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Abstract: The reinforcement learning-based routing, modulation, and spectrum assignment has
been regarded as an emerging paradigm for resource allocation in the elastic optical networks. One
limitation is that the learning process is highly dependent on the training environment, such as the
traffic pattern or the optical network topology. Therefore, re-training is required in case of network
topology or traffic pattern variations, which consumes a great amount of computation power and
time. To ease the requirement of re-training, we propose a policy distillation scheme, which distills
knowledge from a well-trained teacher model and then transfers the knowledge to the to-be-trained
student model, so that the training of the latter can be accelerated. Specifically, the teacher model is
trained for one training environment (e.g., the topology and traffic pattern) and the student model
is for another training environment. The simulation results indicate that our proposed method can
effectively speed up the training process of the student model, and it even leads to a lower blocking
probability, compared with the case that the student model is trained without knowledge distillation.

Keywords: routing, modulation and spectrum assignment; elastic optical networks; deep reinforcement
learning; knowledge distillation

MSC: 68T07

1. Introduction

Accompanied with the rapid development of the Internet technology, services such as
audio and video conferencing, webcasting, and cloud computing have become popular.
The growing demand of these services leads to an exponential increase in data traffic and
poses great challenges to the bearing communication networks [1]. Elastic optical networks
(EONs) have been regarded to be a promising candidate for the next-generation optical
communications [2,3]. In EONs, the spectrum is divided into narrow frequency slots, and
traffic requests can be served by different numbers of frequency slots according to their data
rate requirements and the quality of the connection. This flex-grid scheme greatly increases
the network resource allocation flexibility compared to the traditional wavelength-division
multiplexing (WDM)-based networks [4]. Meanwhile, it also brings difficulties for the
network resource management.

The routing, modulation, and spectrum assignment (RMSA) [5] is a key problem for
the EONs resource management. Due to the complexity, the RMSA problem is generally
divided into two sub-problems: the routing and spectrum assignment [6], each of them tack-
led by heuristic solutions [7–10]. For the routing sub-problem, representative approaches
include fixed routing, fixed alternative routing [11,12], and adaptive routing [4]. For the
spectrum assignment sub-problem, there are the first-fit [13] and random-fit schemes
and other methods. However, these rule-based heuristics, mostly relying on researchers’
cognition, cannot comprehensively capture the effect of the complex network conditions.
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To overcome the above limitation, deep reinforcement learning (DRL) has recently
been introduced to the RMSA problem [14–19], where the RMSA policies are parameterized
by deep neural networks and the RMSA policies are improved through interactions with
the optical network environment. Many of them have achieved a better performance than
heuristic methods. However, the learned policies of these DRL-based approaches are highly
related to the training environment, such as the traffic patterns and the network topologies.
However, in a practical network, the traffic patterns and the network topologies are very
likely to be changed. For example, the traffic volume from commercial and residential
areas varies from working hours to off-duty hours. Meanwhile, the network topology
becomes different in the case of a network failure or disasters. Once the environment
is changed, the effectiveness of the learned RMSA policies deteriorates significantly [20].
Therefore, re-training is required and consumes a lot of computing power and time. To
ease the requirement of re-training, Chen et al. [20] investigated the transfer learning (TL)
between different network topologies. They first trained and obtained a model from source
tasks, and then copied the parameters of the trained model as the starting point when
training the target task. The limitation is that the target task needs to use the same neural
network architecture with the source task. Moreover, the effect of traffic variation has not
yet been investigated.

In this paper, we extend our previously published conference paper [19] and apply
policy distillation [21] to the RMSA problem, combining knowledge distillation [22] with
reinforcement learning (RL). First, a teacher model is trained for one task with a specific
traffic pattern and network topology. Then, the well-trained policy of a teacher model
is distilled, and the knowledge is transferred to a student model with a different traffic
pattern and network topology, to assist the training of the student model. A major difference
between our work and the transfer learning in [20] is that the student model (target) and
the teacher model (source) can be different. This allows knowledge transfer in a broader
context. We have applied the proposed design in three different application scenarios,
which consider different traffic patterns and different topologies. The simulation results
demonstrate that policy distillation can accelerate the training speed of the student model
and improve its performance.

The rest of this paper is organized as follows. Section 2 surveys the related work. In
Section 3, we briefly introduce some basics of RL. In Section 4, we introduce the proposed
policy distillation architecture, including the problem formulation and the training of the
teacher model and the student model. Then, we present the simulation results in Section 5.
Lastly, we conclude the paper in Section 6.

2. Related Work
2.1. Deep Reinforcement Learning in RMSA of EONs

In recent years, research has emerged by exploiting DRL to solve the routing and
spectrum assignment problem in the optical networks. Chen et al. [23] proposed a DRL
framework, namely DeepRMSA, for the optical network management and resource al-
location. The DeepRMSA uses the deep Q-learning algorithm for the training. Because
the input-state representation has a significant impact on the performance, a series of
work has explored different state representations. Chen et al. [14] defined a list of features
of the candidate paths. Yan et al. [24] introduced the concept of a multi-modal optical
network by considering the topology modality and routing modality to represent different
features of the optical network and uses the actor–critic (AC) algorithm for the training.
Suárez-Varela et al. [25] captured the key relationships between the links in the input-state
representation, making the DRL agents easier and faster to learn. The same team then [26]
introduced the Graph Neural Networks to further capture the network-state features.
Xu et al. [18] introduced a link–path relationship matrix to capture the path information of
the elastic optical networks.

