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Abstract: Singularly perturbed 2D parabolic delay differential equations with the discontinuous
source term and convection coefficient are taken into consideration in this paper. For the time
derivative, we use the fractional implicit Euler method, followed by the fitted finite difference method
with bilinear interpolation for locally one-dimensional problems. The proposed method is shown to
be almost first-order convergent in the spatial direction and first-order convergent in the temporal
direction. Theoretical results are illustrated with numerical examples.

Keywords: delay differential equations; 2D parabolic equations; fractional step method; convection
diffusion problems

MSC: 34K26; 35B25; 65M22; 65M50; 65N22

1. Introduction

Differential equations with small or large parameters can be used to describe a variety
of applied practical problems, including the theory of boundary layers. For example,
the shock waves occurring in gas motions, edge effects when elastic plates deform, etc.
These mathematical problems are very difficult (or even impossible) to solve exactly, so
approximate solutions are necessary. It is possible to obtain an approximation of the
solution through perturbation methods. Basically, these methods aim to solve a simpler
problem (as a first approximation) and systematically improve the approximate solution.

When using finite difference or finite element methods on equally spaced grids and
allowing the perturbation parameter tend to zero, boundary layers produce inaccurate
numerical solutions. The most popular method for overcoming this difficulty is to construct
uniformly valid numerical methods on layers adapted to the mesh. There are several
uniformly valid methods available in the literature, for instance, to cite a few (see Refs. [1,2]
and the references therein). As pointed out in Ref. [3], the direct discretization of the
singularly perturbed 2D parabolic differential equations leads to a pentadiagonal linear
system of equations. This problem is exceedingly complex to solve computationally. We
use the fractional step method in order to reduce the computation cost. At each time level,
the fractional step method leads to the tridiagonal system of algebraic equations. Several
types of research have been conducted recently on the fractional step method, such as
Refs. [4–6] and the references therein.

Singularly perturbed delay differential equations (SPDDEs) are a class of perturbation
problems with at least one delay or deviating argument. This type of problem occurs
frequently in the modelling of various types of physical and biological problems. For
example, the neuronal variability and its theoretical analysis have been modelled as delay
parabolic equations [7,8]. Asymptotic analyses for 1D stationery SPDDEs have been well
studied by Lange and Miura [9]. Several numerical methods for SPDDEs of 1D stationery
problems have been reported in the literature, such as Refs. [10–13] and the reference
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therein. The numerical method for 1D parabolic equations was initiated by Ref. [14] and
it gained the interest of many researchers. Das and Natesan [15] presented computing
techniques for solving 2D time SPDDEs. Ref. [16] presented some applications and
existence results for partial delay differential equations. The modelling of option pricing,
to generalize the celebrated Black–Scholes equation with suitable weight, led to the 2D
parabolic differential equations with space shift [17]. We consider discontinuous convection
and source terms in 2D parabolic SPDDEs in this article, as mentioned in the abstract. This
problem exhibits interior layers at x = dx and y = dy and, due to the presents of the shift
in space, the boundary layers occurs at x = 1 and y = 1. The existence results pertaining
to the parabolic equation with discontinuous coefficients are addressed in Ref. [18]. The
method presented in this article is a combination of the layers adopted technique and linear
interpolations. The interpolation term takes care of the delay arguments. The proposed
method is validated theoretically and numerically to be uniformly convergent in both space
and time by considering some numerical examples.

The constant C is generic positive, that is, it is independent of the perturbation pa-
rameter as well as the discretization parameters N and M throughout the paper. For
convenience, it is assumed that the number of mesh points in the spatial domains Ωx and
Ωy are same, that is, N and the index set IN0 = {1, 2, 3, · · · , N0} for any positive integer
N0. It is conventional to assume for the convection coefficient problem that ε ≤ CN−1 for
practical purposes. Further, to measure the error bounds and derivative bounds, we use
the following norm ‖ψ‖D = supx∈D ‖ψ(x)‖, x = (x, y).

The article is organized as follows: the problem is considered in Section 2. The
fractional implicit Euler method for time derivative and locally 1D problems are presented
in Section 3. In the same section, the stability results and derivative estimates of the locally
one-dimensional problems are presented. Section 4 presents the numerical method for the
considered problem. The discretizations incurred by the errors are estimated in Section 5.
Numerical validations through some test example problems are done in Section 6. Finally,
in Section 7, some concluding remarks are made.

2. Statement of Continuous Problem

Motivated by the works of Refs. [7,17], we consider the following two-dimensional
singularly perturbed parabolic differential equations: We find u such that

Lu :=ut − ε∆u +∇u · p̄(x) + q(x)u(x− d, t) = g(x, t), (x, t) ∈ D∗ × (0, T], (1)

u(x, 0) = u0(x), x ∈ D, (2)

u(x, t) = 0, on ∂D× [0, T], (3)

u(x, t) = 0, on [−dx, 0]× [−dy, 1]× [0, T] ∪ [−dx, 1]× [−dy, 0]× [0, T], (4)

where x = (x, y), d = (dx, dy), Ωx = (0, 1) = Ωy, D = Ωx × Ωy, D∗ = Ω∗x × Ω∗y,
Ω∗ν = Ω−ν ∪Ω+

ν , Ω−ν = (0, dν), Ω+
ν = (dν, 1), ν = x, y, the functions u0, q are sufficiently

differentiable and bonded on D, p1, p2, g1, g2 are sufficiently differentiable and bounded
on their respective domains D∗,D∗ × [0, T]. In addition, we assume that,

ux(d−x , y, t) = ux(d+x , y, t), uy(x, d−y , t) = uy(x, d+y , t),

p̄(x) = (p1(x), p2(x))T , ∇u = (ux, uy),

p+1 ≥ p1(x) ≥ p−1 > 0, x ∈ Ω−x ×Ω∗y , p+1 ≥ −p1(x) ≥ p−1 > 0, x ∈ Ω+
x ×Ω∗y ,

p+2 ≥ p2(x) ≥ p−2 > 0, x ∈ Ω∗x ×Ω−y , p+2 ≥ −p2(x) ≥ p−2 > 0, x ∈ Ω∗x ×Ω+
y ,

|p1(d−x , y)− p1(d+x , y)| < ∞, |p2(x, d−y )− p2(x, d+y )| < ∞,

q(x) = q1(x) + q2(x), 0 ≥ q1, q2 ≥ β, g(x, t) = g1(x, t) + g2(x, t).
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Let Lx := −ε ∂2

∂x2 + p1(x) ∂
∂x + q1(x)Id and Ly := −ε ∂2

∂y2 + p2(x) ∂
∂y + q2(x)Id be two

differential operators, Idu(x, t) = u(x− d, t), then the differential operator L defined in (1)
can be written as L := ∂

∂t + Lx + Ly.

