1, h2+h3
2 }, where

min{h1, h2+h3
2 } > 0;

(3) φ(0, 0, 0, 0, 0, 0) = 0 and φ(h1, h2, h3, h4, h5, h6) > min{h1, h5}, where min{h1, h5} > 0.

Example 5. Some simple examples of the φ function are given next:

φ(h1, h2, h3, h4, h5, h6) = h1 + h5;

φ(h1, h2, h3, h4, h5, h6) = max{min{h1,
h2 + h3

2
}, min{h1, h5}}

+ ψ(min{h1,
h2 + h3

2
}, min{h1, h5}),

where the continuous function ψ is nondecreasing on the range of real numbers, if and only if t = 0
yields ψ(t) = 0.

Definition 8. Consider the b2 metric space (X, d) is b2-complete, and A, B, S, and T are four
self-mappings of X meeting the generalized (φ, f )λ-expansive condition:

f (
d(Sx, Ty, α)

λ2 ) ≥ φ
(

d(Ax, By, α), d(Ax, Sx, α), d(By, Ty, α),

d(Ax, Sx, α) + d(By, Ty, α)

2
,

d(By, Sx, α)

λ
,

max{d(Sx, Ty, α),
d(Sx, Ax, α)d(By, Ty, α)

d(Ax, By, α)
}
)

,

(1)

for all α, x, y ∈ X and λ ≥ 1, where φ ∈ Φ, continuous function f : [0, ∞)→ [0, ∞) is nondecreas-
ing, f (0) = 0, and for all h > 0, φ(h1, h2, h3, h4, h5, h6) > f (h), where
min{h1, h2+h3

2 } = h or min{h1, h5} = h.

The following are the key theorems that we have developed regarding expansive maps.

Theorem 1. Assume that (X, d) is a b2-complete b2 metric space and that A, B, S, and T are four
self-mappings of X that meet the condition (1). Assume, moreover, that the mappings also meet the
below requirements:

(1) A(X) ⊆ T(X),B(X) ⊆ S(X);
(2) A(or B) and S(or T) are continuous, A(or B) and S(or T) are compatible, and B(or A) and

T(or S) are weakly compatible.

Then, the four mappings have a unique common fixed point in X.

Proof. Given that x0 ∈ X. Since A(X) ⊂ T(X), there is an x1 ∈ X that makes Ax0 = Tx1.
Since B(X) ⊂ S(X), there is an x2 ∈ X that makes Bx1 = Sx2.
Constructing the sequences of number {xn} and {un} such that

u2n−1 = Ax2n−2 = Tx2n−1, u2n = Bx2n−1 = Sx2n, n = 0, 1, 2, . . . (2)

First, we prove
lim

n→∞
d(un, un+1, α) = 0. (3)
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Case 1: Suppose d(un, un+1, α) = 0 for some n = n0; when n0 = 2p, we have
d(u2p, u2p+1, α) = 0 and by (1), one has

0 = f (
d(u2p, u2p+1, α)

λ2 )

≥φ
(

d(Ax2p, Bx2p+1, α), d(Ax2p, Sx2p, α), d(Bx2p+1, Tx2p+1, α),

d(Ax2p, Sx2p, α) + d(Bx2p+1, Tx2p+1, α)

2
,

d(Bx2p+1, Sx2p, α)

λ
,

max{d(Sx2p, Tx2p+1, α),
d(Sx2p, Ax2p, α)d(Bx2p+1, Tx2p+1, α)

d(Ax2p, Bx2p+1, α)
}
)

=φ
(

d(u2p+1, u2p+2, α), d(u2p+1, u2p, α), d(u2p+2, u2p+1, α),

d(u2p+1, u2p, α) + d(u2p+2, u2p+1, α)

2
,

d(u2p+2, u2p, α)

λ
,

max{d(u2p, u2p+1, α),
d(u2p, u2p+1, α)d(u2p+2, u2p+1, α)

d(u2p+1, u2p+2, α)
}
)

=φ
(

d(u2p+1, u2p+2, α), 0, d(u2p+1, u2p+2, α),
d(u2p+2, u2p+1, α)

2
,

d(u2p+2, u2p, α)

λ
, 0
)

,

which implies

min{h1,
h2 + h3

2
} =

d(u2p+1, u2p+2, α)

2
= 0,

hence
d(u2p+1, u2p+2, α) = 0.

Similarly, when n0 = 2p + 1, we have d(u2p+1, u2p+2, α) = 0 and by (1), one has

0 = f (
d(u2p+1, u2p+2, α)

λ2 )

≥φ
(

d(Ax2p+2, Bx2p+1, α), d(Ax2p+2, Sx2p+2, α), d(Bx2p+1, Tx2p+1, α),

d(Ax2p+2, Sx2p+2, α) + d(Bx2p+1, Tx2p+1, α)

2
,

d(Bx2p+1, Sx2p+2, α)

λ
,

max{d(Sx2p+2, Tx2p+1, α),
d(Sx2p+2, Ax2p+2, α)d(Bx2p+1, Tx2p+1, α)

d(Ax2p+2, Bx2p+1, α)
}
)

=φ
(

d(u2p+3, u2p+2, α), d(u2p+3, u2p+2, α), d(u2p+2, u2p+1, α),

d(u2p+3, u2p+2, α) + d(u2p+2, u2p+1, α)

2
,

d(u2p+2, u2p+2, α)

λ
,

max{d(u2p+1, u2p+2, α),
d(u2p+2, u2p+3, α)d(u2p+2, u2p+1, α)

d(u2p+3, u2p+2, α)
}
)

=φ
(

d(u2p+2, u2p+3, α), d(u2p+2, u2p+3, α), 0,
d(u2p+2, u2p+3, α)

2
, 0, 0

)
,

which implies

min{h1,
h2 + h3

2
} =

d(u2p+2, u2p+3, α)

2
= 0,

hence
d(u2p+2, u2p+3, α) = 0.

Thus, for n ≥ n0, we can get d(un, un+1, α) = 0. Hence, we have lim
n→∞

d(un, un+1, α) = 0.