There are some other works exploring various aspects by applying DRL in the opti-
cal network management. Huang et al. [15] proposed a DRL-based self-learning routing
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scheme for the WDM-based networks. It allows the agent to continuously improve its
performance by self-comparison. Koch et al. [27] adopted the RL algorithm for parameter
optimization in EONs. In addition, a cost-efficient routing, modulation, wavelength, and
port assignment algorithm based on DRL was developed in [28]. Moreover, Li et al. [29]
investigated collaborative DRL agents for multi-domain provisioning in multi-area opti-
cal networks.

2.2. Transfer Learning in EONs

Transfer learning in EONs has recently attracted research interest. Yao et al. [30]
proposed a TL-based resource optimization strategy for predicting the spectrum defrag-
mentation time in space-division multiplexing EONs. Liu et al. [31] applied a TL approach
to implement a scalable quality-of-transmission estimation in EONs. To our knowledge, the
most relevant work of this paper is [20], where the authors propose a knowledge transfer
design that alleviates scalability issues by transferring knowledge between RMSA agents
with different tasks through a modular DRL agent structure. As mentioned in Section 1,
its limitation is that the target task needs to use the same neural network architecture
with the source task. In our previously published conference paper [19], we propose a
knowledge distillation scheme based on DRL to achieve RMSA policy scalability in EONs.
This paper extends [19] in three aspects: (1) the authors of [19] only consider different traffic
patterns, while this paper considers different traffic patterns and topologies; (2) the training
algorithm is updated to the most advanced asynchronous advantage actor–critic (A3C);
and (3) many more simulation results are provided to verify our proposal.

3. Preliminaries

As this work is based on RL, we first explain some basics about RL for the facility of
the readers.

3.1. Reinforcement Learning

Reinforcement learning is an important branch of machine learning. Many RL tasks
can be modeled as Markov decision processes (MDP), expressed as tuples {S, A, R, P}. S
is the state space of the environment; A is the action space of the agent; R is the reward
function; and P represents the state transition probabilities. In the RL framework, the agent
interacts with the environment. Specifically, given a state st ∈ S, the agent performs an
action at ∈ A according to a policy, and then the environment emits a reward rt and changes
its state from st to a new state st+1 according to the state transition probabilities P. In this
process, the agent influences the environment by taking the actions, and the environment
feeds back reward rt to the agent, which will guide the agent to choose better actions. The
goal of the agent is to improve its action policy by optimizing the cumulative future reward.

3.2. Asynchronous Advantage Actor–Critic

The RL agent needs to be trained by some training algorithm. In this work, we use
the A3C algorithm [32] for the training. It is the asynchronous multi-threaded version
of the AC algorithm [33]. The AC algorithm uses a policy network (also called actor) to
select the action and a value network (also called critic) to evaluate actions. The actor
updates its policy (i.e., action selection probability) according to the critic. Through the
agent–environment interaction, the critic improves its evaluation accuracy, and the actor
improves its policy gradually.

A3C makes the AC algorithm much easier and faster to converge. It adopts a multi-
threaded method, where each thread has an independent actor–critic pair interacting
with a copy of the environment. Each thread collects the exploration experience from its
environment copy and then regularly updates a shared global actor–critic pair. By doing
this, the algorithm converges faster.
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4. Policy Distillation Design with EONs
4.1. Elastic Optical Networks

In the EONs, the RMSA problem is to establish corresponding end-to-end paths and
allocate appropriate frequency slots (FSs) for different traffic requests according to their data
rate requirements. Furthermore, RMSA [6] algorithm must satisfy the spectrum contiguity
constraint and spectrum continuity constraint. The topology of the EONs can be denoted
by a graph G(V, E), where V and E represent the set of nodes and links, respectively. When
a traffic request, denoted by TR(vs, vd, b), arrives, RMSA is needed from the source node
vs ∈ V to the target node vd ∈ V with the required bandwidth b. The routing algorithm
first calculates all possible paths from the source to the destination, then selects one path
Pvs ,vd from the K-shortest paths. Corresponding number of FS n required on the selected
path Pvs ,vd can be calculated by Equation (1) and Table 1.

n =
⌈
b/(W ·m(Pvs ,vd))

⌉
+ 1 (1)

W denotes the spectrum width of each FS; m(Pvs ,vd) ∈ [1, 2, 3, 4] corresponds to the modu-
lation format selected according to the physical length of Pvs ,vd [34]; and one FS is used for
the guard band. Then, n allocated FSs must be contiguous (spectrum contiguity constraint),
and each link along the demand path Pvs ,vd must be assigned the same n contiguous FSs
(spectrum continuity constraint).

Table 1. Transmission reach for different modulation formats [35].

m(Pvs ,vd) Modulation Format Transmission Reach

1 BPSK 5000 km
2 QPSK 2500 km
3 8-QAM 1250 km
4 16-QAM 625 km

4.2. Policy Distillation Scheme

We propose to integrate policy distillation into the RMSA problems of the optical
networks. The whole architecture is shown in Figure 1. Two models, namely the teacher
model and the student model, are trained for different tasks. First, a teacher model is trained
for one task with specific traffic pattern and network topology. Then, the well-trained
policy of the teacher model is distilled, and the knowledge is transferred to a student model
with a different traffic pattern and network topology, to assist the training of the student
model. There are three steps in the training process:

• Step 1: Train the teacher model. It is trained by interacting with the teacher environment.
• Step 2: Distill the knowledge from the teacher model and transfer the knowledge to

the student model. The training data of the student model are generated by calling the
well-trained teacher model obtained in Step 1, and then the student model is trained
by fitting these data.