3. Time Domain Discretization and Stability Analysis
3.1. Discretization of Time Domain

The time domain [0, T] is discretized uniformly with step length ht = T/M, where
M is a positive integer. Then we have the uniform mesh in the temporal direction ΩM

t =
{tk = k× ht}M

k=0.

3.2. An Alternating Direction Implicit Method

Let us assume that û0(x) = u0(x), x ∈ D. Now, we discretize the IBVP (1)–(3) using
the fractional implicit Euler method and obtain the following semidiscrete scheme on the
time levels n = 0, 1, · · · , M− 1:

let y ∈ Ωy, then 
Dxûn+ 1

2 = ûn + htg1(x, y, tn+1), x ∈ Ω∗x,

ûn+ 1
2 (0, y) = 0 = ûn+ 1

2 (1, y),

ûn+ 1
2

x (d−x , y) = ûn+ 1
2

x (d+x , y),

(5)

let x ∈ Ωx, then 
Dyûn+1 = ûn+ 1

2 + htg2(x, y, tn+1), y ∈ Ω∗y
ûn+1(x, 0) = 0 = ûn+1(x, 1),
ûn+1

y (x, d−y ) = ûn+1
y (x, d+y ),

(6)

where ûn(x, y) is the exact solution of u at the time level t = tn, Dx := I + htLx and
Dy := I + htLy.

If the exact solution of the problem (1) is known at t = tn, then we have the following
semi-discrete scheme: let y ∈ Ωy, then

Dxun+ 1
2 = u(x, y, tn) + htg1(x, y, tn+1), x ∈ Ω∗x,

un+ 1
2 (0, y) = un+ 1

2 (1, y) = 0,

un+ 1
2

x (d−x , y) = un+ 1
2

x (d+x , y),

(7)

let x ∈ Ωx, then 
Dyun+1 = un+ 1

2 + htg2(x, y, tn+1), y ∈ Ω∗y ,
un+1(x, 0) = un+1(x, 1) = 0,
un+1

y (x, d−y ) = un+1
y (x, d+y ).

(8)

Solving the problem (1)–(4) is more computationally expensive than solving lower-
dimensional problems. As a result, we used the ADI scheme to divide the two-dimensional
problem into two sets of one-dimensional problems in order to decrease the computing
cost and to have an efficient numerical solution.

3.3. Stability Results and Derivative Estimates

This section presents the maximum principles for the above-mentioned locally one
dimensional problems. Further, with regard to the applications of the maximum principle,
we estimate the solution derivative bounds and local and global truncation errors in the
temporal direction.
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The test functions

s(x) =

x + 1, x ∈ [x, dx],

dx
dx − x
1− dx

+ dx + 1, x ∈ [dx, 1]
and s(y) =


y + 1, y ∈ [0, dy],

dy
dy − y
1− dy

+ dy + 1, y ∈ [dy, 1]

are used in the following lemmas and sections.

Lemma 1. Let ψ ∈ C0(Ωx) ∩ C2(Ω∗x) be a function satisfying ψ(x) ≥ 0, x = 0, 1, Dxψ(x) ≥
0, x ∈ Ω∗x and ψ′(dx−)− ψ′(dx+) ≥ 0, then ψ(x) ≥ 0, x ∈ Ωx.

Proof. The proof is by construction and similar to Refs. [12,13]. It is shown that Dxs(x) >
0, x 6= dx and s′(d−x )− s′(d+x ) ≥ 0. By using the argument given by Ref. [12], Theorem 3.1,
one can prove this lemma.

Similar to the above lemma and using the test function s(y), we can prove the
following lemma.

Lemma 2. Let ψ ∈ C0(Ωy) ∩ C2(Ω∗y) be a function satisfies ψ(y) ≥ 0, y = 0, 1, Dyψ(y) ≥
0, y ∈ Ω∗y and ψ′(dy−)− ψ′(dy+) ≥ 0, then ψ(y) ≥ 0, x ∈ Ωy.

One can prove that the solutions of (5) and (6) are stable and unique if they exist.
Further, they are bounded from Lemmas 1 and 2.

Lemma 3. Assume that
∣∣∣∣∂iu

∂ti

∣∣∣∣ ≤ C, 0 ≤ i ≤ 3. Then ‖ en ‖≤ Ch2
t where u(tn) = un(x, y) + en,

u(tn) = u(x, y, tn). In addition, supn≤T/ht
‖En‖∞ ≤ C ht, where the global error En = u(tn)−

ûn.

Proof. The proof is similar to that of Refs. [4,6]. For that, one can express

u(tn−1) = Dx[Dyu(tn)− htg2(x, y, tn)]− htg1(x, y, tn) + O(h2
t )

u(tn−1) = Dx[Dyu(tn)− htg2(x, y, tn)]− htg1(x, y, tn),

DxDyen = O(h2
t ).

First by the application of Lemma 1 then by Lemma 2, we have |en| ≤ Ch2
t . To prove

the second part, consider

En = en + un − ûn,

Dy(un − ûn) = u(n−1)+ 1
2 − û(n−1)+ 1

2 , Dx(u(n−1)+ 1
2 − û(n−1)+ 1

2 ) = En−1,

un − ûn = D−1
y D−1

x En−1,

making use of the arguments given in Ref. [4], we have |En| ≤ Cht, which concludes
the proof.

From the above lemma, we can conclude that the semidiscretization process is uni-
formly convergent of order O(ht). In the rest of the sections it is assumed that, dx = 0.5 = dy.

