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Abstract: The aim of this paper is to derive a separable entropy for a one-dimensional reduced blood
flow model, which will be used to treat the symmetrizability of the model in full generality and for
constructing entropy conservative fluxes, which are one of the essential building blocks of designing
entropy-stable schemes. Time discretization is conducted by implicit–explicit (IMEX) Runge–Kutta
schemes, but solutions for nonlinear systems will not be required due to the particular form of the
source term. To validate the numerical schemes obtained, some numerical tests are presented.
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1. Introduction

This paper is concerned with a well-known reduced blood flow model described by a
nonlinear hyperbolic system of conservation laws in one space dimension [1], which is used
to model the flow of blood in axisymmetric vessels with compliant walls. The governing
equations in terms of the vessel cross-sectional area A(x, t) and the mean blood velocity
U(x, t) in the axial direction x are given by

At + (AU)x = 0

Ut +

(
U2

2
+

P
ρ

)
x
= −C f

U
A

(1)

where ρ is the blood density, assumed to be constant for blood, which is essentially incom-
pressible, C f is the skin friction coefficient and P = P(A) is the internal pressure, which is
taken here as (see, for instance, [2])

P = P0 + β(
√

A−
√

A0). (2)

Here A0 is the vessel cross-sectional at rest and P0 is the pressure when A = A0.
Hereafter, it is assumed that β and A0 are constants, but in reality, they may depend on x in
the case of some pathologies.

The system of Equation (1) is known as the (A, U)-system. The velocity U is not a
conservative quantity, in contrast to Q = AU within the so-called (A, Q)-system (see [3]
for a complete discussion). For continuous solutions, the two formulations are equivalent.
However, we will restrict our attention to the (A, U)-system, which can be written in the
vector form as

ut + f (u)x = s(u), (3)
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where

u =

[
A

U

]
, f (u) =

 AU

U2

2
+

P
ρ

 and s(u) =

 0

−C f
U
A

 (4)

and the corresponding quasilinear form is

ut + H(u)ux = s(u), (5)

where

H(u) =

[
U A

c2/A U

]
is the Jacobian of the flux function f . Here c = c(A) is the Moens–Korteweg wave speed
and corresponds to the speed of pulse waves in an artery:

c =

(
β
√

A
2ρ

)1/2

. (6)

The Jacobian matrix H has two real eigenvalues, namely λ1 = U − c and λ2 = U + c
with corresponding right eigenvectors

r1 =

[
−1

c/A

]
and r2 =

[
1

c/A

]
. (7)

Let us define the Shapiro number Sh as [4]

Sh =
U
c

. (8)

The quantity Sh is the analog of the Froude number for the shallow water equations.
A state u is said to be subcritical if Sh < 1, critical if Sh = 1, and supercritical if Sh > 1.
The system is strictly hyperbolic in subcritical and supercritical regimes. In physiological
conditions, blood flow is almost always subcritical. Nevertheless, very specific pathologies
may lead to supercritical flows [5].

One-dimensional models are notably recognized to be computationally inexpensive in
comparison with 3D models. In addition, 1D models are not suitable for describing blood
flow in complicated morphological regions, and they can be coupled with 3D models to
obtain a considerable reduction in the computational complexity [6].

The system (1) without friction, that is, with C f = 0, admits the following steady-state
solution, known as the (non-zero pressure) man-at-eternal-rest steady state or dead-man
equilibrium [3] (by analogy to the lake at rest in the shallow water equations):

U = 0 and
√

A−
√

A0 = constant. (9)

In particular, the (zero pressure) man-at-eternal-rest steady state is given by

U = 0 and A = A0. (10)

Let us also recall that a convex scalar function η = η(u) is the entropy for the system
of conservation laws

ut + f (u)x = 0, (11)

with associated entropy flux G = G(u) if

∇uG(u) = vTH(u), (12)
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where
v = ∇uη(u)

is the vector of entropy variables. (η, G) is called an entropy pair for the conservation
law (11). When η is strictly convex, the entropy variables v symmetrize the system (11)
by making the change of variables u = u(v) [7], which puts the system into its equivalent
symmetric form

u(v)t + g(v)x = 0, g(v) := f (u(v)). (13)

Note that the Jacobian of g(v) is the Hessian of the function

ψ(v) := vT f (u(v))− G(u(v)). (14)

The function ψ is called entropy potential and plays an important role in the construc-
tion of entropy conservative fluxes.