Case 2: Suppose d(un, un+1, α) > 0, for every n, by (1), when n0 = 2p, we obtain
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f (d(u2p, u2p+1, α)) ≥ f (
d(Sx2p, Tx2p+1, α)

λ2 )

≥φ
(

d(Ax2p, Bx2p+1, α), d(Ax2p, Sx2p, α), d(Bx2p+1, Tx2p+1, α),

d(Ax2p, Sx2p, α) + d(Bx2p+1, Tx2p+1, α)

2
,

d(Bx2p+1, Sx2p, α)

λ
,

max{d(Sx2p, Tx2p+1, α),
d(Sx2p, Ax2p, α)d(Bx2p+1, Tx2p+1, α)

d(Ax2p, Bx2p+1, α)
}
)

=φ
(

d(u2p+1, u2p+2, α), d(u2p+1, u2p, α), d(u2p+2, u2p+1, α),

d(u2p+1, u2p, α) + d(u2p+2, u2p+1, α)

2
,

d(u2p+2, u2p, α)

λ
,

max{d(u2p, u2p+1, α),
d(u2p, u2p+1, α)d(u2p+2, u2p+1, α)

d(u2p+1, u2p+2, α)
}
)

.

(4)

If

min{h1,
h2 + h3

2
} =

d(u2p+1, u2p, α) + d(u2p+2, u2p+1, α)

2
,

then d(u2p+1, u2p, α) ≤ d(u2p+2, u2p+1, α), by (4) and the characteristics of φ and f , we obtain

f (d(u2p+1, u2p, α)) ≥φ
(

d(u2p+1, u2p+2, α), d(u2p+1, u2p, α), d(u2p+2, u2p+1, α),

d(u2p+1, u2p, α) + d(u2p+2, u2p+1, α)

2
,

d(u2p+2, u2p, α)

λ
,

max{d(u2p, u2p+1, α),
d(u2p, u2p+1, α)d(u2p+2, u2p+1, α)

d(u2p+1, u2p+2, α)
}
)

> f (min{h1,
h2 + h3

2
})

= f (
d(u2p, u2p+1, α) + d(u2p+2, u2p+1, α)

2
).

Since f is a nondecreasing function, d(u2p, u2p+1, α) ≥ d(u2p+1, u2p+2, α), and the re-
sult is contradictory.

Therefore, we can infer that d(u2p+1, u2p+2, α) ≤ d(u2p, u2p+1, α).
When n0 = 2p + 1, one has

f (d(u2p+1, u2p+2, α)) ≥ f (
d(Sx2p+2, Tx2p+1, α)

λ2 )

≥φ
(

d(Ax2p+2, Bx2p+1, α),

d(Ax2p+2, Sx2p+2, α), d(Bx2p+1, Tx2p+1, α),

d(Ax2p+2, Sx2p+2, α) + d(Bx2p+1, Tx2p+1, α)

2
,

d(Bx2p+1, Sx2p+2, α)

λ
, max{d(Sx2p+2, Tx2p+1, α),

d(Sx2p+2, Ax2p+2, α)d(Bx2p+1, Tx2p+1, α)

d(Ax2p+2, Bx2p+1, α)
}
)

≥φ
(

d(u2p+3, u2p+2, α), d(u2p+3, u2p+2, α), d(u2p+2, u2p+1, α),

d(u2p+3, u2p+2, α) + d(u2p+2, u2p+1, α)

2
,

d(u2p+2, u2p+2, α)

λ
,

max{d(u2p+1, u2p+2, α),
d(u2p+2, u2p+3, α)d(u2p+2, u2p+1, α)

d(u2p+3, u2p+2, α)
}
)

.

(5)
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If

min{h1,
h2 + h3

2
} =

d(u2p+2, u2p+3, α) + d(u2p+1, u2p+2, α)

2
,

then d(u2p+1, u2p+2, α) ≤ d(u2p+2, u2p+3, α), by (5) and the characteristics of φ and f ,
we obtain

f (d(u2p+1, u2p+2, α)) ≥φ
(

d(u2p+3, u2p+2, α), d(u2p+3, u2p+2, α), d(u2p+2, u2p+1, α),

d(u2p+3, u2p+2, α) + d(u2p+2, u2p+1, α)

2
,

d(u2p+2, u2p+2, α)

λ
,

max{d(u2p+1, u2p+2, α),
d(u2p+2, u2p+3, α)d(u2p+2, u2p+1, α)

d(u2p+3, u2p+2, α)
}
)

> f (min{h1,
h2 + h3

2
})

= f (
d(u2p+3, u2p+2, α)d(u2p+2, u2p+1, α)

2
).

Since f is a nondecreasing function, d(u2p+1, u2p+2, α) ≥ d(u2p+2, u2p+3, α). Thus,
the result is contradictory.

On the basis of the above results, we can deduce d(u2p+2, u2p+3, α) ≤ d(u2p+1, u2p+2, α).
In addition, since {d(un, un+1, α)} is a decreasing sequence of nonnegative real numbers,
there is a r ≥ 0 that yields lim

n→∞
{d(un, un+1, α)} = r. (b4) in Definition 3 gives us

d(un, un+2, α) =d(un, un+2, α) + d(un+1, un+1, α)

≤λd(un, un+2, un+1) + λd(un+2, α, un+1) + λd(α, un, un+1).
(6)

Obviously, {d(un, un+2, α)} and {d(un+1, un+1, α)} are two bounded sequences. There-
fore, the sequence {d(un, un+2, α)} has subsequences {d(unp , unp+2, α)} that converge to
a ≤ 2λr, and the sequence {d(unp+1, unp+1, α)} also has subsequences {d(unpl+1, unpl+1, α)}
that converge to b ≤ 2λr.

By (4), we get

f (d(u2np(l)
, u2np(l)+1, α)) ≥φ

(
d(u2np(l)+1, u2np(l)+2, α),

d(u2np(l)+1, u2np(l)
, α), d(u2np(l)+2, u2np(l)+1, α),

d(u2np(l)+1, u2np(l)
, α) + d(u2np(l)+1, u2np(l)+1, α)

2
,

d(u2np(l)+2, u2np(l)
, α)

λ
, max{d(u2np(l)

, u2np(l)+1, α),

d(u2np(l)
, u2np(l)+1, α)d(u2np(l)+2, u2np(l)+1, α)

d(u2np(l)+1, u2np(l)+2, α)
}
)

.