Let the solution ûn+ 1
2 be decomposed as ûn+ 1

2 = vn+ 1
2 + wn+ 1

2 for obtaining the
sharp bounds on the derivatives. Further, let the decomposition of the regular component
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be vn+ 1
2 = ∑2

k=0 εkvn+ 1
2

k , leading the desired bounds on the derivatives. The functions

vn+ 1
2

k , k = 0, 1, 2, wn+ 1
2 satisfy the following problems:

vn+ 1
2

0 + ht

(
p1(x) d

dx vn+ 1
2

0 + q1(x)Idvn+ 1
2

0

)
= vn

0 + htg1(tn+1), x ∈ Ω∗x,

vn+ 1
2

0 (x) = ûn+ 1
2 (x), x ∈ [−dx, 0], vn+ 1

2
0 (1) = ûn+ 1

2 (1),

(9)


vn+ 1

2
1 + ht

(
p1(x) d

dx vn+ 1
2

1 + q1(x)Idvn+ 1
2

1

)
= vn

1 + ht
d2

dx2

(
vn+ 1

2
0

)
, x ∈ Ω∗x,

vn+ 1
2

1 (x) = 0, x ∈ [−dx, 0], vn+ 1
2

1 (1) = 0,

(10)



Dxvn+ 1
2

2 = vn
2 + ht

d2

dx2

(
vn+ 1

2
1

)
, x ∈ Ω∗x,

vn+ 1
2

2 (x) = 0, x ∈ [−dx, 0], vn+ 1
2

2 (1) = 0,

d
dx vn+ 1

2
2 (d−x ) =

d
dx vn+ 1

2
2 (d+x ),

(11)

and the functions vn+ 1
2 and wn+ 1

2 satisfy the following boundary-value problems (BVPs):

Dxvn+ 1
2 = vn + htg1(tn+1), x ∈ Ω∗x,

vn+ 1
2 (x) = ûn+ 1

2 (x), x ∈ [−dx, 0], vn+ 1
2 (1) = ûn+ 1

2 (1),[
vn+ 1

2 (dx)
]
= ∑2

k=0[v
n+ 1

2
k (dx)],

[
d

dx vn+ 1
2 (dx)

]
= ∑1

k=0 εk
[

d
dx vn+ 1

2
k (dx)

]
,

(12)

and 
Dxwn+ 1

2 = wn, x ∈ Ω∗x,

wn+ 1
2 (x) = 0, x ∈ [−dx, 0], wn+ 1

2 (1) = 0,[
wn+ 1

2 (dx)
]
= −

[
vn+ 1

2 (dx)
]
,
[

d
dx wn+ 1

2 (dx)
]
= −

[
d

dx vn+ 1
2 (dx)

]
,

(13)

where the square bracket operation denotes the jump discontinuity [α(ζ)] = α(ζ+)− α(ζ−).
It is assumed that v0 = û0, w0 = 0.

Theorem 1. Let ûn+ 1
2 be the solution of the problem (5) and let k be a nonnegative integer, then

the regular and singular components satisfy the following bounds on the derivatives∥∥∥∥∥dkvn+ 1
2

dxk

∥∥∥∥∥
Ω∗
≤ C(ε−k+2 + 1), 0 ≤ k ≤ 3,

∣∣∣∣∣dkwn+ 1
2 (x)

dxk

∣∣∣∣∣ ≤ Cε−k


exp

(
p−1 (x− dx)

ε

)
, x ∈ Ω−x , 0 ≤ k ≤ 3,

exp

(
p−1 (dx − x)

ε

)
+ ε exp

(
p−1 (x− 1)

ε

)
, x ∈ Ω+

x .

Proof. We show that by integrating the differential Equations (9)–(11), and using the
argument presented in Refs. [13,19], and Lemma 1, we have ‖vn+ 1

2 ‖ ≤ C. Successive
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differentiation of Equations (9)–(11), we have ‖ dk

dxk vn+ 1
2 ‖ ≤ C(ε2−k + 1). From the Lemma 1,

we see that ûn+ 1
2 and vn+ 1

2 are bounded, hence wn+ 1
2 . Let us assume that |wn+ 1

2 (dx)| ≤ γ.
Now define the barrier functions

φ±(x) = Cγ exp

(
p−1 (x− dx)

ε

)
± wn+ 1

2 , x ∈ Ω−x .

It is easy to show that φ±(0) ≥ 0, φ±(dx) ≥ 0 and Dxφ±(x) ≥ 0 on Ω−x . From

the results of Ref. [19], we have |wn+ 1
2 (x)| ≤ C exp

(
p−1 (x− dx)

ε

)
, x ∈ Ω−x . Using the

following barrier functions

ψ± = Cγ(ε + exp

(
p−1 (dx − x)

ε

)
− ε exp

(
p−1 (x− 1)

ε

)
)± wn+ 1

2 , x ∈ Ω+
x

we prove that |wn+ 1
2 (x)| ≤ C

(
exp

(
p−1 (dx − x)

ε

)
+ ε exp

(
p−1 (x− 1)

ε

))
, x ∈ Ω+

x . Fur-

ther the successive differentiation’s leads the desired results.

In a similar manner, one can decompose ûn+1 as vn+1 + wn+1 = ûn+1 and vn+1, wn+1

satisfy the following BVPs:
Dyvn+1 = vn+ 1

2 + htg2(tn+1), y ∈ Ω∗y ,

vn+1(y) = ûn+1(y), y ∈ [−dy, 0], vn+1(1) = ûn+1(1),[
vn+1(dy)

]
= ∑1

k=0 εk
[
vn+1

k (dy)
]
,
[

d
dy vn+1(dy)

]
= ∑1

k=0 εk
[

d
dy vn+1

k (dy)
]
,

(14)


Dywn+1 = wn+ 1

2 , y ∈ Ω∗y ,

wn+1(y) = 0, y ∈ [−dy, 0], wn+1(1) = 0,[
wn+1(dy)

]
= −

[
vn+1(dy)

]
,
[

d
dy wn+1(dy)

]
= −

[
d

dy vn+1(dy)
] (15)

and we have the following result.

Theorem 2. Let ûn+1 be the solution to the problem (6), then its regular and singular components
satisfy the following bounds on the derivatives∥∥∥∥∥dkvn+1

dyk

∥∥∥∥∥
Ω∗
≤ C(1 + ε2−k), k = 0, 1, 2, 3,

∣∣∣∣∣dkwn+1(x)
dyk

∣∣∣∣∣ ≤ C


ε−k exp

(
p−2 (y− dy)

ε

)
, y ∈ Ω−y , k = 0, 1, 2, 3,

ε−k exp

(
p−2 (dy − y)

ε

)
+ ε−k+1 exp

(
p−2 (y− 1)

ε

)
, y ∈ Ω+

y .