• Step 3: Train the student model by itself. After the training in Step 2, the student
model will be further updated by interacting with student environment and no longer
rely on the knowledge distilled from the teacher model.

The RMSA policy for the student task is learned by the student model via Steps 2 and 3.
Step 2 distills the knowledge from the well-trained policy network of the teacher model
and transfers the knowledge to the student model to assist its training.

4.3. State, Action, and Reward

The optical network RMSA problem can be modeled as an MDP and solved in an
RL-based framework. In the RL framework, three essential elements are the state, the
action, and the reward. We consider the state only when there is a new traffic request. The
state st is a 1× 5K vector containing spectrum utilization information on the K-shortest
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candidate paths of the traffic request [14]. For each candidate path, we considered five
elements of spectrum utilization as follows:

• Starting index of the first available FS-block;
• Size of the first available FS-block;
• Number of required FSs;
• Average size of the available FS-block;
• Total number of available FSs.

In addition, the action of the RMSA problem is to choose one path from the K-candidate
paths and allocate spectrum on the selected path based on the first-fit strategy. Therefore,
action at ∈ {1, 2, · · · , K}. The reward rt is defined to be 1 when the traffic request is
accepted, and −1 otherwise.

4.4. Teacher Model

According to Step 1 in Figure 1, a teacher model is first trained, which is illustrated
in more detail in Step 1 of Figure 2. We use DRL to train the teacher model and obtain
the RMSA policy to optimize the EONs resource management. The A3C algorithm is
adopted for the training, where multiple local actor–critic pairs are trained by interacting
with the copies of the environment in parallel, and then periodically update the global
actor–critic pair. The actor and critic are parameterized by two neural networks: the policy
network π(at|st; θp,T) and the value network V(st; θv,T). The policy network π(at|st; θp,T)
is used to generate the policy of RMSA, which is represented by a probability distribution.
The value network V(st; θv,T) is used to obtain the value of st and evaluate the RMSA
policy. T denotes the teacher model. θp,T and θv,T are the parameters of the policy and the
value network, respectively. The global parameters maintained by the A3C algorithm are
represented as θ∗p,T and θ∗v,T.

Teacher Environment
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model

Student 

model

Student 

model
Training

Data

Step 1: train teacher

model

Step 2: generate data, then train 

student model via policy distillation

Step 3: train student 
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Figure 1. Overview of the policy distillation design with EONs.
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The details of training process for the teacher model are given in Algorithm 1. First,
we initialize the experience buffer D to empty and set the initial exploration rate ε to 1. In
line 3, each actor–critic pair thread parameters are firstly updated by the global parameters.
Notice that for a general DRL task that can be modeled as a Markov decision process
{S, A, R, P} mentioned in Section 3, the state transition from st to st+1 follows a probability
distribution P. However, for the RMSA task in this paper, as the state space is extremely
large, state transitions are difficult to be modeled. Therefore, the RMSA task here belongs
to the model-free MDP and can only be optimized through samples. In lines 6–10, during
the sampling, we first input the 1 × 5K-dimensional state st into the policy and value
networks. Then, the policy network outputs a 1× K-dimensional probability distribution
π(at|st; θp,T), where each probability ranges from 0 to 1, and the summation of the output
K probabilities is 1. The value network outputs a value V(st; θv,T), which is a real number.
Finally, we store the sample (st, at, rt, V(st; θv,T)) generated by the interaction of the agent
and the environment in an experience buffer D. When the size of experience buffer reaches
2N − 1, we perform training based on the first N samples (lines 13–19). For each sample at
time t, the advantage function is calculated in line 15. To obtain the advantage function, we
first make cumulative the discounted reward for this sample (we only consider an episode
consisting of N consecutive samples after this sample and ignore the discounted reward
after N samples) by,

Qπ(st, at; θp,T) =
N−1

∑
i=0

γirt+i, t ∈ {t0, t0 + N − 1}, (2)

where γ is the discount factor, 0 < γ < 1. Then, the advantage of each action taken can be
obtained by,

A(st, at; θp,T, θv,T) = Qπ(st, at; θp,T)−V(st; θv,T). (3)

Equation (3) indicates how much better the actual selected action is than the average.
Note that an episode is defined to consist of N consecutive samples, where N is equal

to batch size. This way, all samples needed to calculate the advantage function can be
found in the experience buffer [14].

Then, the objective function of policy network Lθp,T and the loss function of value
network Lθv,T can be used to calculate the gradient of the policy and the value network, and
then the global parameters θ∗p,T and θ∗v,T can be updated according to the gradient (line 18).
Lθp,T and Lθv,T can be expressed as follows:

Lθp,T =−
t0+N−1

∑
t=t0

A(st, at; θp,T, θv,T) log π(at|st; θp,T)

− α
t0+N−1

∑
t=t0

∑
at∈{1,2,··· ,K}

π(at|s; θp,T) log π(at|s; θp,T),

(4)

Lθv,T =
t0+N−1

∑
t=t0

A(st, at; θp,T, θv,T)
2. (5)

To increase the diversity of the actions, the second term of Lθp,T introduces the policy
entropy to improve the agent’s ability to explore the environment, and α controls the
strength of the entropy regularization term. β and η are the learning rates.

The stopping criterion is that the model has converged. Specifically, we trace the
changing of the average blocking probabilities. If the difference between consecutive
average blocking probabilities is smaller than a pre-defined threshold, we regard the
model to be converged and therefore criterion is satisfied. Through the above steps
with Algorithm 1, we train a teacher model that can improve its RMSA policy under a
certain task.
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Algorithm 1 Training algorithm of the teacher model.