In Reference [6], an entropy pair for the inviscid (A, U) system (1) was derived, namely

η =
1
2

ρAU2 +
2βA3/2

3ρ
, G =

1
2

AU3 +
βUA3/2

ρ
. (15)

This entropy pair was used in [8] for constructing a well-balanced and entropy-stable
scheme for the inviscid (A, U)-system but with A0 depending on x.

The remainder of the paper is organized as follows: in Section 2, a separable entropy
pair for the inviscid model (1) is derived and then employed to prove the symmetrizability
of the last-mentioned model. In Section 3, another application of the last-mentioned entropy
pair is obtained, namely, the construction of entropy conservative fluxes, which in turn, are
used to obtain entropy-stable schemes by adding numerical diffusion [9]. After dealing
with spatial discretization, we end this section with the treatment of the friction source
term by using IMEX schemes. In Section 4, the obtained numerical schemes are validated
with some benchmark tests taken from the literature. At last, some conclusions are drawn
in Section 5.

2. Theoretical Results
Entropy Pair and Simmetrizability

It is well-known (see [10]) that symmetrizability is equivalent to the existence of a
convex entropy function. Using the entropy given by (15), a result on the symmetrizability
of the inviscid form of the system (1) was conducted in [11] to the subcritical case, that is,
under the assumption U(x, t) < c(A(x, t)) for (x, t) ∈ [0, L]× [0, T]. We next follow the
idea used in [12] to construct a separable entropy function for the inviscid (A, U) system,
which allows us to obtain symmetrizability without the aforementioned assumption.

If η(u) is an additively separable function, that is, η(u) = e1(A) + e2(U), then the
Hessian matrix of η, denoted by ηuu(u), is a diagonal matrix. Now, it is fairly easy to see
that ηuu(u)H(u) is symmetric if

e′′1 (A) = e′′2
P′(A)

ρ
.

Thus, e1(A) = −2β
√

A and e2(U) = ρU2/2. Accordingly,

η(u) =
ρU2

2
− 2β

√
A (16)

is an entropy function for the inviscid (A, U) system, and the associated entropy flux is

G(u) =
ρU3

3
− βU

√
A. (17)
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From the entropy pair (16) and (17), we obtain the entropy potential

ψ(u) =
ρU3

6
+ UP(A). (18)

Next, we use the entropy function given above to demonstrate the symmetrizability
of the inviscid (A, U) system (compare with the hypothesis in [11] (Lemma 2)).

Lemma 1. If A(x, t) > δ > 0, the inviscid (A, U) system is symmetrizable.

Proof. From (16) it follows that the entropy variables are v = ∇uη(u) = [−β/
√

A, ρU]T .
Let u(v) denote the inverse of the transformation u→ v(u). Then the Jacobian

uv =

[
2
√

A3/β 0

0 1/ρ

]
(19)

is clearly symmetric positive definite and

Huv =

[
U A

c2/A U

][
2
√

A3/β 0

0 1/ρ

]
=

[
2U
√

A3/β A/ρ

A/ρ U/ρ

]

is symmetric, which proves the lemma.

In [11,13,14], the authors point out the fundamental importance of the numerical
analysis with symmetrizability, in particular, to study the error estimates of the Runge–
Kutta discontinuous Galerkin method.

Using the entropy function (16) and the eigenvector rescaling theorem [15] (Theorem 4),
we obtain the lemma below, which provides a scaling of the eigenvectors R = [r1|r2] →
R̃ = [̃r1 |̃r2] such that R̃R̃T = uv.

Lemma 2. Consider the model (3) along with the entropy function η(v) = ρU2

2 − 2β
√

A and the
entropy variables v = [−β/

√
A, ρU]T . Let uj and uj+1 be two adjacent states. Let R̃ be the scaled

right eigenvectors matrix of H given by

R̃ =
1√
2ρ

[
−A/c A/c

1 1

]
. (20)

Then we have
R̃R̃T = uv,

where uv is the symmetric positive definite change-of-variables matrix given by (19).

Proof. The result can be obtained directly by insertion.

This lemma will be used in the next section to construct a numerical diffusion operator.