4. Discrete Problem
4.1. Spatial Domain Discretization

From Theorems 1 and 2, we observe that the IBVP (1)–(3) exhibits twin interior layers
along the lines (dx, y), y ∈ Ωy and (x, dy), x ∈ Ωx and weak boundary layers along
x = 1 and y = 1. Let N be the number of mesh points in both spatial x and y directions.
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As the mesh defined in Ref. [13], we define the mesh points in both x and y directions,
which is given in the following: let τ1,x = min{ dx

2 , 2
p−1

ε ln N}, τ2,x = min{ 1−dx
4 , 2

p−1
ε ln N},

τ1,y = min{ dy
2 , 2

p−2
ε ln N} and τ2,y = min{ 1−dy

4 , 2
p−2

ε ln N}. Using the transition parameters

τi,ν, i = 1, 2, ν = x, y, we partitioned the domains Ωx and Ωy as follows:

Ωx = ∪5
i=1Ωi,x, Ω1,x = [0, dx − τ1,x], Ω2,x = [dx − τ1,x, dx], Ω3,x = [dx, dx + τ2,x],

Ω4,x = [dx + τ2,x, 1− τ2,x], Ω5,x = [1− τ2,x, 1],

Ωy = ∪5
i=1Ωi,y, Ω1,y = [0, dy − τ1,y], Ω2,y = [dy − τ1,y, dy], Ω3,y = [dy, dy + τ2,y],

Ω4,y = [dy + τ2,y, 1− τ2,y], Ω5,y = [1− τ2,y, 1].

On each sub-domains Ωi,x, i = 1, 2, 3, 4, 5, respectively, we place N
4 , N

4 , N
8 , N

4 , N
8 mesh

points with mesh sizes 4(dx−τ1,x)
N , 4τ1,x

N , 8τ2,x
N , 4(1−2τ2,x−dx)

N , 8τ2,x
N . In the same manner the

mesh points in Ωi,y, i = 1, 2, 3, 4, 5 are defined. Now let us denote the mesh sizes to be

hx(i) = xi− xi−1, i ∈ IN and hy(i) = yi− yi−1, i ∈ IN and define the mesh ΩN
x = {xi}i=N

i=0 ,

x0 = 0, xi = xi−1 + hx(i), i ∈ IN and ΩN
y = {yi}i=N

i=0 , y0 = 0, yi = yi−1 + hy(i), i ∈ IN .
The mesh distribution is depicted in the Figure 1.

Figure 1. Mesh points distribution.

4.2. The Finite Difference Schemes

On the meshes ΩN
x and ΩN

y , we define the following finite difference schemes.
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fix y = yj,

DN
x Un+ 1

2
i,j :=



Un+ 1
2

i,j + (−εδ2
xUn+ 1

2
i,j + p1i,j D

−
x Un+ 1

2
i,j + q1i,j I

N
d Un+ 1

2
i,j )ht = Un

i,j

+htg1(xi, yj, tn+1), i ∈ I N
2 −1,

D−x Un+ 1
2

N/2,j = D+
x Un+ 1

2
N/2,j, i = N

2 ,

Un+ 1
2

i,j + (−εδ2
xUn+ 1

2
i,j + p1i,j D

+
x Un+ 1

2
i,j + q1i,j I

N
d Un+ 1

2
i,j )ht = Un

i,j

+htg1(xi, yj, tn+1), i ∈ IN−1 \ I N
2

,

(16)

Un+ 1
2

0,j = ûn+ 1
2 (0, yj); Un+ 1

2
N,j = ûn+ 1

2 (1, yj),

fix x = xi,

DN
y Un+1

i,j :=



Un+1
i,j + (−εδ2

yUn+1
i,j + p2i,j D

−
y Un+1

i,j + q2i,j I
N
d Un+1

i,j )ht = Un+ 1
2

i,j

+htg2(xi, yj, tn+1), j ∈ I N
2 −1

D−y Un+1
i,N/2 = D+

y Un+1
i,N/2, j = N

2 ,

Un+1
i,j + (−εδ2

yUn+1
i,j + p2i,j D

+
y Un+1

i,j + q2i,j I
N
d Un+1

i,j )ht = Un+ 1
2

i,j

+htg2(xi, yj, tn+1), j ∈ IN−1 \ I N
2

,

(17)

Un+1
0,j = ûn+1(xi, 0); Un+1

i,N = ûn+1(xi, 1),

where δ2
ζ , D−ζ and D+

ζ , ζ = x, y are the standard finite difference operators,

IN
d Un+ 1

2
i,j =



0, i ∈ I N
2 −1,

Un+ 1
2

η,ξ lη,x(xi − dx)lξ,y(yj − dy) + Un+ 1
2

η+1,ξ lη+1,x(xi − dx)lξ,y(yj − dy)

+Un+ 1
2

η,ξ+1lη,x(xi − dx)lξ+1,y(yj − dy)

+Un+ 1
2

η+1,ξ+1lη+1,x(xi − dx)lξ+1,y(yj − dy), i ∈ IN−1 \ I N
2

IN
d Un+1

i,j =



0, j ∈ I N
2 −1,

Un+1
η,ξ lη,x(xi − dx)lξ,y(yj − dy) + Un+1

η+1,ξ lη+1,x(xi − dx)lξ,y(yj − dy)

+Un+1
η,ξ+1lη,x(xi − dx)lξ+1,y(yj − dy)

+Un+1
η+1,ξ+1lη+1,x(xi − dx)lξ+1,y(yj − dy), j ∈ IN−1 \ I N

2
,

lη,x(xi − dx) =
xη+1 − (xi − dx)

hx(η + 1)
, lη+1,x(xi − dx) =

(xi − dx)− xη

hx(η + 1)
,

lξ,y(yj − dy) =
yξ+1 − (yj − dy)

hy(ξ + 1)
, lξ+1,y(yj − dy) =

(yj − dy)− yξ

hy(ξ + 1)
, xη , xη+1, yξ , yξ+1 are

the nodal points such that xi − dx ∈ [xη , xη+1] and yj − dy ∈ [yξ , yξ+1]. The above two
difference operators DN

x and DN
y satisfy the following discrete maximum principles.
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Note: Let us denote the difference operators D∗x =

{
D−x , i < N

2 ,
D+

x , i > N
2 ,

and D∗y =

{
D−y , j < N

2 ,
D+

y , j > N
2 .

In the following we use the above difference operators. Further, the test functions

s(xi) =

xi + 1, i ≤ N/2,

dx
dx − xi
1− dx

+ dx + 1, i > N/2,
and s(yj) =


yj + 1, j ≤ N/2,

dy
dy − yj

1− dy
+ dy + 1, j > N/2,

are also used.

4.3. Discrete Stability Results

Lemma 4. Let the mesh function be Ψi,j, satisfies Ψ0,j ≥ 0, ΨN,j ≥ 0, DN
x Ψi,j ≥ 0 and [D+

x −
D−x ]ΨN/2,j ≤ 0, then Ψi,j ≥ 0 for all i.

