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Abstract: We consider a regression analysis of multivariate interval-censored failure time data where
the censoring may be informative. To address this, an approximated maximum likelihood estimation
approach is proposed under a general class of semiparametric transformation models, and in the
method, the frailty approach is employed to characterize the informative interval censoring. For
the implementation of the proposed method, we develop a novel EM algorithm and show that
the resulting estimators of the regression parameters are consistent and asymptotically normal. To
evaluate the empirical performance of the proposed estimation procedure, we conduct a simulation
study, and the results indicate that it performs well for the situations considered. In addition, we
apply the proposed approach to a set of real data arising from an AIDS study.

Keywords: case K interval-censored data; informative censoring; semiparametric transformation
model; sieve approach
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1. Introduction

In this paper, we consider a regression analysis of multivariate interval-censored
failure time data where the censoring may be informative. Interval-censored data arise
when the failure time of interest is known or observed only to belong to an interval instead
of being observed exactly (Finkelstein, 1986 [1]; Sun, 2006 [2]). It is apparent that one can treat
right-censored data as a special case of interval-censored data. Multivariate interval-censored
data occur if a failure time study involves more than one related failure time of interest for
which only interval-censored data are available. Among others, one can often face multivariate
interval-censored data in epidemiological studies and clinical trials. Informative censoring
occurs if the censoring mechanism or the underlying process generating observations is
related to the failure times of interest (Kalbfleisch and Prentice, 2002 [3]; Sun, 2006 [2]).

An example of informative censoring is given by a clinical trial or periodic study on
a failure event such as death for which some symptoms may occur before the occurrence
of the event. For the situation, the study subject may tend to pay more clinical visits
when the symptoms occur rather than following the pre-specified schedule. Many authors
have pointed out‘ that with informative censoring, the analysis that ignores it could lead to
serious biased estimators or analysis results (Wang et al., 2010 [4]; Sun, 2006 [2]; Zhang et al.,
2005 [5], 2007 [6]). For example, Sun (1999) [7] studied the issue for univariate current
status data, a special case of interval-censored data where the observed interval includes
either zero or infinity, and showed that the analysis could yield misleading results if the
informative censoring is ignored or treated to be non-informative censoring.

A large amount of literature has been established for the regression analysis of mul-
tivariate interval-censored failure time data or their special cases, multivariate current
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status data and bivariate interval-censored data (Chen et al., 2007 [8], 2009 [9], 2013 [10];
Goggins and Finkelstein, 2000 [11]; Shen, 2015 [12]; Tong et al., 2008 [13]; Wang et al.,
2008 [14]; Zeng et al., 2017 [15]; Zhang et al., 2009 [16]; Zhou et al., 2017 [17]). For this, three
types of methods are commonly used, including the copula model approach, the marginal
model-based approach and the frailty model-based method. The first employs various
copula models to characterize the relationship between correlated failure times of interest
(Wang et al., 2008 [14]; Zhang et al., 2009 [16]), and among others, Sun and Ding (2019) [18]
discussed this for bivariate cases under the framework of the two-parameter Archimedean
copula model. The second mainly focuses on the marginal distribution and puts no as-
sumption on the correlation between the failure times of interest (Wei et al. 1989 [19]). The
authors who developed such methods include Chen et al. (2007) [8], Chen et al. (2013) [10]
and Tong et al. (2008) [13].

The frailty model-based approach generally employs the frailty or latent variable to
model the correlation between the correlated failure times. It has the advantage of allowing
one to directly estimate the correlation. One main shortcoming of most of the existing
methods for multivariate interval-censored data is that they assume independent or non-
informative interval censoring, and it is apparent that this may not hold in practice as
discussed above. In this paper, we will adopt the frailty model-based approach to develop
a new estimation procedure that allows for dependent or informative interval censoring.