3. Numerical Method
3.1. Entropy Conservative and Entropy-Stable Numerical Schemes

For the homogeneous system (11) (until Section 3.2, we take C f = 0), a semi-discrete
conservative scheme on a uniform spatial mesh xj = j∆x, j ∈ Z writes as

duj(t)
dt

= − 1
∆x

(
F j+1/2 − F j−1/2

)
, j ∈ Z, (21)

where uj(t) denotes the numerical approximation of u(xj, t) and the numerical flux F j+1/2
is an approximation of the flux function at the cell interface j + 1/2.
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The scheme (21) is called entropy stable with respect to the entropy pair (η, G) if it
satisfies a discrete entropy inequality

d
dt

η(uj(t)) +
1

∆x

(
G̃j+1/2 − G̃j−1/2

)
≤ 0 (22)

for some numerical entropy flux G̃j+1/2 consistent with the entropy flux G. If equality
holds in (22), then the scheme (21) is called entropy conservative.

We focus on entropy-stable numerical fluxes of the form [9]

F j+1/2 = F̃ j+1/2 −
1
2

Dj+1/2〈〈v〉〉j+1/2, (23)

where F̃ j+1/2 is an entropy conservative flux, 〈〈v〉〉j+1/2 = v−j+1 − v+
j , v±j being the cell in-

terface values of a reconstructed function vj(x) and Dj+1/2 is a suitable numerical diffusion
matrix, which will be specified later.

The following general procedure to define entropy conservative fluxes F̃ j+1/2 appears
in [16]. In what follows, [[a]]j+1/2 denotes the jump of a across the interface at xj+1/2, that
is, [[a]]j+1/2 := aj+1 − aj, and aj+1/2 := 1

2 (aj+1 + aj).

Theorem 1 ([16]). If the numerical flux F̃ j+1/2 satisfies

[[v]]Tj+1/2 F̃ j+1/2 = [[ψ]]j+1/2, j ∈ Z, (24)

then the scheme

duj(t)
dt

= − 1
∆x

(
F̃ j+1/2 − F̃ j−1/2

)
, j ∈ Z,

is second-order accurate and entropy conservative.

Observe that the existence of an explicitly given entropy pair is an important ingredient
in designing entropy conservative schemes. For the scalar case, the solution of (24) is unique.
However, for systems of conservation laws, this is no longer true.

Tadmor also proposed (see [16] for more details) the following solution of (24):

F̃ j+1/2 =
∫ 1/2

−1/2
f
(
vj+1/2(ξ)

)
dξ, (25)

where vj+1/2(ξ) denotes the straight line connecting vj and vj+1, i.e.,

vj+1/2(ξ) =
1
2
(vj + vj+1) + ξ(vj+1 − vj), ξ ∈ [−1/2, 1/2].

The flux (25) is sometimes called Averaged Energy Conservative (AEC for short)
flux [17]. A straightforward computation of the integral in (25) for the (A, U) system yields
the following components of the numerical flux F̃ j+1/2:

F̃(1)
j+1/2 =

∫ 1/2

−1/2
f1(vj+1/2(ξ))dξ = Aj+1/2U j+1/2 +

1
12

[[A]]j+1/2[[U]]j+1/2

F̃(2)
j+1/2 =

∫ 1/2

−1/2
f2(vj+1/2(ξ))dξ (26)

=
1
6

(
U2

j+1 + Uj+1Uj + U2
j

)
+

1
ρ

P0 − β
√

A0 +
2β
(

Aj+1

√
Aj+1 − Aj

√
Aj

)
3(Aj+1 − Aj+1)

.
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It is easy to check that the flux (26) is consistent. To do this, it is sufficient to recall that

Aj+1

√
Aj+1 − Aj

√
Aj

Aj+1 − Aj
−→ 3

2

√
Aj.

as Aj+1 → Aj.
Another way of solving (24) is based on different paths in the phase space of the

entropy variables [18]. This is described as follows: Let {ri}n
i=1 be an arbitrary set of n

linearly independent vectors, and let {li}n
i=1 be the corresponding orthogonal set. At an

interface xj+1/2, we define the paths

v0 := vj, vi := vi−1 +
(
[[v]]Tj+1/2li

)
ri for i = 1, . . . , n− 1, vn := vj+1.

Then the entropy conservative flux is given by

F̃ j+1/2 =
n

∑
i=1

ψ(vi)− ψ(vi−1)

[[v]]Tj+1/2li
li. (27)

This flux is termed the Pathwise Energy Conservative (PEC) flux. In [17], it was
reported that the computation of (27) may be numerically unstable.