Proof. Making use of the test mesh function s(xi) and the arguments given in Ref. [13],
Lemma 6.1, the lemma can be proved.

Lemma 5. Let the mesh function be Ψi,j, satisfies Ψi,0 ≥ 0, Ψi,N ≥ 0, DN
y Ψi,j ≥ 0 and [D+

y −
D−y ]Ψi,N/2 ≤ 0, then Ψi,j ≥ 0 for all j.

Using the above two Lemmas 4 and 5, we can have the following discrete stability
results.

Lemma 6. Let Un+ 1
2

i,j be a numerical solution defined by (16), then

|Un+ 1
2

i,j | ≤ C max

{
|Un+ 1

2
0,j |, |U

n+ 1
2

N,j |, sup
i
|DN

x Un+ 1
2

i,j |
}

, for all i.

Lemma 7. Let Un+1
i,j be a numerical solution defined by (17), then

|Un+1
i,j | ≤ C max

{
|Un+1

i,0 |, |U
n+1
i,N |, sup

j
|DN

y Un+1
i,j |

}
, for all j.

Remark 1. From Lemmas 6 and 7, we can see that, the numerical solutions defined in (16) and (17)
are stable. Further, by the results of Ref. [20], the matrices associated with the difference schemes
(16) and (17) are M-matrices.

5. Error Computation

Analogous to the continuous solution, the numerical solution is decomposed into
smooth and singular components. The solution Un+ 1

2 is decomposed as Un+ 1
2 = Vn+ 1

2 +

Wn+ 1
2 satisfy the following difference equations:

DN
x Vn+ 1

2
i,j = Vn

i,j + htg1(xi, yj, tn+1), i ∈ IN \ {N, N
2 , 0},

D+
x Vn+ 1

2
N/2,j − D−x Vn+ 1

2
N/2,j =

[
vn+ 1

2
′
(dx)

]
, Vn+ 1

2
0,j = 0, Vn+ 1

2
N,j = 0,

(18)


DN

x Wn+ 1
2

i,j = Wn
i,j, i ∈ IN \ {N, N

2 , 0},

D+
x Wn+ 1

2
N/2,j − D−x Wn+ 1

2
N/2,j = −

[
vn+ 1

2
′
(dx)

]
, Wn+ 1

2
0,j = 0, Wn+ 1

2
N,j = 0.

(19)
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Similarly, the solution Un+1 is decomposed as Un+1 = Vn+1 + Wn+1 and they satisfy
the following difference equations:

DN
y Vn+1

i,j = Vn+ 1
2

i,j + htg2(xi, yj, tn+1), j ∈ IN \ {N, N
2 , 0},

D+
y Vn+1

i,N/2 − D−y Vn+1
i,N/2 =

[
vn+1′(dy)

]
, Vn+1

i,0 = 0, Vn+1
i,N = 0,

(20)


DN

y Wn+1
i,j = Wn+ 1

2
i,j , j ∈ IN \ {N, N

2 , 0},

D+
y Wn+1

i,N/2 − D−y Wn+1
i,N/2 = −

[
vn+1′(dy)

]
, Wn+1

i,0 = 0, Wn+1
i,N = 0.

(21)

Note: The error estimate in each time level is proved in the following way:

Step 1 :First we estimate the absolute difference of U and V;
Step 2 :We estimate the error bound of the regular component, that is |v−V|;
Step 3 :To estimate the error bound of the singular component |w−W| in the entire domain,

first we estimate in the outer region and then using the estimate of |U−V|, we estimate
|w−W| in the inner layer region;

Step 4 :Using the triangle inequality, we estimate the error bound of the numerical solution
in each time level.

Lemma 8. Let U
1
2
i,j and V

1
2

i,j be numerical solutions of (16) and (18), respectively, when n = 0, then

|U
1
2
i,j −V

1
2

i,j | ≤ C


N−1, i ∈ I N

4
,

ζ + N−1, i ∈ I 5N
8
\ I N

4
,

N−1, i ∈ IN−1 \ I 5N
8

,

ζ is constant.

Proof. Fix j. Let us consider the mesh function

Ψ±(xi) = C[N−1s(xi) + ψ(xi)]± [U
1
2
i,j −V

1
2

i,j ], ∀i,

where ζ = max N
4 +1≤i,j≤ 5N

8 −1 |U
1
2
i,j −V

1
2

i,j |, and

ψ(xi) =



(
xi − (dx − τ1,x)

τ1,x

)
ζ, i ∈ I N

2
\ I N

4(
1 +

dx − xi
τ2,x

)
ζ, i ∈ I 5N

8 −1 \ I N
2

0, otherwise.
It is easy to show that Ψ±(xi) ≥ 0, i = 0, N, and by the arguments of [13], we have

DN
x Ψ±(xi) = DN

x (CN−1s(xi) + ψ(xi))±DN
x (U

1
2
i,j −V

1
2

i,j) ≥ 0, i 6= N
2

,

(D+
x − D−x )Ψ±(x N

2
) ≤ 0, i =

N
2

.

By the Lemma 4, we have Ψ±(xi) ≥ 0. Hence the proof of the lemma.
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Lemma 9. Let v
1
2 and V

1
2 be two solutions of (12) and (18), respectively, the |v 1

2 (xi, y)−V
1
2

i,y| ≤
CN−1, ∀i.

Proof. Now, we see that

DN
x (v

1
2 (xi, y)−V

1
2

i,y) = DN
x v

1
2 (xi, y)−DN

x V
1
2

i,y = DN
x v

1
2 (xi, y)−Dxv

1
2 (xi, y)

= ht

[
−ε

(
δ2

x −
d2

dx2

)
+ p1i,j

(
D∗x −

d
dx

)
+ q1i,j [I

N
d − Id]

]
v

1
2 (xi, y),

from the results given in Refs. [2,21,22], we have |DN
x (v

1
2 (xi, y)−V

1
2

i,y)| ≤ ChtN−1. Using
the following barrier function

ψ±(xi) = CN−1s(xi)± (v
1
2 (xi, y)−V

1
2

i,y),

we can see that ψ±(xi) ≥ 0, i = 0, N, DN
x ψ±(xi) ≥ 0 and (D+

x − D−x )ψ±(x N
2
) ≤ 0. From

the Lemma 4, we have the desired result.

Lemma 10. Let w
1
2 and W

1
2 be the solutions of (13) and (19), respectively, then |w 1

2 (xi, y) −
W

1
2

i,y| ≤ CN−1 ln N, ∀i.