In the above inequality, let npl → ∞, and then from the properties of f and φ, we
can get

f (r) ≥ φ(r, r, r,
r + b

2
,

a
λ

, r),

with r = 0, hence, lim
n→∞

d(un, un+1, α) = 0. Furthermore, because {d(un, un+1, α)} is a

monotonically decreasing sequence, if d(un, un+1, α) = 0, then d(un−1, un, α) = 0. Then, it
can be known that when d(u0, u1, u0) = 0, d(un, un+1, u0) = 0, for ∀n ∈ N.
Furthermore, because d(um−1, um, um) = 0, we obtain

d(un, un+1, um) = 0, (7)

for n + 1 ≥ m. By (7), we can easily acquire



Mathematics 2022, 10, 3320 8 of 19

d(um−1, um, un+1) = d(um−1, um, un) = 0. (8)

d(un, un+1, um) ≤λd(un, un+1, um−1) + λd(un+1, um, um−1) + λd(um, un, um−1)

=λd(un, un+1, um−1).

Since d(un, un+1, un+1) = 0, from the above inequality, we can get

d(un, un+1, um) ≤ λm−n−1d(un, un+1, un+1) = 0, 0 ≤ n < m− 1, (9)

combining (7) and (9), we get
d(un, un+1, um) = 0, (10)

for all l, q, p ∈ N, l < q, and one obtains

d(uq−1, uq, ul) = d(uq−1, uq, up) = 0, (11)

as a result, by (11) and Definition 3, we acquire

d(ul , uq, up) ≤λ[d(ul , uq, uq−1) + d(uq, up, uq−1) + d(up, ul , uq−1)]

=λd(ul , uq−1, up) ≤ . . . ≤ λq−ld(ul , uq, up) = 0,

which proves that for all l, q, p ∈ N, we have d(ul , uq, up) = 0.
Second, {un}must be demonstrated to be a b2-Cauchy sequence.
As a matter of fact, we have demonstrated that lim

m,n→∞
d(un, um, α) = 0, and there is

lim
m,n→∞

d(un, um, α) = 0 which can make lim
m,n→∞

d(u2n, u2m, α) = 0 true.

Using counter-evidence, we assume the opposite, ε > 0, so that we can find two
subsequences of {u2n}, {u2nt}, and {u2mt}, such that m(t) is the minimum value that
satisfies this condition,

m(t) > n(t) > t, d(u2m(t)
, u2n(t)

, α) ≥ ε, ∀t ∈ N, (12)

which means
d(u2m(t)−2, u2n(t)

, α) < ε. (13)

Using the triangle inequality for (13), we gain

0 ≤ ε ≤d(u2m(t)
, u2n(t)

, α)

≤λd(u2m(t)
, u2n(t)

, u2m(t)−1) + λd(u2n(t)
, α, u2m(t)−1) + λd(α, u2m(t)

, u2m(t)−1)

≤λd(u2m(t)
, u2n(t)

, u2m(t)−1) + λ2[d(u2n(t)
, u2n(t)+1, α) + d(u2m(t)−1, u2n(t)+1, α)

+ d(u2n(t)
, u2n(t)+1, u2m(t)−1)] + λd(u2m(t)

, u2m(t)−1, α),

and taking t→ ∞ in the above formula, we get

ε

λ
≤ lim

t→∞
inf d(u2n(t)

, u2m(t)−1, α) ≤ lim
t→∞

sup d(u2n(t)
, u2m(t)−1, α),

ε ≤ lim
k→∞

inf d(u2m(t)
, u2n(t)

, α) ≤ lim
k→∞

sup d(u2m(t)
, u2n(t)

, α).
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It is easy to get

f (d(u2n(t)
, u2m(t)−1, α)) ≥ f (

d(Sx2n(t)
, Tx2m(t)−1, α)

λ2 )

>φ
(

d(Ax2n(t)
, Bx2m(t)−1, α),

d(Ax2n(t)
, Sx2n(t)

, α), d(Bx2m(t)−1
, Tx2m(t)−1, α),

d(Ax2n(t)
, Sx2n(t)

, α) + d(Bx2m(t)−1, Tx2m(t)−1, α)

2
,

d(Bx2m(t)−1, Sx2n(t)
, α)

λ
, max{d(Sx2n(t)

, Tx2m(t)−1, α),

d(Sx2n(t)
, Ax2n(t)

, α)d(Bx2m(t)−1, Tx2m(t)−1, α)

d(Ax2n(t)
, Bx2m(t)−1, α)

}
)

=φ
(

d(u2n(t)+1, u2m(t)
, α),

d(u2n(t)+1, u2n(t)
, α), d(u2m(t)

, u2m(t)−1, α),

d(u2n(t)+1, u2n(t)
, α) + d(u2m(t)

, u2m(t)−1, α)

2
,

d(u2m(t)
, u2n(t)

, α)

λ
, max{d(u2n(t)

, u2m(t)−1, α),

d(u2n(t)
, u2n(t)+1

, α)d(u2m(t)
, u2m(t)−1, α)

d(u2n(t)+1, u2m(t)
, α)

}
)

.

Now, when t → ∞, taking the upper limit in the preceding inequality, according to
the characteristics of φ and f , we get

f (
ε

λ
) ≥ φ(

ε

λ
, 0, 0, 0,

ε

λ
,

ε

λ
),

therefore, ε = 0 and lim
m,n→∞

d(un, um, α) = 0, which means {un} is a b2-Cauchy sequence

on X.
Last but not least, we establish that A, B, S, and T have a unique common fixed point.
Since {un} is a b2-Cauchy sequence on X, and (X, d) is b2-complete, there is a point θ

in X where {un} is b2- converges to θ, so we have

lim
n→∞

u2n−1 = lim
n→∞

Ax2n−2 = lim
n→∞

Tx2n−1 = θ,

lim
n→∞

u2n = lim
n→∞

Bx2n−1 = lim
n→∞

Sx2n = θ.