1: Initialize: experience buffer D = φ, ε = 1.
2: while not stopping criterion do
3: Initialize each thread-specific policy network and value network:

θp,T ← θ∗p,T, θv,T ← θ∗v,T.
4: while |D| < 2N − 1 do
5: #SAMPLING
6: Upon the TR(vs, vd, b) arriving, obtain the state st.
7: Obtain π(at|st; θp,T) and V(st; θv,T) by the policy and the value network.
8: With probability ε select an action at according to π(at|st; θp,T), otherwise at =

argmaxa{π(at|st, θp,T)}.
9: Obtain reward rt.

10: Store sample (st, at, rt, V(st; θv,T)) in D.
11: end while
12: #TRAINING
13: For the first N samples (t ∈ {t0, t0 + N − 1}) in the experience buffer D.
14: for t ∈ {t0, t0 + N − 1} do
15: Calculate A(st, at; θp,T, θv,T) by Equation (3).
16: end for
17: Calculate Lθp,T and Lθv,T by Equations (4) and (5).
18: Obtain the policy network and value network gradients dθp,T and dθv,T with Lθp,T

and Lθv,T .
19: Global parameters θ∗p,T and θ∗v,T can be updated by:

θ∗p,T ← θ∗p,T − βdθv,T and θ∗v,T ← θ∗v,T − ηdθv,T.
20: Delete the first N samples in D and set ε = max{ε− ε0, εmin}.
21: end while

4.5. Student Model

Due to the similarities between tasks, we try to use the well-trained teacher model to
“teach” the student model to learn the optimal RMSA policy for student tasks, as shown in
Step 2 of Figure 1. This process is described in more detail in Step 2 of Figure 2. In this way,
the student model adjusts its training according to the experience knowledge of the teacher
model, in order to expect faster training speed or better performance.

Distillation is a method to transfer experience knowledge from a teacher model T to
a student model S. To transfer the knowledge, a straightforward method is to minimize
the distance between the output of the student model and the teacher model. Because the
action probability distribution of the output of policy network reflects the learned RMSA
policy, we use cross-entropy to fit the output of the two models’ policy networks. In order
to transfer more knowledge, the teacher model can utilize a relaxed (higher-temperature)
softmax than the one used during training [21]. Choose a temperature τ, the outputs of
the teacher model’s and the student model’s policy network are processed by softmax
functions to obtain the distributions: qτ(st, θp,T) and qτ(st, θp,S),

qτ(st, θp,T) = softmax(
π(at|st; θp,T)

τ
), (6)

qτ(st, θp,S) = softmax(
π(at|st; θp,S)

τ
). (7)

The softmax(·) is defined by:

softmax(i) =
ei

∑j ej . (8)
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Algorithm 2 describes in detail the training process of the student model. The sampling
part is same as the teacher model. When the training conditions are met, we first calculate
the cumulative discounted reward for each sample (we only consider the first N samples
and ignore the discounted reward after N samples) by:

Qπ(st, at; θp,S) =
N−1

∑
i=0

γirt+i, t ∈ {t0, t0 + N − 1} (9)

The advantage of each action can be calculated by:

A(st, at; θp,S, θv,S) = Qπ(st, at; θp,S)−V(st; θv,S). (10)

Let H(·, ·) be the cross-entropy function. Then, the similarity between the student
model’s and the teacher model’s policy network can be increased by minimizing the
objective function given below:

LPD
θp,S

=
t0+N−1

∑
t=t0

H(qτ(st, θp,T), qτ(st, θp,S)). (11)

During the distillation stage, although the value network did not directly obtain the
experience knowledge from the teacher model by cross-entropy fitting, the output of the
student model’s policy network trained via policy distillation affected the generation of the
samples, which indirectly affects the training of the value network.

The loss function Lθv,S of the student model’s value network during distillation is
given by:

Lθv,S =
t0+N−1

∑
t=t0

A(st, at; θp,S, θv,S)
2. (12)

By optimizing the objective and the loss function above, we can transfer knowledge
from the teacher model to the student model.

When the student model is initialized, its DRL agents start from tabula rasa, which
means that they have no professional knowledge about the optical network environment
of the task, and therefore, they need to learn the optimal RMSA policy by exploring the
state and action space for a long time. Therefore, we transfer the knowledge of the teacher
model to the poorly performing student model through distillation to reduce ineffective
exploration of the student model.

However, although the teacher model is well-trained for the teacher tasks, in the
process of policy distillation, its policy has limitations guiding the training of the student
model for the student tasks. Therefore, we conduct the policy distillation for the beginning
M TR(s, d, b) requests, and then let the student model learn by itself as shown in Step 3 of
Figure 2. The objective function and loss function of the first M traffic requests are given by
Equations (11) and (12), and the afterward is given by:

Lθ−p,S
=−

t0+N−1

∑
t=t0

A(st, at; θ−p,S, θ−v,S) log π(at|st; θ−p,S)

− α
t0+N−1

∑
t=t0

∑
at∈{1,2,··· ,K}

π(at|s; θ−p,S) log π(at|st; θ−p,S),

(13)

Lθ−v,S
=

t0+N−1

∑
t=t0

A(st, at; θ−p,S, θ−v,S)
2. (14)

where θ−p,S and θ−v,S are the parameters of the policy and the value network of the student
model during self-learning, respectively.
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Algorithm 2 Training algorithm of student model.