Proof. By the triangle inequality, Theorem 1, Lemmas 8 and 9, we have

|û
1
2 (xi, y)−U

1
2
i,y| ≤ |U

1
2
i,y −V

1
2

i,y|+ |v
1
2 (xi, y)−V

1
2

i,y|+ |û
1
2 (xi, y)− v

1
2 (xi, y)|

≤ CN−1 + C


exp

(
p−1 (xi − dx)

ε

)
, i ∈ I N

2
,

ε exp

(
p−1 (xi − 1)

ε

)
+ exp

(
p−1 (dx − xi)

ε

)
, i ∈ IN − I N

2
,

+ C


N−1, i ∈ I N

4
,

ζ + N−1, i ∈ I 5N
8 −1 \ I N

4
,

N−1, i ∈ IN \ I 5N
8 −1

≤ C



N−1, i ∈ I N
4

,

ζ + N−1 + exp

(
p−1 (xi − dx)

ε

)
, i ∈ I N

2
\ I N

4
,

ζ + N−1 + exp

(
p−1 (dx − xi)

ε

)
, i ∈ I 5N

8 −1 \ I N
2

,

N−1, i ∈ IN \ I 5N
8 −1,

where ζ = max N
4 +1≤i,j≤ 5N

8 −1 |U
1
2
i,j −V

1
2

i,j |. Hence |û 1
2 (xi, y)−U

1
2
i,y| ≤ CN−1, i = 0, 1, · · · , N

4 ,

5N
8 , · · · , N. Therefore |w 1

2 (xi, y)−W
1
2

i,y| ≤ CN−1, i = 0, 1, · · · , N
4 , 5N

8 , · · · , N. To prove the
result inside the inner region, we consider the following mesh function

ψ±(xi) = CN−1φ(xi)± (w
1
2 −W

1
2 ), xi ∈ (dx − τ1,x, dx) ∪ (dx, dx + τ2,x) ∩ΩN

x ,
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where φ(xi) =


(1 + xi) +

τx
ε2 (xi − (dx − τ1,x)), xi ∈ [dx − τ1,x, dx) ∩ΩN

x ,(
1 + dx + dx

dx − xi
1− dx

)
+ τx

ε2 (dx + τ2,x − xi), xi ∈ [dx, dx + τ2,x] ∩ΩN
x ,

,

τx = min{τ1,x, τ2,x}. Then we have, ψ±(xi) ≥ 0, i = N
4 , 5N

8 . Further |DN
x (w

1
2 −W

1
2 )| ≤

C1htε
−2N−1, i = N

4 + 1, · · · , N
2 − 1, N

2 + 1, · · · , 5N
8 . Now,

DN
x ψ±(xi) = CN−1DN

x φ(xi)±DN
x (w

1
2 −W

1
2 ), xi ∈ (dx − τ1,x, dx) ∪ (dx, dx + τ2,x) ∩ΩN

x

≥ CN−1


1 + ht p−1 + τx

ε2 ht p−1 , xi ∈ (dx − τ1,x, dx) ∩ΩN
x

1 + ht(p−1
dx

1−dx
+ β1) +

τx
ε2 ht(p−1 + β1), xi ∈ (dx, dx + τ2,x) ∩ΩN

x

∓ C1htε
−2N−1 ≥ 0

for a suitable choice of C > 0. At the point xN/2, we have (D+
x − D−x )ψ±(xN/2) ≤ 0. From

the Lemma 4, we have |w 1
2 −W

1
2 | ≤ CN−1 ln N, i = N

4 , · · · , 5N
8 . Therefore |w 1

2 (xi, y)−

W
1
2

i,y| ≤ CN−1 ln N, ∀i.

Lemma 11. Let û
1
2 and U

1
2 be the solution of (5) and (16), respectively, then ‖û 1

2 − U
1
2 ‖ ≤

CN−1 ln N.

Proof. The proof follows from the above two lemmas.

Lemma 12. Let v1, w1, û1, V1, W1, and U1 be the solutions of (14), (15), (6), (20), (21), and (17),
respectively, then

‖v1 −V1‖ ≤ CN−1, ‖w1 −W1‖ ≤ CN−1 ln N,

‖û1 −U1‖ ≤ CN−1 ln N.

Proof. We see that, û1(x, 0) = U1
x,0 and û1(x, 1) = U1

x,N .
Similar to the proof of Lemma 8, we can prove the following,

|U1 −V1| ≤ C


N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

ζ = max
N
4 +1≤i,j≤ 5N

8 −1
|U1

i,j −V1
i,j|.

Let v1 and V1 be the solutions of (14) and (20), then similar to Lemma 9, we have

DN
y (v1(x, yj)−V1

x,j) = DN
y v1(x, yj)−DN

y V1
x,j = DN

y v1(x, yj)−Dyv1(x, yj)

= ht

[
−ε

(
δ2

y −
d2

dy2

)
+ p2i,j

(
D∗y −

d
dy

)
+ q2i,j [I

N
d − Id]

]
v1(x, yj),
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and |DN
y (v1(x, yj)− V1

x,j)| ≤ ChtN−1. Then by a suitable barrier function one can prove

that ‖v1 −V1‖ ≤ CN−1. Similar to the Lemma 11, we estimate ‖w1 −W1‖,

|û1(x, yj)−U1
x,j| ≤ |U1

x,j −V1
x,j|+ |v1(x, yj)−V1

x,j|+ |û1(x, yj)− v(x, yj)|

≤ C



N−1, i, j ∈ I N
4

,

ζ + N−1 + exp

(
p−2 (yj − dy)

ε

)
, i, j ∈ I N

2
\ I N

4
,

ζ + N−1 + exp

(
p−2 (dy − yj)

ε

)
, i, j ∈ I 5N

8
\ I N

2
,

N−1, i, j ∈ IN \ I 5N
8

.

Hence |û1(x, yj)−U1
x,j| ≤ CN−1, j = 0, 1, · · · , N

4 , 5N
8 , · · · , N and |w1(x, yj)−W1

x,j| ≤
CN−1, j = 0, 1, · · · , N

4 , 5N
8 , · · · , N. Using the barrier function

ψ±(yj) = CN−1φ(yj)± (w1 −W1), yj ∈ (dy − τ1,y, dy) ∪ (dy, dy + τ2,y) ∩ΩN
y ,

where φ(yj) =


(
1 + yj

)
+

τy
ε2 (yj − (dy − τ1,y)), yj ∈ [dy − τ1,y, dy) ∩ΩN

y ,(
1 + dy + dy

dy − yj

1− dy

)
+

τy
ε2 (dy + τ2,y − yj), yj ∈ [dy, dy + τ2,y] ∩ΩN

y ,
,

τy = min{τ1,y, τ2,y} we prove that ‖w1 −W1‖ ≤ CN−1 ln N, j = N
4 + 1, · · · , 5N

8 − 1. Hence
the proof.