Several authors have considered a regression analysis of univariate informatively
interval-censored failure time data. For example, Zhang (2005) [5], Wang et al. (2010) [4]
and Wang et al. (2018) [20] investigated the problem for current status data, case II interval-
censored data and case K interval-censored data, respectively. Case II means that each
study subject is observed only twice, while case K refers to the situation where each subject
is observed at a sequence of observation times, which is much more general than others
(Sun, 2006) [2]. As mentioned above, most of the existing methods for multivariate interval-
censored data apply only to the situation with independent interval censoring, except
Yu et al. (2022) [21]. Yu et al. (2022) [21] only considered case II interval-censored data
under the additive hazards model. In this paper, the focus will be on case K multivariate
interval-censored data with informative censoring and the proposed methods apply to
much more general situations than Yu et al. (2022) [21].

More specifically, in Section 2, some notation and assumptions will be first introduced
as well as the data structures. In the proposed method, we will focus on the case where the
failure time of interest marginally follows a general class of semiparametric transformation
models. The proposed approximated maximum likelihood estimation procedure will be
presented in Section 3, and for the implementation of the proposed method, a novel EM
algorithm will be developed. The asymptotic properties of the resulting estimators of the
regression parameters will be given in Section 4. Section 5 will present some simulation
results obtained from a study performed to evaluate the performance of the proposed
method, and they indicate that it performs as expected. In Section 6, we apply the proposed
methodology to a set of real data arising from an AIDS clinical trial, and Section 7 contains
some discussion and concluding remarks.

2. Assumptions and Background

In this section, we first introduce some notation and background and then describe
the model and data structure. Suppose that there is a failure time study consisting of n
independent subjects and concerning M failure events of interest that may be related. Define
Tim to be the failure time of interest and Xim a p-dimensional vector of covariates both
related to the ith subject and the event m. Furthermore, for each subject, suppose that there
exists a sequence of potential observation times Ui0 = 0 < Ui1 < . . . < UiK∗i

and a follow-
up or stopping time τi, where K∗i denotes the number of potential observations, i = 1, . . . , n.
For simplicity, we assume that for each subject, the observation times for different failure
events are the same and the proposed method below can be easily generalized to more
general situations.
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For subject i, define the point process Ñi(t) = ∑
K∗i
j=1 I(Uij ≤ t), describing the obser-

vation process on the subject that jumps only at the observation times, i = 1, . . . , n. Note
that for the situation considered here, we have M + 1 processes, the M underlying failure
time processes of interest and the observation process Ñi(t), and as mentioned above, the
focus below will be on the case where they may be related (Ma et al., 2015 [22]; Wang et al.,
2016 [23]; Zhang et al., 2007 [6]). To describe their relationships and the possible covariate
effects on them, we assume that there exists a vector of latent variables bi and another latent
variable ui with mean zero, and given Xim, Zim, bi and ui, the cumulative hazard function
of Tim has the form

Λim(t|Xim, Zim, bi, ui) = Gm{exp(XT
imβxm + ZT

imbi + uiβum)Λm(t)} . (1)

Here, Gm(.) is a known strictly increasing transformation function, Λm(.) is an unknown
baseline cumulative hazard function, Zim contains 1 and part of the covariates Xim, and
βm = (βT

xm, βum)T denotes the vector of unknown regression parameters.
For the observation process, it will be assumed that Ñi(t) is a non-homogeneous

Poisson process satisfying

λih(t|Xi, ui) = λ0h(t) exp

(
M

∑
m=1

XT
imαm + ui

)
= λ0h(t) exp

(
XT

i α + ui

)
(2)

for the intensity function given Xim and ui. Here, λ0h is an unknown continuous baseline
intensity function, Xi = (XT

i1, . . . , XT
iM)T , and αT = (αT

1 , . . . , αT
M), which is a vector of

regression parameters as βm. In the following, it will be assumed that given Xim, bi and ui,
Ti1, . . . , TiM are independent, and given Xim and ui, Ti and Ñi are independent. Moreover,
τi is independent of Ti and Ñi. We point out that models (1) and (2) with ui = 0 have
been commonly used in the analysis of failure-time data (Klein and Moescherger, 2003 [24])
and the analysis of event history data (Cook and Lawless, 2007 [25]), respectively. The
parameter βum denotes the degree of the correlation between the failure-time process and
the observation process, and they will be independent if βum = 0.