A third strategy to construct the entropy conservative flux at the interface xj+1/2
was proposed in [17]. In this reference, an explicit solution of (24) for the shallow water
equations was obtained by using the identity

[[ab]]j+1/2 = b̄j+1/2[[a]]j+1/2 + [[b]]j+1/2 āj+1/2. (28)

The strategy is called Explicit Energy Conservative (EEC) flux, and we employ this approach
to the (A, u) blood flow model.

Using (28), the jump of the entropy potential (18) across xj+1/2 can be expressed as

[[ψ]]j+1/2 = [[ρU3/6 + UP(A)]]j+1/2

=
ρ

6
[[U]]j+1/2(U2

j+1 + Uj+1Uj + U2
j ) + U j+1/2[[P(A)]]j+1/2 + [[U]]j+1/2P(A)j+1/2.

Under the assumptions that A0 and β are constants, the jump of entropy variables can
be written as

[[v]]Tj+1/2 =

 [[P(A)]]j+1/2√
Aj+1 Aj

, ρ[[U]]j+1/2

. (29)

Writing down the desired flux componentwise as F̃ j+1/2 = [F̃(1)
j+1/2, F̃(2)

j+1/2]
T , inserting

the above two quantities into (24), equating jumps in U and P(A) and then solving the
resulting system, we obtain

F̃(1)
j+1/2 = U j+1/2

√
Aj+1 Aj,

F̃(2)
j+1/2 =

1
6
(U2

j+1 + Uj+1Uj + U2
j ) +

1
ρ

P(A)j+1/2.
(30)

This flux is clearly consistent, very simple to code and computationally inexpensive.
The two-point entropy conservative fluxes obtained from (24) are only second-order

accurate. However, high-order entropy conservative fluxes can be constructed by linear
combinations of two-point entropy conservative fluxes F̃ [19]. In this work, we use the
fourth-order entropy conservative flux given by

F̃4
j+1/2 =

4
3

F̃(uj, uj+1)−
1
6
(

F̃(uj−1, uj+1) + F̃(uj, uj+2)
)
. (31)
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To deal with the numerical diffusion part in (23), the diffusion matrix Dj+1/2 is taken
as [9]

Dj+1/2 = R̃j+1/2Λj+1/2R̃T
j+1/2, (32)

where Λj+1/2 = diag(|λ1|, |λ2|) is a Roe-type diagonal matrix, and R̃j+1/2 is the matrix of
scaled right eigenvectors of the flux Jacobian H(uj+1/2) that is evaluated at the average
state uj+1/2 := (uj + uj+1)/2.

To complete the description of (23), it only remains to perform a suitable reconstruction
of the entropy variables v. Let vj(x) be a p−th reconstruction function of the entropy
variables v. Denoting

v+
j = vj(xj+1/2), v−j = vj(xj−1/2), (33)

and defining the scaled entropy variables

z±j := RT
j±1/2vj, z̃±j := RT

j±1/2v±j , (34)

Instead of reconstructing the entropy variables, we reconstruct the scaled entropy
variables such that the so-called sign property

sign〈〈z̃l
j〉〉j+1/2 = sign〈〈zl

j〉〉j+1/2

will be satisfied. Here, zl
j and z̃l

j denote the l-th component of zj and z̃j, respectively. The
advantage of using reconstruction procedures satisfying the sign property lies in the fact
that they are entropy-stable (see Lemma 3.2 in [9]). On the other hand, the use of high-order
nonoscillatory reconstruction is needed in order to avoid large oscillations around shocks;
in particular, we use the fourth-order ENO. The crucial fact is that the ENO method satisfies
the sign property [20], which in turn, guarantees that the reconstruction does not destroy
entropy stability. The combination of entropy conservative fluxes and ENO reconstruction
is termed TeCNO schemes [9].