Suppose that A and S are continuous. Furthermore, since {A, S} is compatible, we
can easily obtain

lim
n→∞

ASx2n = lim
n→∞

SAx2n = Sθ = Aθ,

f (d(SAx2n+2, Tx2n+3, α)) ≥φ
(

d(AAx2n+2, Bx2n+3, α),

d(AAx2n+2, SAx2n+2, α), d(Bx2n+3, Tx2n+3, α),

d(AAx2n+2, SAx2n+2, α) + d(Bx2n+3, Tx2n+3, α)

2
,

d(Bx2n+3, SAx2n+2, α)

λ
, max{d(SAx2n+2, Tx2n+3, α),

d(SAx2n+2, AAx2n+2, α)d(Bx2n+3, Tx2n+3, α)

d(AAx2n+2, Bx2n+3, α)
}
)

,
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and taking n→ ∞ for the above formula, we get

f (d(Aθ, θ, α)) ≥φ
(

d(Aθ, θ, α), d(Aθ, Aθ, α), d(θ, θ, α),
d(Aθ, Aθ, α) + d(θ, θ, α)

2
,

d(θ, Aθ, α)

λ
, max{d(Aθ, θ, α),

d(Aθ, Aθ, α)d(θ, θ, α)

d(Aθ, θ, α)
}
)

=φ(d(Aθ, θ, α), 0, 0, 0,
d(θ, Aθ, α)

λ
, d(Aθ, θ, α)),

which can illustrate Aθ = θ. Therefore, we continue to get

f (d(Sθ, Tx2n+3, α)) ≥φ
(

d(Aθ, Bx2n+3, α), d(Aθ, Sθ, α), d(Bx2n+3, Tx2n+3, α),

d(Aθ, Sθ, α) + d(Bx2n+3, Tx2n+3, α)

2
,

d(Bx2n+3, Sθ, α)

λ
,

max{d(Sθ, Tx2n+3, α),
d(Sθ, Aθ, α)d(Bx2n+3, Tx2n+3, α)

d(Aθ, Bx2n+3, α)
}
)

,

and taking n→ ∞ for the above formula again, we obtain

f (d(Sθ, θ, α)) ≥φ
(

d(θ, θ, α), d(θ, Sθ, α), d(θ, θ, α),
d(θ, Sθ, α) + d(θ, θ, α)

2
,

d(θ, Sθ, α)

λ
,

max{d(Sθ, θ, α),
d(θ, Sθ, α)d(θ, θ, α)

d(θ, θ, α)
}
)

=φ(0, d(Sθ, θ, α), 0,
d(Sθ, θ, α)

2
,

d(Sθ, θ, α)

λ
, d(Sθ, θ, α)).

From the above formula, we deduce that Sθ = θ. Furthermore, because A(x) ⊂ T(x),
there must be a point ω ∈ X making Aθ = Tω hold. Then, assuming Bω 6= Tω, by (1),

f (d(Sθ, Tω, α)) ≥φ
(

d(Aθ, Bω, α), d(Aθ, Sθ, α), d(Bω, Tω, α),

d(Aθ, Sθ, α) + d(Bω, Tω, α)

2
,

d(Bω, Sθ, α)

λ
,

max{d(Sθ, Tω, α),
d(Sθ, Aθ, α)d(Bω, Tω, α)

d(Aθ, Bω, α)
}
)

=φ(d(θ, Bω, α), d(θ, θ, α), d(Bω, Tω, α),

d(Bω, Tω, α)

2
,

d(Bω, θ, α)

λ
, d(θ, Tω, α)),

this shows that 0 ≥ d(Bω,θ,α)
λ , where Bω = θ can be inferred, so Bω = Tω.

As {B, T} is weakly compatible, then Bθ = BAθ = BTω = TBω = TAθ = Tθ, where
θ is the common point of B and T.
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When Ax2n → θ, if n→ ∞, then x2n → θ.

f (d(Sx2n, Tθ, α)) ≥φ
(

d(Ax2n, Bθ, α), d(Ax2n, Sx2n, α), d(Bθ, Tθ, α),

d(Ax2n, Sx2n, α) + d(Bθ, Tθ, α)

2
,

d(Bθ, Sx2n, α)

λ
,

max{d(Sx2n, Tθ, α),
d(Sx2n, Ax2n, α)d(Bθ, Tθ, α)

d(Ax2n, Bθ, α)
}
)

=φ(d(θ, Bθ, α), d(θ, θ, α), d(Bθ, Bθ, α),
d(θ, θ, α) + d(Bθ, Bθ, α)

2
,

d(Bθ, θ, α)

λ
, max{d(θ, Bθ, α),

d(θ, θ, α)d(Bθ, Bθ, α)

d(θ, Bθ, α)
})

=φ(d(θ, Bθ, α), 0, 0, 0,
d(Bθ, θ, α)

λ
, d(θ, Bθ, α)),

which means f (d(θ, Bθ, α)) ≥ 0. Furthermore, because it contradicts the condition
φ(h1, h2, h3, h4, h5, h6) > f (h) in the theorem, θ = Bθ.

Following similar arguments, we can obtain θ = Tθ, and it is easy to obtain Aθ =
Bθ = Sθ = Tθ = θ.

Assuming that fixed points are not unique, which means that Az1 = Bz1 = Sz1 =
Tz1 = z1, Az2 = Bz2 = Sz2 = Tz2 = z2, where z1 6= z2, In (2.1), substituting z1 for x and z2
for y, one has

f (d(Sz1, Tz2, α)) ≥φ
(

d(Az1, Bz2, α), d(Az1, Sz1, α), d(Bz2, Tz2, α),

d(Az1, Sz1, α) + d(Bz2, Tz2, α)

2
,

d(Bz2, Sz1, α)

λ
,

max{d(Sz1, Tz2, α),
d(Sz1, Az1, α)d(Bz2, Tz2, α)

d(Az1, Bz2, α)
}
)

,

f (d(z1, z2, α)) ≥φ
(

d(z1, z2, α), d(z1, z1, α), d(z2, z2, α),

d(z1, z1, α) + d(z2, z2, α)

2
,

d(z2, z1, α)

λ
,

max{d(z1, z2, α),
d(z1, z1, α)d(z2, z2, α)

d(z1, z2, α)
}
)

=φ(d(z1, z2, α), 0, 0, 0,
d(z2, z1, α)

λ
, d(z1, z2, α)),

and since φ(h1, h2, h3, h4, h5, h6) > f (h), where h = min{h1, h2+h3
2 } = 0, we have z1 = z2.

Consequently, we get that the fixed point is unique, and the theorem is proved.