The semiparametric transformation model (1) with bi = 0 and ui = 0 is quite general
and can give many specific models. In particular, one can express it as a class of frailty-
induced transformations

Gm(x) = − log
∫ ∞

0
exp(−xt) fm(t)dt .

In the above, fm(t) denotes the density function of a frailty variable with support [0, ∞]. By
setting fm(t) to be the gamma density with mean 1 and variance rm, it gives the class of
logarithmic transformations Gm(x) = r−1

m log(1 + rmx) with rm > 0 (Chen et al., 2002 [26]).
In particular, it yields the proportional odds model with rm = 1 or Gm(x) = log(1 + x) and
gives the proportional hazards model with rk = 0 or Gm(x) = x.

To describe the observed data, define δimj = I(Uij−1 < Tim ≤ Uij), indicating if the
failure time Tim belongs to the interval (Uij−1, Uij]. In the following, it will be assumed that
the observed data have the form

O = {Oi = (τi, Xim, Zim, Uij, δimj, m = 1, . . . , M, j = 1, . . . , K∗i ); i = 1, . . . , n } ,

where K∗i = Ñi(τi). That is, we observe case K interval-censored data (Sun, 2006).

3. Maximum Likelihood Estimation
3.1. Estimation Procedure

Now, we discuss inference about models (1) and (2), and for this, we will propose a
two-step or an approximate maximum likelihood estimation procedure by following Huang
and Wang (2004) [27] and Wang et al. (2016) [23]. More specifically, we will first consider
the estimation of model (2) and then estimation of φT = (βT

1 , . . . , βT
M), the parameter of
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interest. The first step will be based on the following two facts. One is that one can easily
show that K∗i follows the Poisson distribution with the mean

Λih(τi; Xi, ui) = Λ0h(τi) exp(XT
i α + ui)

given Xi and ui, i = 1, . . . , n. The other is that the observation times Ui1, . . . , UiK∗i
can be

seen as the order statistics of a set of i.i.d. random variables with the density function

π(t) =
λ0h(t) exp(XT

i α + ui)

Λ0h(τi) exp(XT
i α + ui)

I(0 ≤ t ≤ τi) =
λ0h(t)

Λ0h(τi)
I(0 ≤ t ≤ τi) .

One can see that the function above does not depend on neither Xi nor ui, which
suggests that the function Λ0h(t) can be estimated by

Λ̂0h(t) = ∏
s(l)>t

(1−
d(l)
R(l)

) .

In the above, the s(l)’s denote the ordered and distinct values of observation times {Uik},
d(l) the number of the observation times equal to s(l), and R(l) the number of observation
times satisfying Uik ≤ s(l) ≤ τi among all subjects.

Under the assumptions above, it is easy to show that E[K∗i ; Xi., ui, τi] = Λ0h(τi) exp
(XTα + ui). This yields

Eui [E[K
∗
i Λ−1

0h (τi); Xim, ui, τi]] = E(eui ) exp(XT
i α) ,

and a class of estimating equations

n

∑
i=1

ωiXi(K∗i Λ̂−1
0h (τi)− E(eui ) exp(XT

i α)) = 0

for estimation of αm, m = 1, . . . , M with the ωi’s being some weights. Let α̂m denote the
estimator of αm given by the estimating equations above, which suggests that one can
naturally estimate ui by

ûi = log

{
K∗i

Λ̂0h(τi) exp(XT
i α)

}
.