3.2. Friction Source Term Discretization

Up to now, we have restricted our attention to the system (1)–(3) without friction,
that is, the homogeneous case. For a treatment of the non-homogeneous case, the spatial
semi-discretization of system (3) can be written as

du
dt

= L(u) + S(u), (35)

where

[L(·)]j := − 1
∆x
(

F j+1/2 − F j−1/2
)

is the spatial discretization of the convective term, and S(u) corresponds to the source
term s(u). To solve (35), an implicit–explicit Runge–Kutta (IMEX-RK) method (see [21] and
the references therein) will be used. Let us first recall that an IMEX-RK scheme consists of
applying an implicit discretization to the source term and an explicit one to the convective
part. An m-stage IMEX-RK scheme applied to system (35) takes the form

u(i) = un + ∆t
i−1

∑
l=1

ãilL(u(l)) + ∆t
i

∑
l=1

ailS(u(l)), i = 1, ..., m,

un+1 = un + ∆t
m

∑
i=1

b̃iL(u(i)) + ∆t
m

∑
i=1

biS(u(i)).
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This scheme is characterized by m×m matrices Ã = (ãil) (with ãil = 0 for l ≥ i ) and
A = (ail) that correspond to the explicit (ERK) and (diagonally) implicit (DIRK) parts of
the method, respectively, while b̃ = (b̃1, . . . , b̃m)T and b = (b1, . . . , bm)T are m-dimensional
vectors of real coefficients.

In this work, we employ a second-order IMEX-RK scheme based on the Heun method
coupled with the L-stable DIRK method, namely the scheme H-LDIRK3(2,2,2) [21,22],
which is defined by

Ã =

[
0 0
1 0

]
, A =

[
γ 0

1− 2γ γ

]
, b̃ = b =

[
1/2
1/2

]
, γ =

3 +
√

3
6

.

The particular value of γ guarantees that the implicit part is a third-order DIRK scheme
with the best dampening properties (see [22,23] and references given there).

Applying the H-LDIRK3(2,2,2) scheme to (35) and taking into account the particular
form of the source term s(u) = (0, −C f U/A)T , we obtain that the required computations
to advance un from time tn to tn+1 = tn + ∆t are given by

u(1) =

[
An

AnUn

An+a11∆tC f

]
(36)

and

u(2) =

 Â
ÂÛ

Â+a22∆tC f

, (37)

where
û = un + ∆tã21K̃1 + ∆ta21K1,

with

K̃1 = L(u(1)), K1 = S(u(1)) =

[
0

−C f
Un

An+a11∆tC f

]
.

Finally, evaluate

un+1 = un + ∆t(b̃1K̃1 + b̃2K̃2) + ∆t(b1K1 + b2K2), (38)

where

K̃2 = L(u(2)), K2 = S(u(2)) =
u(2) − û

a22∆t
.

It is worth pointing out that solutions for nonlinear systems are not required, reducing
computational costs and making this method much simpler to implement. Let us also
mention that (36) corresponds to the formula obtained in [3] (with a11 = 1) by using the
so-called semi-implicit treatment (SI).

Notice that when C f = 0, the method described above reduces to the Heun method,
which is an explicit strong stability preserving Runge–Kutta method (SSPRK) [24]:

u(1) = un + ∆tL
(
un),

u(2) = u(1) + ∆tL
(
u(1)),

un+1 =
1
2
(
un + u(2)).

The time step ∆t is computed adaptatively in order for the CFL condition to be satisfied.
We use the value ∆t = κ ∗∆x/a, where a is an estimate of the maximal characteristic velocity.
Here, the CFL number κ is taken as 0.5.
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4. Numerical Results

In this section, we present some numerical examples by testing the numerical flux (23)
with F̃ given by (26) and (30) for the inviscid (A, U) system as well as for the viscous case.
In the latter case, the scheme H-LDIRK3(2,2,2) is employed and compared with the SI
scheme. For all the tests, the blood density is taken as ρ = 1060 kg/m3.

4.1. Example 1: The Ideal Tourniquet

This example is proposed by Delestre and Lagrée [3], and it resembles the dam
break problem in shallow water equations. A tourniquet is applied, and we remove it
instantaneously. When the tourniquet is removed, the blood flows from upstream to
downstream in the vessel. The initial conditions are

A(x, 0) =

{
πR2

L for x ≤ 0,
πR2

R for x > 0
and U(x, 0) = 0,

with RL = 5× 10−3 m and RR = 4× 10−3 m. The computational domain is [−0.04, 0.04]
(in meters), we choose β = π−1 × 107 Pa/m, and the radius of the artery at rest is taken as
constant. Transmissive boundary conditions are imposed. The solution profiles consists
of a left-moving rarefaction wave and right-moving shock wave, as shown in Figure 1.
Numerical solutions are computed on a mesh with 200 cells at simulated time t = 0.005 s
by using the flux (26) (termed as TeCNO4-AEC) and the flux (30) (termed as TeCNO4-EEC).
It can be reported that both fluxes are capable of capturing discontinuous solutions. No
significant differences are observed between the solutions obtained with TeCNO4-EEC and
TeCNO4-AEC.