Example 6. Let X = {(α, 0) : α ∈ [0, 1] ∪ {2, 3, 4, . . .}}⋃ (0, 2) and let d(x, y, z) denote the
square of the area of a triangle with vertices x, y, z ∈ X, e.g., d((α, 0), (β, 0), (0, 2)) = (α− β)2.
It is straightforward to verify that d is a b2-metric with parameter λ = 2. Consider the mapping
f : [0,+∞)→ [0,+∞) given by

f ((α, 0)) =

{
3α + 1 0 ≤ α ≤ 1,
4α2 α > 1,

for α ∈ [0, 1] ∪ {2, 3, 4, . . .} and f (0, 2) = (0, 2).
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In addition, φ(h1, h2, h3, h4, h5, h6) = max{min{h1, h2+h3
2 }, min{h1, h5}}, and four map-

pings of X are defined by

Ax =


0 x = 0
1
4 x ∈ (0, 1

2 ]
1
2 x ∈ ( 1

2 , 1]
x x ∈ {2, 3, 4, . . .},

Bx =


0 x = 0
1
4 x ∈ (0, 1

2 ]
x
2 x ∈ ( 1

2 , 1]
x + 1 x ∈ {2, 3, 4, . . .},

Sx =


0 x = 0
1
4 x ∈ (0, 1

2 ]
1
2 x ∈ ( 1

2 , 1]
x + 1 x ∈ {2, 3, 4, . . .},

Tx =


0 x = 0
1
3 x ∈ (0, 1

2 ]
x
2 x ∈ ( 1

2 , 1]
x2 x ∈ {2, 3, 4, . . .},

Finally, in order to check the contractive condition (1), only the case when x = (α, 0),
y = (β, 0), and a = (0, 2) is nontrivial, but then d(x, y, a) = (α − β)2. Note that, all of the
requirements given in Theorem 2.1 are met by A, B, S, and T. Moreover, 0 is the only common fixed
point shared by A, B, S, and T.

Corollary 1. Let us consider (X, d) as a b2-complete b2 metric space; M, N, P, Q, H, and R are
six self-mappings of X meeting the generalized (φ, f )λ-expansive condition:

f (
d(HQx, RPy, α)

λ2 ) ≥ φ
(

d(Mx, Ny, α), d(Mx, HQx, α), d(Ny, RPy, α),

d(Mx, HQx, α) + d(Ny, RPy, α)

2
,

d(Ny, HQx, α)

λ
,

max{d(HQx, RPy, α),
d(HQx, Mx, α)d(Ny, RPy, α)

d(Mx, Ny, α)
}
)

,

(14)

for all α, x, y ∈ X and λ ≥ 1, where φ ∈ Φ, continuous function f : [0, ∞) → [0, ∞) is non-
decreasing, f (0) = 0, and for all h > 0, φ(h1, h2, h3, h4, h5, h6) > f (h), where min{h1, h2+h3

2 } =
h or min{h1, h5} = h. The following requirements are considered to be met by these mappings:

(1) M(X) ⊂ RP(X), N(X) ⊂ HQ(X),
(2) {M, HQ} are compatible, M and HQ are continuous, and {N, RP} are weakly compatible

or {N, RP} are compatible, N and RP are continuous, and {M, HQ} are weakly compatible.
(3) (M, HQ) and (N, RP) are interchangeable in pairs, that is

MH = HM, MQ = QM, HQ = QH, NR = RN, NP = PN, RP = PR,

then M, N, P, Q, H and R have a unique common fixed point in X.

Proof. By Theorem 1, it is not difficult to see that M, N, HQ, and RP have a unique
common fixed point θ ∈ X, and it follows that it is also the only common fixed point of M,
N, P, Q, H, and R.
Since M, N, HQ, and RP have a unique common fixed point, it is obvious that Mθ = Nθ =
HQθ = RPθ = θ, taking x = Qθ and y = θ. Therefore, we can easily acquire
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f (d(HQQθ, RPθ, α)) ≥ f (
d(HQQθ, RPθ, α)

λ2 )

≥φ
(

d(MQθ, Nθ, α), d(MQθ, HQQθ, α), d(Nθ, RPθ, α),

d(MQθ, HQQθ, α) + d(Nθ, RPθ, α)

2
,

d(Nθ, HQQθ, α)

λ
,

max{d(HQQθ, RPθ, α),
d(HQQθ, MQθ, α)d(Nz, RPz, α)

d(MQθ, Nθ, α)
}
)

,

f (d(Qθ, θ, α)) ≥ f (
d(Qθ, θ, α)

λ2 )

≥φ
(

d(Qθ, θ, α), d(Qθ, Qθ, α), d(θ, θ, α),

d(Qθ, Qθ, α) + d(θ, θ, α)

2
,

d(θ, Qθ, α)

λ
,

max{d(Qθ, θ, α),
d(Qθ, Qθ, α)d(θ, θ, α)

d(Qθ, θ, α)
}
)

,

and from the above equation, we obtain

f (d(Qθ, θ, α)) ≥ φ(d(Qθ, θ, α), 0, 0, 0,
d(θ, Qθ, α)

λ
, d(Qθ, θ, α)),

so
f (d(Qθ, θ, α)) ≥ min{h1,

h2 + h3

2
} = 0.

Furthermore, since φ(h1, h2, h3, h4, h5, h6) > f (h), we get Qθ = θ, which means that
H(Qθ) = Hθ = θ is true. In the same way, we can obtain Pθ = θ, that is R(Pθ) = Rθ = θ.
As a result,

θ = Mθ = Nθ = Hθ = Qθ = Rθ = Pθ,

and θ is the unique common fixed point of M, N, P, Q, H, and R; the corollary is proven.

Corollary 2. Let (X, d) be a b2-complete b2 metric space. Then, A, B, S, and T are four self-
mappings of X meeting the generalized (φ, f )λ-expansive condition:

f (
d(Spx, Tqy, α)

λ2 ) ≥ φ
(

d(Amx, Bny, α), d(Amx, Spx, α), d(Bny, Tqy, α),

d(Amx, Spx, α) + d(Bny, Tqy, α)

2
,

d(Bny, Spx, α)

λ
,

max{d(Spx, Tqy, α),
d(Spx, Amx, α)d(Bny, Tqy, α)

d(Amx, Bny, α)
}
)

,

(15)

for all α, x, y ∈ X, λ ≥ 1 and m, n, p, q ∈ N, where φ ∈ Φ, the continuous function f : [0, ∞)→
[0, ∞) is nondecreasing, f (0) = 0, and for all h > 0, φ(h1, h2, h3, h4, h5, h6) > f (h), where
min{h1, h2+h3

2 } = h or min{h1, h5} = h. It is assumed that these mappings also satisfy the below
circumstances:

(1) A(X) ⊂ T(X), B(X) ⊂ S(X),
(2) A(or B) and S(or T) are continuous, A(or B) and S(or T) are compatible, and B(or A) and

T(or S) are weakly compatible.

If AS = SA, BT = TB, then A, B, S and T have a unique common fixed point in X.