1: Initialize: experience buffer D = φ, ε = 1.
2: while not stopping criterion do
3: Initialize each thread-specific policy network and critic network by:

θp,S ← θ∗p,S, θv,S ← θ∗v,S.
4: while |D| < 2D− 1 do
5: #SAMPLING
6: Upon the TR(vs, vd, b) arriving, obtain the state st.
7: Obtain π(at|st; θp,S) and V(st; θv,S) by the policy and the value network.
8: With probability ε select an action at according to π(at|st; θp,S), otherwise at =

argmaxa{π(at|st; θp,S)}.
9: Obtain reward rt and store sample (st, at, rt, V(st; θv,S)) in D.

10: end while
11: #TRAINING
12: if before M requests then
13: #DISTILLATION
14: For the first N samples (t ∈ {t0, t0 + N − 1}) in the experience buffer D.
15: for t ∈ {t0, t0 + N − 1} do
16: Calculate A(st, at; θp,S, θv,S) by Equation (10).
17: end for
18: Obtaining training samples {(sj

t, qτ(s
j
t, θp,T)}N

j=1.

19: Calculate LPD
θp ,S by Equation (11) and Lθv ,S by Equation (12).

20: Obtain the policy network and value network gradients dθp,S and dθv,S with LPD
θp ,S,

Lθv ,S.
21: Global parameters θ∗p,S and θ∗v,S can be updated by:

θ∗p,S ← θ∗p,S − βdθv,S and θ∗v,S ← θ∗v,S − ηdθv,S.
22: Delete the first N samples in D and set ε = max{ε - ε0, εmin}.
23: else
24: #SELF-LEARNING
25: θ−,∗

p,S = θ∗p,S, θ−,∗
v,S = θ∗v,S.

26: For the first N samples (t ∈ {t0, t0 + N − 1}) in the experience buffer D.
27: for t ∈ {t0, t0 + N − 1} do
28: Calculate A(st, at; θ−p,S, θ−v,S) by Equation (10).
29: end for
30: Calculate Lθ−p,S

and Lθ−v,S
by Equations (13) and (14).

31: Obtain the policy network and value network gradients dθ−p,S and dθ−v,S with Lθ−p,S
and Lθ−v,S

.

32: Global parameters θ−,∗
p,S and θ−,∗

v,S can be updated by:

θ−,∗
p,S ← θ−,∗

p,S − βdθ−v,S and θ−,∗
v,S ← θ−,∗

v,S − ηdθ−v,S.
33: Delete the first N samples in D and set ε = max{ε - ε0, εmin}.
34: end if
35: end while

5. Performance Evaluation

In this section, we introduce the simulation results of the proposed policy distillation
design with the EONs. We applied the proposed method to three different scenarios:
(1) policy distillation between different traffic patterns, (2) policy distillation between differ-
ent topologies, and (3) policy distillation between different traffic patterns and topologies.

5.1. Parameter Settings

The common parameters used in the simulations are explained in below. For the
simulations in Sections 5.2–5.5, these common parameters are used unless otherwise speci-
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fied. Moreover, for convenience, the symbols of these key common parameters and their
corresponding meanings and values are listed in Table 2.

Table 2. Key parameters and their corresponding meaning and values.

Notation Meaning Value

DRL
Environment
(i.e., EONs)

Number of frequency slots per link 100

B Bandwidth requirement [25, 100] Gb/s

K Number of candidate paths 5

Bandwidth of a spectrum slot 12.5 GHz

DRL
agent

L Number of hidden layers
(teacher model/student model) 8/5

H
Number of neurons

for each hidden layer
(teacher model/student model)

256/128

DRL
training

γ Discount rate 0.95

β/η Learning rate 1× 10−5

α Entropy regularization coefficient 0.01

N Mini-batch size 200

M Number of traffic requests for distillation 100,000

τ Temperature 5

εmin Final explore rate 0.05

All the topologies used in the simulations are shown in Figure 3, where the weight
of each edge of the topology represents the physical length of each link, and they will be
used to calculate the FSs in Equation (1). We set the capacity of each fiber link to be 100 FSs.
The traffic requests are generated according to independent Poisson processes. In order to
ensure that the blocking probabilities of different topologies can fall within a reasonable
range, we set a different traffic load for all the different topologies. The traffic patterns and
the load for different simulation scenarios will be described in detail later. In addition, the
bandwidth requirement of each traffic request is evenly distributed within [25, 100] Gb/s.
The number of the shortest paths K is set to be 5, which means the DRL agent is to select a
path from 5 candidate paths.

In terms of the neural network architecture, for the teacher model, the policy and
value networks both have five hidden layers, with 256 neurons per layer. For the student
model, the policy and value networks both have five hidden layers, with 128 neurons per
layer. ReLU is used as the activation function for the hidden layers. We set the discount
factor γ, the learning rate β and η, the coefficient of the entropy regularization term α, and
the temperature of distillation τ to be 0.95, 1× 10−5, 1× 10−5, 0.01, and 5, respectively. In
addition, the number of traffic requests for distillation M is 100,000. During the training,
the mini-batch gradient descent algorithm and the Adam optimizer are used, with the
mini-batch size N to be 200. The exploration rate ε is set to be 1 at the beginning and
gradually decays by ε0 (set to be 10−5) units during each training process until it reaches
εmin, which is 0.05.
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Figure 3. Optical network topologies: (a) 8-node, (b) 14-node NSFNET, (c) 11-node COST 239, and
(d) 24-node US Backbone.