Theorem 3. Let ûn+ 1
2 , ûn+1, Un+ 1

2
i,j and Un+1

i,j be the solutions of (5), (6), (16), and (17), respec-
tively, then

‖ûn+ 1
2 −Un+ 1

2 ‖ ≤ CN−1 ln N, and ‖ûn+1 −Un+1‖ ≤ CN−1 ln N.

Proof. We prove the theorem on each time level t = tn. We know that ûn+ 1
2 (0, y)−Un+ 1

2
0,y =

0, ûn+ 1
2 (1, y)−Un+ 1

2
N,y = 0, ûn+1(x, 0)−Un+1

x,0 = 0 and ûn+1(x, 1)−Un+1
x,N = 0.

DN
x (Un+ 1

2 −Vn+ 1
2 ) = DN

x Un+ 1
2 −DN

x Vn+ 1
2 = Un −Vn,

‖DN
x (Un+ 1

2 −Vn+ 1
2 )‖ ≤ C


N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

,

DN
y (Un+1 −Vn+1) = DN

y Un+1 −DN
y Vn+1 = Un+ 1

2 −Vn+ 1
2 ,

‖DN
x (Un+1 −Vn+1)‖ ≤ C


N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

,

ζ = max
n

max
N
4 +1≤i,j≤ 5N

8 −1
|Un

i,j −Vn
i,j|,
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with the successive applications of Lemmas 6 and 7 and the iteration in n, we prove that

‖Uµ −Vµ‖ ≤ C


N−1, i, j ∈ I N

4
,

ζ + N−1, i, j ∈ I 5N
8
\ I N

4
,

N−1, i, j ∈ IN−1 \ I 5N
8

,

µ = n + 1 & µ = n +
1
2

.

Using the following barrier functions

Ψ±1 (xi) = CN−1s(xi)± [vn+ 1
2 (xi, yj)−Vn+ 1

2
i,j ], ∀i,

Ψ±2 (yj) = CN−1s(yj)± [vn+1(xi, yj)−Vn+1
i,j ], ∀j,

and from Lemmas 6 and 7, we can prove that

‖vn+ 1
2 −Vn+ 1

2 ‖ ≤ CN−1, ‖vn+1 −Vn+1‖ ≤ CN−1.

It is observed that |wµ(xi, yj) −Wµ
i,j| ≤ CN−1, µ = n + 1

2 , n + 1, i, j = 0, 1, · · · , N
4 ,

5N
8 , · · · , N. Using the following barrier functions

Φ±1 (xi) = CN−1φ1(xi)± (wn+ 1
2 −Wn+ 1

2 ), xi ∈ [Ω2,x ∪Ω3,x] ∩ΩN
x ,

Φ±2 (yj) = CN−1φ2(yj)± (wn+1 −Wn+1), yj ∈ [Ω2,y ∪Ω3,y] ∩ΩN
y ,

where φ1(xi) =


(1 + xi) +

τx
ε2 (xi − (dx − τ1,x)), xi ∈ Ω2,x ∩ΩN

x ,(
1 + dx + dx

dx − xi
1− dx

)
+ τx

ε2 (dx + τ2,x − xi), xi ∈ Ω3,x ∩ΩN
x ,

φ2(yj) =


(
1 + yj

)
+

τy
ε2 (yj − (dy − τ1,y)), yj ∈ Ω2,y ∩ΩN

y ,(
1 + dy + dy

dy − yj

1− dy

)
+

τy
ε2 (dy + τ2,y − yj), yj ∈ Ω3,y ∩ΩN

y ,

τµ = min{τ1,µ, τ2,µ}, µ = x, y we prove that |wµ(xi, yj) −Wµ
i,j| ≤ CN−1, µ = n +

1
2 , n + 1, and i, j = N

4 + 1, · · · , 5N
8 − 1. By the triangle inequality, we have the desired

results.

Theorem 4. Let u(xi, yj, tn) and Un
i,j be the solutions of (1) and (17), then

‖u−U‖ ≤ C(ht + N−1 ln N).

Proof. The error can be obtained from the following

u(xi, yj, tn)−Un
i,j = ûn(xi, yj)−Un

i,j + u(xi, yj, tn)− un(xi, yj) + un(xi, yj)− ûn(xi, yj)

‖u(tn)−Un‖ ≤ ‖un − ûn‖+ ‖ûn −Un‖+ ‖u(tn)− un‖.

From Lemma 3, Theorem 3 and Ref. [6], Theorem 1, we have

‖u(tn)−Un‖ ≤ ‖u(tn)− un‖+ ‖un − ûn‖+ ‖ûn −Un‖ ≤ Cht + CN−1 ln N,

which completes the proof.
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6. Numerical Validation

Two examples are presented in this section to validate the theoretical results presented
in this article. The exact analytical solutions to the test problems are unknown, there-
fore we use the double mesh principle to calculate the maximum point-wise error and
computational order of convergence. For fixed M, we define

EN
ε = max

i,j
| UN

i,j(hx, hy, ht)−UN
i,j(

hx

2
,

hy

2
,

ht

2
) |, 0 ≤ i, j ≤ N

DN
x,y = max

ε
EN

ε , ρN = log2

(
DN

x,y

D2N
x,y

)
,

where UN
i,j(hx, hy, ht) and UN

i,j(
hx
2 , hy

2 , ht
2 ) are the numerical solutions at the node (xi, yj, tn)

with mesh sizes (hx, hy, ht) and ( hx
2 , hy

2 , ht
2 ), respectively, DN

x,y is maximum over ε for fixed N.