3. Implicit Relations

As it is well accepted, previous literature mostly studied and generalized fixed points
under explicit or semiexplicit contraction conditions. Now, by introducing a new class
of functions in a b2 metric space and providing implicit contraction requirements, we
can likewise achieve satisfactory results. Notwithstanding, currently, we can also achieve
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satisfactory results by introducing a new class of functions in the b2 metric space and
establishing implicit contraction conditions.

Definition 9. Let Γ be the set of real function F(t1, t2, t3, . . . , t6) : R+
6 → R+ fulfilling the below

circumstances, where λ ≥ 1:
(F1) F is monotonically decreasing with respect to the fourth and fifth variables and there

exists h1, h2 ∈ [0, 1) such that
(F11) if F(t, z, t, t+z

2 , t + z, z) ≤ 0 exists, then t ≤ h1z;
(F12) if F(t, t, z, t+z

2 , 0, z) ≤ 0 exists, then t ≤ h2z;
(F21): For all t > 0, F(t, 0, t, t

2 , 0, 0) > 0;
(F22): For all t > 0, F(t, 0, 0, 0, t

λ , t) > 0;
(F31): For all t > 0, F(t, t, 0, t

2 , 0, 0) > 0;
(F32): For all t > 0, F(t, 0, t, t

2 , t
λ , 0) > 0.

Example 7. F(t1, t2, t3, . . . , t6) = t2
1 − t1(at2 + bt4 + ct6)− dt3t5, where a, b, c, d ≥ 0, a + b +

d ≤ 1, a− d
λ < 0.

F1 is satisfied since the fourth and fifth variables, namely t4 and t5, are both in the subtrahend
position in the expression of F, meaning that as they grow, the value of F decreases.

F11: Let t > 0, F(t, z, t, t+z
2 , t + z, z) = t2 − t(az + b

2 (t + z) + cz)− dt(t + z) = (1− b
2 −

d)t2 − (a + b
2 − c + d)tz ≤ 0, then t ≤ a+ b

2−c+d
1− b

2−d
z = h1z, where h1 =

a+ b
2−c+d

1− b
2−d

< 1.

F12: Let t > 0, F(t, t, z, t+z
2 , 0, z) = t2 − t(at + b

2 (t + z) + cz) = (1− a− b
2 )t

2 − ( b
2 +

c)tz ≤ 0, then t ≤
b
2+c

1−a− b
2

z = h2z, where h2 =
b
2+c

1−a− b
2

.

Therefore, t ≤ hz, where h = max{h1, h2}, if t = 0, then t ≤ hz.
F21 = (1− b

2 )t
2 > 0;

F22 = t2 > 0;
F31 = (1− a− b

2 ) > 0;
F32 = (1− b

2 −
d
λ )t

2 > 0.
So all the conditions of the F function are satisfied.

Example 8. F(t1, t2, t3, . . . , t6) = t3
1 − at1t2t3 − bt2

1t4 − ct1t3t5 − dt2
1t6, where a > 0, c ≥

0, 0 ≤ b < 2, 0 ≤ d < 1, 2a + b ≤ 2, 1− b
2 −

λ
c > 0.

F1 is satisfied since the fourth and fifth variables, namely t4 and t5, are both in the subtrahend
position in the expression of F, meaning that as they grow, the value of F decreases.

F11: Let t > 0, F(t, z, t, t+z
2 , t + z, z) = t3 − at2z − b

2 t2(t + z) − ct2(t + z) − dt2z =

(1− b
2 − c)t3 − (a− b

2 − c− d)t2z ≤ 0, then t ≤ a− b
2−c−d

1− b
2−c

z = h1z, where h1 =
a− b

2−c−d
1− b

2−c
< 1.

F12: Let t > 0, F(t, t, z, t+z
2 , 0, z) = t3 − at2z− b

2 t2(t + z)− dt2z = (1− b
2 )t

3 − (a + b
2 +

d)t2z ≤ 0, then t ≤ a+ b
2+d

1− b
2

z = h2z, where h2 =
a+ b

2+d
1− b

2
.

Therefore, t ≤ hz, where h = max{h1, h2}, if t = 0, then t ≤ hz.
F21 = (1− b

2 )t
3 > 0;

F22 = (1− d)t3 > 0;
F31 = (1− b

2 )t
3 > 0;

F32 = (1− b
2 −

c
λ )t

3 > 0.
So all the conditions of the F function are satisfied.

According to the literature [14], a sequence of 2-metric spaces is a 2-Cauchy sequence
and we provide the following lemma for use in the subsequent proof.

Lemma 1 ([17]). Assume that a sequence {xn}n∈N exists in b2 metric space (X, d); if there
exists k ∈ [0, 1), for any α, n ∈ X with d(xn+2, xn+1, α) ≤ kd(xn+1, xn, α), then {xn}n∈N is a
b2-Cauchy sequence.
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Definition 10. Let (X, d) be a b2-complete b2 metric space, S, T, I, and J are four self-mappings
of X fulfilling S(X) ⊂ J(X), T(X) ⊂ I(X); if for any x, y, α ∈ X and λ ≥ 1, one has

F
(

d(Sx, Ty, α), d(Sx, Ix, α), d(Ty, Jy, α),
d(Sx, Ix, α) + d(Ty, Jy, α)

2
,

d(Ty, Ix, α)

λ
, max{d(Ix, Jy, α),

d(Ix, Sx, α)d(Ty, Jy, α)

d(Sx, Ty, α)
}
)
≤ 0,

(16)

where F ∈ Γ.

Theorem 2. Let (X, d) be a b2-complete b2 metric space, and S, T, I and J are four self-mappings
of X meeting implicit relations (16) and S(X) ⊂ J(X), T(X) ⊂ I(X). If one of the mappings in S,
T, I, and J is continuous, and {S, I} and {T, J} are, respectively, compatible, then S, T, I, and J
have a unique common fixed point.

Proof. Since S(X) ⊂ J(X), there exists x1 ∈ X making Sx0 = Jx1, and since T(X) ⊂ I(X),
there exists x2 ∈ X making Tx1 = Ix2.