5.2. Policy Distillation for Different Traffic Patterns

We first evaluate the performance of our proposed scheme for different traffic patterns
and the same network topology. In this subsection, both the teacher and the student models
are trained over the same network topology: the 14-node NSFNET. The traffic patterns
are different. We set the model trained under a uniformly distributed traffic pattern as the
teacher model and the model applied for the non-uniformly distributed traffic patterns as
the student models.

The traffic pattern is denoted by an N × N matrix TP, where N(=14) denotes the
number of nodes of the NSFNET. The element TPij represents the traffic load ratio from
node i to node j, where TPij = 0 when i = j. If TPij are the same for all i-j pairs (i 6= j), the
traffic pattern is uniformly distributed. Otherwise, it is non-uniformly distributed. For the
student model, we designed three different non-uniform traffic patterns, namely pattern
A, pattern B, and pattern C, as shown in Figure 4a,c,e. They correspond to the following
three settings:

• Pattern A: non-uniform; TPij = TPji, ∀i, j; TPij 6= 0, ∀i 6= j.
• Pattern B: non-uniform; TPij = TPji, ∀i, j; exist TPij = 0 when i 6= j.
• Pattern C: non-uniform; exist TPij 6= TPji; exist TPij = 0 when i 6= j.

For the uniform traffic patterns, the arrival rate is 12 arrivals per time unit and the
average service time is 16 time units, while for the non-uniform traffic pattern, the arrival
rate is 16 arrivals per time unit and the average service time is 25 time units. Table 3 records
the traffic loads for all the traffic patterns in Section 5.2.

Figure 4b,d,f show the evolution of the simulation results as the number of requests
increase, with the blocking probability calculated every 1000 TR(vs, vd, b) requests. The
blue lines represent the blocking probabilities of the agents learning from scratch without
policy distillation (“w/o PD”), while the red lines represent the blocking probabilities of
the agents that learn with the policy distilled from the teacher model which is trained with
the uniform traffic pattern (“PD-14-Node-uniform”). The green lines represent the blocking
probabilities of the baseline algorithm: the K-shortest-path routing and first-fit spectrum
allocation (KSP-FF) [36]. The “KSP-FF” in Figure 4b,d,f are the results of applying the
KSP-FF algorithm to pattern A, pattern B, and pattern C of the 14-node NSFNET topology,
respectively. We can see that, by policy distillation (“PD-14-Node-uniform”), the agent
converges faster and achieves lower blocking probabilities, compared to the cases without
policy distillation (“w/o PD”). Specifically, the blocking probability reductions are 10%,
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10.7%, and 3.6% with pattern A, pattern B, and pattern C, respectively. These results imply
that the policy distillation does well in traffic pattern variation tasks.

0 2 1 1 1 4 1 1 2 1 1 1 1 1
2 0 2 1 8 2 1 5 3 5 1 5 1 4
1 2 0 2 3 2 11 20 5 2 1 1 1 2
1 1 2 0 1 1 2 1 2 2 1 2 1 2
1 8 3 1 0 3 3 7 3 3 1 5 2 5
4 2 2 1 3 0 2 1 2 2 1 1 1 2
1 1 11 2 3 2 0 9 4 20 1 8 1 4
1 5 20 1 7 1 9 0 27 7 2 3 2 4
2 3 5 2 3 2 4 27 0 75 2 9 3 1
1 5 2 2 3 2 20 7 75 0 1 1 2 1
1 1 1 1 1 1 1 2 2 1 0 2 1 61
1 5 1 2 5 1 8 3 9 1 2 0 1 81
1 1 1 1 2 1 1 2 3 2 1 1 0 2
1 4 2 2 5 2 4 4 1 1 61 81 2 0

(a) pattern A

0 250 500 750 1000
Number of Requests (× 10³)

4
5
67

10

20
30
40

B
lo

ck
in

g 
Pr

ob
ab

ili
ty

 (%
) Pattern A KSP-FF

w/o PD
PD-14-Node-uniform

(b)

0 2 1 1 1 4 0 1 2 1 0 1 1 1
2 0 2 0 8 2 1 5 3 5 1 5 1 0
1 2 0 2 3 2 0 20 0 2 0 1 1 2
1 0 2 0 1 1 2 1 2 0 1 2 1 2
1 8 3 1 0 3 0 7 3 3 1 0 0 5
4 2 2 1 3 0 2 1 2 2 1 1 1 0
0 1 0 2 0 2 0 9 0 20 0 8 0 4
1 5 20 1 7 1 9 0 27 0 2 0 2 4
2 3 0 2 3 2 0 27 0 75 2 9 3 0
1 5 2 0 3 2 20 0 75 0 1 1 2 1
0 1 0 1 1 1 0 2 2 1 0 2 1 61
1 5 1 2 0 1 8 0 9 1 2 0 1 8
1 1 1 1 0 1 0 2 3 2 1 1 0 2
1 0 2 2 5 0 4 4 0 1 61 8 2 0

(c) pattern B

0 250 500 750 1000
Number of Requests (× 10³)

4
5
67

10

20

30
40

B
lo

ck
in

g 
Pr

ob
ab

ili
ty

 (%
) Pattern B KSP-FF

w/o PD
PD-14-Node-uniform

(d)

0 9 1 10 1 4 0 1 2 1 0 1 9 1
2 0 2 0 8 2 1 5 3 5 1 5 1 0
1 2 0 2 3 2 0 20 0 2 12 1 1 2
11 0 2 0 1 1 2 1 2 0 1 2 7 2
1 8 3 1 0 7 0 7 2 3 1 0 0 5
4 2 3 1 3 0 2 1 2 2 1 1 1 0
0 1 0 2 0 2 0 9 0 18 0 9 0 4
6 5 20 1 7 1 9 0 27 0 2 0 2 4
2 3 24 2 3 2 0 25 0 75 2 9 3 8
1 15 2 0 3 2 20 0 60 0 1 1 2 1
0 1 0 11 1 1 0 2 2 1 0 2 1 61
1 5 1 2 0 1 8 0 9 1 2 0 1 8
1 4 1 1 6 1 6 5 13 21 1 1 0 2
1 0 2 2 5 0 4 6 0 1 61 8 2 0