Example 1. Consider the 2D parabolic PDE (1) with discontinuous source and convection coeffi-
cients with the following data:

∂u
∂t
− ε∆u + p̄(x) · ∇u + q(x)u(x− d, t) = g(x, t), (x, t) ∈ D∗ × (0, T]

p1(x) =

1 + x(1− x), x ∈ (0, dx), ∀y,

−(1 + x(1− x)), x ∈ (dx, 1),
p2(x) =

1 + y(1− y), y ∈ (0, dy), ∀x,

−(1 + x(1− x)), y ∈ (dy, 1),
,

q1(x) = −0.5− x(1− x), q2(x) = −0.5− y(1− y), dx = 0.5 = dy,

g1(x, t) =


−x2y(1− x)(1− y)2 exp

(
t2 − xy

1 + x2 + y2

)
, x ∈ (0, dx),

xy(1− x)2(1− y)exp
(

t2 − x2y2

1 + x2 − y2

)
, x ∈ (dx, 1),

g2(x, t) =

−x3y2, y ∈ (0, dy),

(1− x)5√1− y, y ∈ (dy, 1),
u0 =

xy(1− x)(1− y)
1 + x2 + y2 .

Table 1 presents the maximum pointwise error and the order of convergence cor-
responding to Example 1. Figures 2 and 3 depict the numerical solution and pointwise
maximum error of the problem studied in Example 1, respectively.

Table 1. Maximum error and order of convergence for the Example 1 with M = 27.

N Number of Mesh Points in Space Directions

ε ↓ 16 32 64 128 256

10−1 5.5196 × 10−3 3.0933 × 10−3 1.6543 × 10−3 8.5850 × 10−4 4.3790 × 10−4

0.83544 0.90292 0.94632 0.97123 -

10−3 2.1762 × 10−2 1.5092 × 10−2 1.0563 × 10−2 7.6976 × 10−3 5.4021 × 10−3

0.52801 0.51484 0.45650 0.51089 -

10−5 2.2373 × 10−2 1.5657 × 10−2 1.0944 × 10−2 8.0343 × 10−3 5.6554 × 10−3

0.51496 0.51669 0.44586 0.50655 -

10−7 2.2379 × 10−2 1.5663 × 10−2 1.0948× 10−2 8.0378 × 10−3 5.6580 × 10−3

0.51482 0.51668 0.44577 0.50650 -

10−9 2.2379 × 10−2 1.5663 × 10−2 1.0948 × 10−2 8.0378 × 10−3 5.6580 × 10−3

0.51482 0.51668 0.44577 0.50650 -

DN
x,y 2.2379× 10−2 1.5663× 10−2 1.0948× 10−2 8.0378× 10−3 5.6580× 10−3

ρN 0.51482 0.51668 0.44577 0.50650 -
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Figure 2. Numerical solution of Example 1 for fixed M = 25, N = 27, ε = 10−5.

Figure 3. Maximum error of Example 1.
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Example 2. Consider the 2D parabolic PDE (1) with discontinuous source and convection coeffi-
cients with the following data:

p1(x) =

1 + x(1− x) + y2, x ∈ (0, dx), ∀y,

−(1 + x(1− x) + exp(−y)), x ∈ (dx, 1),
dx = 0.5, dy = 0.25

p2(x) =

1 + y(1− y) +
√

x, y ∈ (0, dy), ∀x,

−(1 + y(1− y) + x2), y ∈ (dy, 1),
,

c1(x) = −0.5− x(1− x), c2(x) = −0.5− y2(1− y),

g1(x, t) =

4txy exp
(
x2 + y2), x ∈ (0, dx),

4t(1− x)(1− y), x ∈ (dx, 1),
g2(x, t) =

4xy exp(x2 + y2), y ∈ (0, dy),

4t(1− x)(1− y), y ∈ (dy, 1),

u0 =
xy(1− x)(1− y)

1 + x2 + y2 .

The maximum pointwise error and the order of convergence corresponding to Example 2
are given in Table 2. Figures 4 and 5 display the numerical solution and pointwise maximum
error of Example 2, respectively.

Figure 4. Numerical solution of Example 2 for fixed M = 25, N = 27, ε = 10−5.
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Figure 5. Maximum error of Example 2.

Table 2. Maximum error and order of convergence for the Example 2 with M = 27.

N Number of Mesh Points in Space Directions

ε ↓ 16 32 64 128 256

10−1 4.6432 × 10−2 2.4055 × 10−2 1.2254 × 10−2 6.1910 × 10−3 3.1182 × 10−3

0.94879 0.97310 0.98498 0.98946 -

10−3 4.3139 × 10−2 2.9874 × 10−2 2.3658 × 10−2 1.8574 × 10−2 1.5132 × 10−2

0.53011 0.33654 0.34909 0.29568 -

10−5 4.4807 × 10−2 3.1372 × 10−2 2.3990 × 10−2 1.8528 × 10−2 1.5113 × 10−2

0.51422 0.38706 0.37270 0.29390 -

10−7 4.4821 × 10−2 3.1389 × 10−2 2.3995 × 10−2 1.8528 × 10−2 1.5113 × 10−2

0.51390 0.38755 0.37302 0.29389 -

10−9 4.4821 × 10−2 3.1389 × 10−2 2.3995 × 10−2 1.8528 × 10−2 1.5113 × 10−2

0.51390 0.38756 0.37302 0.29389 -

DN
x,y 4.6432× 10−2 3.1389× 10−2 2.3995× 10−2 1.8574× 10−2 1.5132× 10−2

ρN 0.56483 0.38756 0.36945 0.29568 -

7. Concluding Remarks

This article discusses singularly perturbed 2D parabolic delay differential equations
with discontinuous convection coefficients and source terms. As pointed out in Ref. [3],
the fractional step method results in low-cost computation for 2D problems. Therefore, we
first apply the fractional implicit Euler method for the time derivative. Then the higher
dimensional problem is reduced to lower dimensional problems. In fact, we get 2N system
of uncoupled equations. Each equation is a singularly perturbed differential equation with
a discontinuous convection coefficient and source term. As discussed in Ref. [13], we
discretized the spatial domains Ωµ, µ = x, y in the same manner, such as ΩN

µ , µ = x, y. On
each mesh we apply the difference scheme DN

µ Ui,j, µ = x, y. It is proved that the present
method is of almost first-order convergence in space and time. Figures 2 and 4 represent
the test problems solutions stated in Examples 1 and 2, respectively, we see that, the layers
occurs at the points dx and dy. Tables 1 and 2 present the maximum pointwise errors of
the test example problems. It is also worth noting that when the parameter ε drops, the
maximum pointwise error grows and stabilizes. It is assumed that the number of mesh
points in the time direction is M = 128. From Figures 3 and 5 we see that the maximum
pointwise error decreases as N increases. The present method works for the problems
with any delay arguments of size 0 << dµ ≤ 1, µ = x, y. In Example 1 we assumed that
dx = 0.5 = dy,, whereas in Example 2 we assumed that dx = 0.5, dy = 0.25.
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