Constructing two sequences {xn} and {un}, respectively, such that

u2n+1 = Sx2n = Jx2n+1, u2n+2 = Tx2n+1 = Ix2n+2.∀n = 0, 1, 2, . . . (17)

Substituting x = x2n, u = x2n+1 into (16), we obtain

F
(

d(Sx2n, Tx2n+1, α), d(Sx2n, Ix2n, α), d(Tx2n+1, Jx2n+1, α),

d(Sx2n, Ix2n, α) + d(Tx2n+1, Jx2n+1, α)

2
,

d(Tx2n+1, Ix2n, α)

λ
,

max{d(Ix2n, Jx2n+1, α),
d(Ix2n, Sx2n, α)d(Tx2n+1, Jx2n+1, α)

d(Sx2n, Ty2n+1, α)
}
)
≤ 0,

and formula (18) can be obtained by arranging

F
(

d(u2n+1, u2n+2, α), d(u2n, u2n+1, α), d(u2n+1, u2n+2, α),

d(u2n, u2n+1, α) + d(u2n+1, u2n+2, α)

2
,

d(u2n, u2n+2, α)

λ
,

max{d(u2n, u2n+1, α),
d(u2n, u2n+1, α)d(u2n+1, u2n+2, α)

d(u2n+1, u2n+2, α)
}
)
≤ 0.

(18)

Since X is a b2 metric space, according to the fourth property in the definition of a b2
metric space, we get the below formula

d(u2n, u2n+2, α) ≤λ[d(u2n, u2n+1, u2n+2) + d(u2n, u2n+1, α) + d(α, u2n+1, u2n+2)],

then recalling t = d(u2n+1, u2n+2, α), z = d(u2n, u2n+1, α), the above formula can be simpli-
fied to

d(u2n, u2n+2, α) ≤ λ[t + z + d(u2n, u2n+1, u2n+2)],

and substituting it in (18), we get

F(t, z, t,
t + z

2
, t + z + d(u2n, u2n+1, u2n+2), z) ≤ 0.

Faced with this situation, we take α = u2n in (18), and then arranging according to the
definition of the b2 metric space yields

F
(

d(u2n+1, u2n+2, u2n), 0, d(u2n+1, u2n+2, u2n),
d(u2n+1, u2n+2, u2n)

2
, 0, 0

)
≤ 0.
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Obviously, we can see that this contradicts (F21) in Definition 9, so there is

d(u2n+1, u2n+2, u2n) = 0, ∀n = 0, 1, 2, . . .

and
F(t, z, t,

t + z
2

, t + z, z) ≤ 0.

Then, according to (F11) in Definition 9, one has

d(u2n+1, u2n+2, α) ≤ h1d(u2n, u2n+1, α), ∀n = 0, 1, 2, . . . , α ∈ X.

When x = x2n+2, u = x2n+1, we substitute in (16) to get

F
(

d(Sx2n+2, Tx2n+1, α), d(Sx2n+2, Ix2n+2, α), d(Tx2n+1, Jx2n+1, α),

d(Sx2n+2, Ix2n+2, α) + d(Tx2n+1, Jx2n+1, α)

2
,

d(Tx2n+1, Ix2n+2, α)

λ
,

max{d(Ix2n+2, Jx2n+1, α),
d(Ix2n+2, Sx2n+2, α)d(Tx2n+1, Jx2n+1, α)

d(Sx2n+2, Tx2n+1, α)
}
)
≤ 0,

and using (17) in the above formula, we obtain

F
(

d(u2n+3, u2n+2, α), d(u2n+3, u2n+2, α), d(u2n+1, u2n+2, α),

d(u2n+3, u2n+2, α) + d(u2n+1, u2n+2, α)

2
,

d(u2n+2, u2n+2, α)

λ
,

max{d(u2n+2, u2n+1, α),
d(u2n+2, u2n+3, α)d(u2n+1, u2n+2, α)

d(u2n+3, u2n+2, α)
}
)
≤ 0.

Continuing to simplify

F(t, t, z,
t + z

2
, 0, z) ≤ 0,

from (F12) in Definition 9 yields

d(u2n+2, u2n+3, α) ≤ h2d(u2n+1, u2n+2, α), ∀n = 0, 1, 2, . . . , α ∈ X.

Let h = max{h1, h2}, h ∈ [0, 1), so

d(un+2, un+1, α) ≤ hd(un+1, un, α), ∀n = 0, 1, 2, . . . , α ∈ X,

therefore, from the lemma, we can prove that {un} is a b2-Cauchy sequence.
Next, since X is b2-complete, we know that {un} b2-converges to r ∈ X, which is to

say that r is the limit of {Sx2n} = {Jx2n+1} and {Tx2n+1} = {Ix2n+2}.
Assuming I is continuous, then {ISx2n} b2-converges to {Ir}. According to the

triangular inequality of the b2 metric space, we obtain

d(SIx2n, Ir, α) ≤λ[d(SIx2n, Ir, ISx2n) + d(ISx2n, Ir, α) + d(SIx2n, ISx2n, α)],

I is continuous, and S and I are compatible, so let n→ ∞, and we know that {SIx2n}
also b2-converges to {Ir}.

Replacing x and y in (16), with Ix2n and x2n+1, respectively, yields

F
(

d(SIx2n, Tx2n+1, α), d(SIx2n, I2x2n, α), d(Tx2n+1, Jx2n+1, α),

d(SIx2n, I2x2n, α) + d(Tx2n+1, Jx2n+1, α)

2
,

d(Tx2n+1, I2x2n, α)

λ
,

max{d(I2x2n, Jx2n+1, α),
d(I2x2n, SIx2n, α)d(Tx2n+1, Jx2n+1, α)

d(STx2n, Tx2n+1, α)
}
)
≤ 0,



Mathematics 2022, 10, 3320 17 of 19

then taking n to infinity and using the continuity of F, we obtain

F
(

d(Ir, r, α), d(Ir, Ir, α), d(r, r, α),
d(Ir, Ir, α) + d(r, r, α)

2
,

d(r, Ir, α)

λ
, d(Ir, r, α)

)
≤ 0,

which can be simplified to get

F
(

d(Ir, r, α), 0, 0, 0,
d(r, Ir, α)

λ
, d(Ir, r, α)

)
≤ 0.

Since it contradicts (F22) in Definition 9, it is easy to know d(Ir, r, α) = 0, so r = Ir.
Then, replacing x in (16) with r and y with x2n+1 yields

F
(

d(Sr, Tx2n+1, α), d(Sr, Ir, α), d(Tx2n+1, Jx2n+1, α),

d(Sr, Ir, α) + d(Tx2n+1, Jx2n+1, α)

2
,

d(Tx2n+1, Ir, α)

λ
,

max{d(Ir, Jx2n+1, α),
d(Ir, Sr, α)d(Tx2n+1, Jx2n+1, α)

d(Sr, Tx2n+1, α)
}
)
≤ 0.