(e) pattern C

0 250 500 750 1000
Number of Requests (× 10³)

6
7
8

10

20

30
40

B
lo

ck
in

g 
Pr

ob
ab

ili
ty

 (%
) Pattern C KSP-FF

w/o PD
PD-14-Node-uniform

(f)

Figure 4. (a,c,e): The non-uniform traffic patterns for the student models. (b,d,f): Blocking probabili-
ties under different traffic patterns ((b) pattern A, (d) pattern B, and (f) pattern C) for student model
with policy distillation, student model without policy distillation, and the baseline KSP-FF algorithm.

Table 3. Traffic loads for all traffic patterns in Section 5.2.

Topology Traffic Pattern Load

Teacher model 14-node NSFNET uniform 0.75

Student model
14-node NSFNET pattern A 0.64

14-node NSFNET pattern B 0.64

14-node NSFNET pattern C 0.64
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5.3. Policy Distillation for Different Topologies

We have also conducted simulations for different topologies to evaluate the perfor-
mance of the policy distillation scheme. In this case, we train two teacher models in the
8-node topology and the 14-node NSFNET topology, while the other two topologies (the
11-node COST 239 topology and the 24-node US Backbone topology) are used for training
the student models. The traffic patterns for all the teacher and student models are the same
in terms of distributions: uniform. For the 8-node, 11-node COST239, 14-node NSFNET,
and 24-node US Backbone topology, the arrival rate is 14, 16, 12, and 12 arrivals per time
unit, and the average service time is 25, 25, 16, and 14 time units, respectively. Table 4
records the traffic loads for all the traffic patterns in Section 5.3.

Table 4. Traffic loads for all traffic patterns in Section 5.3.

Topology Traffic Pattern Load

Teacher model
8-node uniform 0.56

14-node NSFNET uniform 0.75

Student model
11-node COST 239 uniform 0.64

24-node US Backbone uniform 0.86

Figure 5a,b show the evolution of the blocking probability by the student models
trained in different topologies. We denote the agents that learn with the policy distilled
from the teacher models for the 8-node and 14-node NSFNET as “PD-Eight-Node” and
“PD-14-Node”, respectively. The KSP-FF algorithm is adopted as the baseline, it is applied
to the training environment of the uniform distribution 11-node COST239 and 24-node
US Backbone topology, respectively, and the results of the “KSP-FF” in Figure 5a,b are
obtained. We can observe from Figure 5a that, for the student model trained in the
11-node COST239 topological environment, the cases with policy distillation (“PD-Eight-
Node” and “PD-14-Node”) reach the performance level of “KSP-FF” faster than the case
without the policy distillation (“w/o PD”). Specifically, the blocking performance of the
“PD-Eight-Node” and “PD-14-Node” matches that of the “KSP-FF” after about 150,000 and
244,000 traffic requests, but the “w/o PD” consistently performs worse than the “KSP-FF”
before 1,000,000 traffic requests.

Similar results are observed in Figure 5b when the student model is trained in the
24-node US Backbone topological environment. Moreover, it can be seen from Figure 5a,b
that the cases with the policy distillation (“PD-Eight-Node” and “PD-14-Node” ) have
lower blocking probabilities after convergence compared with the case without the pol-
icy distillation (“w/o PD”). These results show that when the topology changes, policy
distillation can assist the policy learning in the new environment. Figure 5c,d show the com-
plementary cumulative distribution function (CCDF) with a blocking reduction compared
to the “KSF-FF” from different schemes after training with 750,000 traffic requests. For the
COST 239 topology, the “PD-Eight-Node” and “PD-14-Node” outperform the “KSP-FF”
for around 54% and 52% cases, respectively, while the “w/o PD” only outperforms the
“KSP-FF” for around 33% of the cases. For the US Backbone topology, the “PD-Eight-Node”
and “PD-14-Node” outperform the “KSP-FF” for around 55.8% and 46.3% of the cases,
respectively, while the “w/o PD” outperforms the “KSP-FF” for around 29.5% of the cases.
This indicates the effectiveness of policy distillation.
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Figure 5. (a,b): Blocking probability in training with different topologies, and (c,d): complementary
cumulative distribution function (CCDF) with blocking reduction compared to KSP-FF algorithm
after training with 750,000 traffic requests.

5.4. Policy Distillation for Different Traffic Patterns and Topologies

In this subsection, we change both the traffic patterns and the network topologies for
the policy distillation. Similar with Section 5.3, two teacher models are trained under the
8-node topology and the 14-node NSFNET topology, while the student models are applied
for the 11-node COST 239 topology and the 24-node US Backbone topology. Besides that,
the teacher models are trained under uniform traffic patterns, while the student models are
trained under a non-uniform traffic pattern. We have conducted four sets of simulations,
denoted as Simulation T-1 to T-4. Detailed simulation settings of the student models are
shown in Table 5, and the traffic loads of all the traffic patterns in Section 5.4 are shown in
Table 6.