Now, consider estimation of φ as well as model (1). For this, note that if the ui’s were
known, it would be natural to maximize the likelihood function

Ln(φ, Λ, γ | u′is) =
n

∏
i=1

∫ M

∏
m=1

K∗i
∏
j=1

{
exp(−Gm[

∫ Ui,j−1

0
exp{x∗Tim βm + ZT

imbi}dΛm(t)])−

exp(−Gm[
∫ Uij

0
exp{x∗Tim βm + ZT

imbi}dΛm(t)])
}∆imj

exp(−Gm[
∫ UiK∗i

0
exp{x∗Tim βm + ZT

imbi}dΛm(t)])
1−∑

K∗i
j=1 ∆imj fb(bi|γ)dbi ,

where Λ = (Λ1, . . . , ΛM), x∗im = (XT
im, ûi)

T , and fb denotes the density function of the
bi’s assumed to be known up to a vector of parameters γ. Define Lim = max{Uij : Uij <
Tim, j = 0, . . . , K∗i } and Rim = min{Uij : Uij ≥ Tim, j = 1, . . . , K∗i + 1}, where Ui0 = 0 and
Ui,K∗i +1 = ∞. Then, (Lim, Rim] represents the shortest time interval that brackets Tim and
the likelihood function above can be rewritten as

Ln(φ, Λ, γ | u′is) =
n

∏
i=1

∫ M

∏
m=1

{
exp(−Gm[

∫ Lim

0
exp(x∗Tim βm + ZT

imbi)dΛm(t)])

− exp(−Gm[
∫ Rim

0
exp(x∗Tim βm + ZT

imbi)dΛm(t)])
}

fb(bi | γ)dbi .
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By following Huang and Wang (2004) [27] and others, it is natural to estimate φ and Λ by
their values that maximize the approximated likelihood function Ln(φ, Λ, γ | û′is).

For the maximization of Ln(φ, Λ, γ | û′is), note that it involves the unknown functions
Λm’s and integrations. To deal with them, for the former, we propose to adopt the non-
parametric approach. More specifically, for each m = 1, . . . , M, let 0 = tm0 < tm1 < . . . <
tmkm < ∞ denote the ordered sequence of all Lim and Rim with Rim < ∞ and assume
that Λm is a step function that jumps only at the tmq’s with the jump sizes λmq’s. Then,
Ln(φ, Λ, γ | u′is) can be expressed as

Ln(φ, Λ, γ | u′is) =
n

∏
i=1

∫ M

∏
m=1

exp

−Gm

 ∑
tmq≤Lim

exp{x∗Tim βm + ZT
imbi} λmq



− exp

−Gm

 ∑
tmq≤Rim

exp{x∗Tim βm + ZT
imbi} λmq

 fb(bi | γ)dbi . (3)

In the following, we will develop an EM algorithm for the maximization with the
focus on the situation where fb is a multivariate normal distribution with the covariance
matrix Σ(γ) depending on the q-dimensional unknown parameter γ. The algorithm is
valid for other distributions and some comments on this will be given below. It is worth
to point out that as mentioned above, the idea discussed above has been used by Huang
and Wang (2004) [27] and Wang et al. (2016) [23], among others. However, the problem
discussed here is different or much more general than the existing literature.

3.2. EM Algorithm

In this subsection, we will develop an EM algorithm for the maximization of Ln(φ, Λ,
γ | û′is), and for this, we will first discuss the data augmentation. Let the ξim’s denote
the random sample of size n from the density fm(t). Then, we can rewrite the observed
likelihood function as

Ln(φ, Λ, γ | u′is) =
n

∏
i=1

∫  M

∏
m=1

∫
ξim

exp{−ξim ∑
tmq≤Lim

λmq exp(x∗Tim βm + ZT
imbi)}

1− exp{−ξim ∑
Lim<tmq≤Rim

λmq exp(x∗Tim βm + ZT
imbi)}

I(Rim<∞)

fm(ξim)dξim

× fb(bi | γ)dbi .