-0.04 -0.02 0 0.02 0.04

x [m]

5
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A
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Figure 1. Example-1: Numerical solutions of the ideal tourniquet problem at t = 0.005 s on a mesh
with 200 cells: area (left) and velocity (right).

4.2. Example 2: Wave Equation

We consider the system without friction and constant cross-section at rest to validate
the capability of the proposed scheme to approximate the perturbed steady-state solutions.
The cross section at rest is given by A0(x) = πR2

0 with R0 = 4× 10−3 m, and the initial
conditions are

A(x, 0) =

{
πR2

0 for x ∈ [0, x2] ∪ [x3, L],
πR2

0
(
1 + ε sin(π(x− x2)/x1)

)2 for x ∈ [x2, x3],
U(x, 0) = 0,

with L = 0.16 m, x1 = 0.2L, x2 = 0.4L, x3 = 0.6L and ε = 5× 10−3. The computational
domain is [0, L] and β = π−1 × 108 Pa/m. The exact solution (see [3] for more details) can
be expressed as
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R(x, t) = R0 +
ε

2
(
φ(x− c0t) + φ(x + c0t)

)
, U(x, t) = −ε

c0
R0

(
−φ(x− c0t) + φ(x + c0t)

)
, (39)

where c0 = c(A0) and φ(x) = R0 sin(π(x − x2)/x1)χ[x2,x3]
(x), where χ is the indicator

function. Numerical solutions obtained using TeCNO4 with TeCNO4-AEC and TeCNO4-
EEC are displayed in Figures 2 (for radius) and 3 (for velocity), respectively. It can be
observed that the results obtained with both fluxes are in good agreement with the exact
solutions, but the EEC flux provides a slightly better performance.

0 0.04 0.08 0.12 0.16

x [m]

4

4.002

4.004

4.006

4.008

4.01

R
a

d
iu

s
 [

m
]

10
-3

EXACT

TeCNO4-EEC

TeCNO4-AEC

0.01 0.02 0.03 0.04

x [m]

4.008

4.0085

4.009

4.0095

4.01

4.0105

R
a

d
iu

s
 [

m
]

10
-3

EXACT

TeCNO4-EEC

TeCNO4-AEC

0.03 0.04 0.05

x [m]

3.9998

4

4.0002

4.0004

4.0006

4.0008

4.001

4.0012

4.0014

R
a

d
iu

s
 [

m
]

10
-3

EXACT

TeCNO4-EEC

TeCNO4-AEC

0.11 0.12 0.13

x [m]

3.9995

4

4.0005

4.001

R
a

d
iu

s
 [

m
]

10
-3

EXACT

TeCNO4-EEC

TeCNO4-AEC

Figure 2. Example-2: Numerical solutions (for radius) of the wave equation at t = 0.004 s on a mesh
with 200 cells with enlarged views in selected regions.

4.3. Example 3: Wave Damping

In this last test [3], the viscous damping term is investigated in the linearized momen-
tum equation. This is the analog of the Womersley problem [25], and a periodic signal at
the inflow is considered with a constant section at rest. System (1), in terms of the variables
(R, U) with the friction term, takes the form

Rt + URx +
R
2 Ux = 0

Ut + UUx +
β
√

π
ρ Rx = −C f

U
πR2

In the above model, the skin friction coefficient C f is 8πν, with ν being the viscosity
of the blood. We consider this example on the computational domain [0, 3] subject to the
given initial conditions

R(x, 0) = R0, U(x, 0) = 0 m/s,

along with the following parameters: β = π−1× 108 Pa/m, R0 = 4× 10−3 m. The incoming
discharge is

Qb(0, t) = Qamp sin(ωt)m3/s,
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where Qamp = 3.45× 10−7 m3/s is the amplitude of the inflow discharge and ω = 2π/Tpulse
being Tpulse = 0.5 s the time length of a pulse. A damping wave is obtained in the domain
(see [3] for more details)

Q(x, t) =

{
0, if krx > ωt
Qamp sin(ωt− krx)ekix, if krx ≤ ωt,

(40)

with

kr =

ω4

c4
0
+

(
ωC f

πR2
0c2

0

)2
1/4

cos

(
1
2

arctan

(
−

C f

πR2
0ω

))
,

ki =

ω4

c4
0
+

(
ωC f

πR2
0c2

0

)2
1/4

sin

(
1
2

arctan

(
−

C f

πR2
0ω

))
,

c0 =

√
β
√

πR0

2ρ
.
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Figure 3. Example-2: Numerical solutions (for velocity) of the wave equation at t = 0.004 s on a mesh
with 200 cells with enlarged views in selected regions.