The simulation results are shown in Figure 6a–d. First, we can see that compared with
the case without policy distillation (“w/o PD”), taking policy distillation from an eight-
node-topology-and-uniform-traffic-pattern teacher (“PD-Eight-Node”) and an NSFNET-
topology-and-uniform-traffic-pattern teacher (“PD-14-Node”) can effectively accelerate
the training of student models and obtain lower blocking probabilities for all simulations.
Specifically, the “PD-Eight-Node” achieves blocking reductions of 8.3%, 11.9%, 7.8%, and
9.8% for simulations T-1∼T-4, respectively. For the “PD-14-Node”, the blocking probability
reductions are 7.5%, 11%, 3.9%, and 2.4% for simulations T-1∼T-4, respectively. Meanwhile,
Table 7 records the time (approximately) spent by different schemes when the blocking
performance reaches the level of the “KSP-FF” in Simulation T-1∼Simulation T-4. In this
section, the “KSP-FF” in Figure 6a–d are the results of applying the KSP-FF algorithm to
the training environment of Simulation T-1∼Simulation T-4, respectively. We can notice
that the “PD-Eight-Node” and “PD-14-Node” learn faster. In Simulation T-1∼Simulation
T-4, when the blocking performance reaches that of the KSP-FF, the training time of the
“PD-Eight-Node” is reduced by 31.4%, 14%, 57%, and 60.3% compared with that of the “w/o
PD”, respectively. A similar trend can be seen between the “PD-14-Node” and “w/o PD”.
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Table 5. Simulation settings for the student models in Section 4.4.

Student Model

Simulation T-1
Topology 11-node COST239

Traffic pattern
pattern D (non-uniform; TPij = TPji, ∀i, j;

TPij 6= 0, ∀i 6= j)

Simulation T-2
Topology 11-node COST239

Traffic pattern
pattern E (non-uniform; TPij = TPji, ∀i, j;

exist TPij = 0 when i 6= j)

Simulation T-3
Topology 24-node US Backbone

Traffic pattern
pattern F (non-uniform; TPij = TPji, ∀i, j;

TPij 6= 0, ∀i 6= j)

Simulation T-4
Topology 24-node US Backbone

Traffic pattern
pattern G (non-uniform; TPij = TPji, ∀i, j;

exist TPij = 0 when i 6= j)

Table 6. Traffic loads for all traffic patterns in Section 5.4.

Topology Traffic Pattern Load

Teacher model
8-node uniform 0.56

14-node NSFNET uniform 0.75

Student model

11-node COST 239 pattern D 0.64

11-node COST 239 pattern E 0.64

24-node US Backbone pattern F 0.86

24-node US Backbone pattern G 0.86

Table 7. Training duration when performance reaches KSP-FF (in seconds).

“PD-Eight-Node” “PD-14-Node” “w/o PD”

Simulation T-1 1963 1956 2863

Simulation T-2 1939 1895 2258

Simulation T-3 3131 2868 7277

Simulation T-4 3743 3373 9427

For all of the above simulations, we only use the KSP-FF heuristic algorithm as the
baseline. As can be seen from the experimental figures, some DRL-based approaches can
only achieve a comparable performance with the KSP-FF. For such results, we believe that
the performance of the DRL-based approaches is limited by the design of the reward. In this
regard, our work [37] has investigated the reward design, and the results are significantly
better than the KSP-FF in terms of the blocking probability. However, the focus of this
paper is not on the reward design. We pay more attention to the performance comparison
before and after the introduction of knowledge distillation. From the above simulations, it
can be seen that the blocking performance can be improved by integrating the knowledge
distillation method.
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Figure 6. Blocking probability of different topologies with different non-uniform traffic patterns.

5.5. Policy Distillation with Different Neural Network Size of the Teacher Model

We have also investigated the effect of the size of the teacher model’s neural network
on the performance of the proposed policy distillation design. Specifically, we design
three different neural network settings for the teacher model: (1) three hidden layers with
64 neurons per layer (3 × 64) , (2) five hidden layers with 128 neurons per layer (5 × 128),
and (3) eight hidden layers with 258 neurons per layer (8 × 256). The teacher model
is trained under the uniform traffic pattern over the 14-node NSFNET, and the student
models are trained under the uniform traffic pattern over the COST239 topology. The
arrival rate and average service time are the same as in Section 5.2. The results of the
blocking probability are shown in Figure 7.
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Figure 7. Blocking probability in training with different size of teacher model’s neural network.

The result shows that teacher models with different neural network sizes (PD-14-Node
(3 × 64), PD-14-Node (5 × 128), and PD-14-Node (8 × 256)) can carry out policy distil-
lation to the student models. This shows that the proposed policy distillation scheme
is not limited by the size of the teacher models’ neural network. When the neural net-
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work architecture of the teacher model and the student model are different, policy learn-
ing with policy distillation can also be carried out. This allows knowledge transfer in a
broader context.

6. Conclusions

This paper proposes a deep reinforcement learning-based RMSA policy distillation
design for the elastic optical networks. It allows the knowledge transfer from a well-
trained teacher model under one training environment to a student model under a different
environment, so that the training of the latter is accelerated with a better final performance.
One highlight is that the student model and the teacher model can be different in terms of
the neural network architecture. This allows the knowledge transfer in a broader context.
Our method is verified by the simulations of the policy distillation over different traffic
patterns and network topologies.

One limitation of our proposal is that the input dimension of the teacher model and
the student model must be the same. Recall that the input represents the state of the elastic
optical network; the above limitation poses constraints on the state representation. How
to break this limitation can be considered for future work. Meanwhile, the performance
of the learned RMSA policy in real optical networks should be studied experimentally in
future work.
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