Let n→ ∞, combined with the continuity of F, we can get the formula that contradicts
(F31) in Definition 9, that is,

F
(

d(Sr, r, α), d(Sr, r, α), 0,
d(Sr, r, α)

2
, 0, 0

)
≤ 0,

so we can get d(Sr, r, α) = 0 and r = Sr. Therefore, r is the common fixed point of mapping
S and T.

Furthermore, because S(X) ⊂ J(X), there exists w ∈ X, such that Jw = z.
Substitute x = r, y = w into (3.1) to get

F
(

d(Sr, Tw, α), d(Sr, Ir, α), d(Tw, Jw, α),
d(Sr, Ir, α) + d(Tw, Jw, α)

2
,

d(Tw, Ir, α)

λ
, max{d(Ir, Jw, α),

d(Ir, Sr, α)d(Tw, Jw, α)

d(Sr, Tw, α)
}
)
≤ 0,

and simplify the formula to get

F
(

d(r, Tw, α), 0, d(r, Tw, α),
d(r, Tw, α)

2
,

d(r, Tw, α)

λ
, 0
)
≤ 0,

then, from (F32) in Definition 9, we get d(r, Tw, α) = 0 and r = Tw.
Because Tw = Jw = r and T and J are compatible, TJw = JTw, and combined with

the content that has been deduced above, we can get Tr = TJw = JTw = Jr.
When x = r, y = r in (16), we have

F
(

d(Sr, Tr, α), d(Sr, Ir, α), d(Tr, Jr, α),
d(Sr, Ir, α) + d(Tr, Jr, α)

2
,

d(Tr, Ir, α)

λ
, max{d(Ir, Jr, α),

d(Ir, Sr, α)d(Tr, Jr, α)

d(Sr, Tr, α)
}
)
≤ 0,

and continuing to simplify, we can get

F(d(r, Tr, α), 0, 0, 0,
d(r, Tr, α)

λ
, d(r, Tr, α)) ≤ 0.

Obviously, this contradicts (F22) in Definition 9, so d(r, Tr, α) = 0 and r = Tr, and r is
the common fixed point of S, T, I, and J.

Finally, we show that the common fixed points are unique.
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Let r′ be a common fixed point of S, T, I, and J different from r. Let x = r and y = r′

in (16), one has

F
(

d(Sr, Tr′, α), d(Sr, Ir, α), d(Tr′, Jr′, α),
d(Sr, Ir, α) + d(Tr′, Jr′, α)

2
,

d(Tr′, Ir, α)

λ
, max{d(Ir, Jr′, α),

d(Ir, Sr, α)d(Tr′, Jr′, α)

d(Sr, Tr′, α)
}
)
≤ 0,

and

F(d(r, r′, α), 0, 0, 0,
d(r, r′, α)

λ
, d(r, r′, α)) ≤ 0,

then it can be known from (F22) in Definition 9 that d(r, r′, α) = 0, so r = r′.
To sum up, S, T, I, and J have a unique common fixed point: r.
The method of proof is almost identical when S, T and J are, respectively, continuous.

Corollary 3. Let (X, d) be a b2-complete b2 metric space; I, J, and {Ti}i ∈ N∗ are some self-
mappings of X fulfilling T(i) ⊂ J(x)

⋂
I(X), if for any x, y, α ∈ X and λ ≥ 1, one has

F
(

d(Tix, Ti+1y, α), d(Tix, Ix, α), d(Ti+1y, Jy, α),
d(Tix, Ix, α) + d(Ti+1y, Jy, α)

2
,

d(Ti+1y, Ix, α)

λ
, max{d(Ix, Jy, α),

d(Ix, Tix, α)d(Ti+1y, Jy, α)

d(Sx, Ti+1y, α)
}
)
≤ 0,

(19)

where F ∈ Γ. If one of the mappings in I, J, and {Ti}i ∈ N∗ is continuous, and {Ti, I} and
{Ti+1, J} are, respectively, compatible, then I, J, and {Ti}i ∈ N∗ have a unique common fixed point.

Now, introduce two continuous functions δ : [0, ∞)3 → (−∞,+∞), ρ : [0, ∞)3 →
(−∞,+∞).

Corollary 4. Let (X, d) be a b2-complete b2 metric space; S, T, I, and J are four self-mappings of
X meeting S(X) ⊂ J(X), T(X) ⊂ I(X), if for any x, y, α ∈ X and λ ≥ 1, one has

δ(d(Sx, Ty, α), d(Sx, Ix, α), d(Ty, Jy, α))

≤ ρ(
d(Sx, Ix, α) + d(Ty, Jy, α)

2
,

d(Ty, Ix, α)

λ
,

max{d(Ix, Jy, α),
d(Ix, Sx, α)d(Ty, Jy, α)

d(Sx, Ty, α)
}),

(20)

where δ and ρ satisfy the following conditions:

(i) ρ is monotonically increasing with respect to the first and second variables;
(ii) There exist h1, h2 ∈ [0, 1), such that

if δ(t, z, t) ≤ ρ( t+z
2 , t + z, z), then t ≤ h1z;

if δ(t, t, z) ≤ ρ( t+z
2 , 0, z), then t ≤ h2z;

(iii) For any t > 0, δ(t, 0, t) > ρ( t
2 , 0, 0); δ(t, 0, 0) > ρ(0, t

λ , t); δ(t, t, 0) > ρ( t
2 , 0, 0); and

δ(t, 0, t) > ρ( t
2 , t

λ , 0).

If there is a continuous mapping in S, T, I, and J, and {S, I} and {T, J} are, respectively,
compatible, then S, T, I, and J have a unique common fixed point.

Proof. Let F(t1, t2, t3, t4, t5, t6) = δ(t1, t2, t3)− ρ(t4, t5, t6), so F is monotonically decreasing
with respect to the fourth and fifth variables. Additionally, and because other conditions of
Γ can be easily satisfied on the function F, we can determine F ∈ Γ.
Finally, according to Theorem 2, the corollary is proved.
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4. Conclusions

In this paper, we predominantly focused on some questions about common fixed
points in a b2 metric space, obtaining the above theorems. The above theorems can be
adapted to prove the existence and uniqueness of fixed points under generalized extended
mappings and implicit functions. We can alternatively design the spaces that meet the
criteria and then use the theory to achieve the desired results under the theorem’s given
condition. Future research should continue in this approach. The application of this essay
to numerous realms of reality is also a direction for future investigation.
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