Exact and numerical solutions of the damping of a discharge wave are depicted in
Figure 4. Enlarged views are included to compare the performance of the H-LDIRK3(2,2,2)
method and the SI method used for the discretization of the friction source term.
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Figure 4. Example-3: Numerical solutions of the wave damping at t = 25 s with C f = 0 (top) and
C f = 0.005053 (bottom) and the corresponding enlarged views. The friction term has been treated
with either the H-LDIRK3(2,2,2) method or the SI method.

5. Conclusions

In this paper, we have presented a separable entropy pair for a 1D reduced blood flow
model. We have used the proposed entropy pair to show the symmetrizability of the model
and for constructing explicit, computationally inexpensive and easy-to-implement entropy
conservative fluxes. After adding numerical diffusion to the entropy conservative fluxes
(as recommended in [9]) along with a suitable reconstruction of the entropy variables,
we obtained entropy-stable schemes. No significant differences were found between
the numerical solutions obtained with the EEC flux and the AEC flux. However, small
differences observed in the second numerical example were favorable for the EEC flux.
Finally, we have solved the friction source term by IMEX-RK methods, with the advantage
that it was unnecessary to solve nonlinear systems. In fact, the particular form of the
friction term allowed us to derive a fully explicit scheme.

Author Contributions: Conceptualization, S.V. and C.A.V.; formal analysis, C.A.V., investigation,
S.V. and C.V; software, validation and supervision, C.A.V.; writing—original draft, C.A.V.; writing—
review and editing, S.V. and C.A.V. All authors have read and agreed to the published version of
the manuscript.

Funding: The APC was funded by Universidad del Norte (Barranquilla-Colombia).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 3314 13 of 13

References
1. Sherwin, S.J.; Franke, V.; Peiró, J.; Parker, K. One-dimensional modelling of a vascular network in space—Time variables. J. Eng.

Math. 2003, 47, 217–250. [CrossRef]
2. Formaggia, L.; Nobile, F.; Quarteroni, A.; Veneziani, A. Multiscale modelling of the circulatory system: A preliminar analysis.

Comput. Vis. Sci. 1999, 2, 75–83. [CrossRef]
3. Delestre, O.; Lagrée, P.Y. A ’well-balanced’ finite volume scheme for blood flow simulation. Int. J. Numer. Methods Fluids 2013, 72,

177–205. [CrossRef]
4. Shapiro, A.H. Steady flow in collapsible tubes. J. Biomech. Eng. 1977, 99, 126–147. [CrossRef]
5. Guigo, A.R.; Delestre, O.; Fullana, J.M.; Lagrée, P.Y. Low-Shapiro hydrostatic reconstruction tecnique for blood flow simulation in

large arteries with varying geometrical and mechanical properties. J. Comput. Phys. 2017, 331, 108–136. [CrossRef]
6. Formaggia, L.; Gerbeau, J.F.; Nobile, F.; Quarteroni, A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems

in compliant vessel. Comput. Methods Appl. Mech. Eng. 2001, 191, 561–582. [CrossRef]
7. Mock, M.S. Systems of conservation laws of mixed type. J. Differ. Equ. 1980, 37, 70–88. [CrossRef]
8. Bürger, R.; Valbuena, S.; Vega, C. A well-balanced and entropy stable scheme for a reduced blood flow model. Numer. Meth. Part

Differ. Equ. 2021, submitted.
9. Fjordholm, U.S.; Mishra, S.; Tadmor, E. Arbitrary high-order essentially non-oscillatory entropy stable schemes for systems of

conservation laws. SIAM J. Numer. Anal. 2012, 50, 544–573. [CrossRef]
10. Harten, A. On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 1983, 49, 151–164. [CrossRef]
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