(4)

Moreover, let the Wimq’s denote the random sample of size n from the Poisson distribu-
tions with means ξimλmq exp(x∗Tim βm + ZT

imbi) given ξim, and define Aim = ∑tmq≤Lim
Wimq

and Bim = I(Rim < ∞)∑Lim<tmq≤Rim
Wimq such that

P(Aim = 0,Bim > 0|Lim, Rim, x∗im) = exp{−ξim ∑
tmq≤Lim

λmq exp(x∗Tim βm + ZT
imbi)}

1− exp{−ξim ∑
Lim<tmq≤Rim

λmq exp(x∗Tim βm + ZT
imbi)}

I(Rim<∞)

.

It is easy to see that the maximization of (4) is equivalent to maximizing the likelihood
function based on the data (Lim, Rim, x∗im, Aim = 0, Bim > 0) (i = 1, . . . , n; m = 1, . . . , M).
Based on this, for the development of the EM algorithm, it is natural to use the Wimq’s, ξim’s
and bi’s to augment the observed data. As a consequence, one can derive the resulting
pseudo complete data log-likelihood function as
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lc(φ, Λ, γ | u′is) =
n

∑
i=1

{
M

∑
m=1

(
km

∑
q=1

I(tmq ≤ R∗im)
[
Wimq log{ξimλmq exp(x∗Tim β + ZT

imbi)}

−ξimλmq exp(x∗Tim β + ZT
imbi)− log(Wimq!)

]
+ log fm(ξim)

)
−di

2
log(2π)− 1

2
log |Σi(γ)| −

bT
i Σi(γ)

−1bi

2

}
,

(5)

where R∗im = Lim I(Rim = ∞) + Rim I(Rim < ∞).
Now, we consider the E-step of the EM algorithm. At the (s + 1)th iteration and given

(φs, Λs, γs)T , we need to determine

Q(φ, Λ, γ|φs, Λs, γs) = E[lc(φ, Λ, γ | u′is,O, φs, Λs, γs)]

=
n

∑
i=1

{
M

∑
m=1

(
km

∑
q=1

I(tmq ≤ R∗im)
[

E
[
Wimq log

{
ξimλmq exp(x∗Tim β + ZT

imbi)
}

−ξimλmq exp(x∗Tim β + ZT
imbi)

]
− E

[
log(Wimq!)

]]
+ log fm(ξim)

)
−di

2
log(2π)− 1

2
log |Σi(γ)| −

E
[
bT

i Σi(γ)
−1bi

]
2

}
under the multivariate normal distribution with the covariance matrix Σi(γ). To calculate
the conditional expectations E[ξim exp(x∗Tim β + ZT

imbi)], E[Wimq] and E[bT
i Σ−1(γ)bi] given

the observed data, we need to employ the joint density of ξim and bi given the observed
data, which is proportional to

M

∏
m=1

exp

−ξim ∑
tmq≤Lim

exp(x∗Tim β + ZT
imbi)λmq


− I(Rim < ∞) exp

−ξim ∑
tmq≤Rim

exp(x∗Tim β + ZT
imbi)λmq




× fm(ξim)(2π)−di/2|Σi(γ)|−1/2 exp{−
bT

i Σi(γ)
−1bi

2
}.

Note that the conditional expectation of Wimq for tmq≤R∗im
given ξim(m = 1, . . . , M), bi and

the observed data is given by

Ê(Wimq|ξim, bi) = I(Lim < tmq ≤ Rim)
λmqξim exp(x∗Tim β + ZT

imbi)

1− exp{−∑Lim<tmq′≤Rim
λmq′ξimq′ exp(x∗Tim β + ZT

imbi)}
.

In the M-step, we can employ the Newton–Raphson method to update βm based on
the equation

n

∑
i=1

M

∑
m=1

km

∑
q=1

I(tmq ≤ R∗im)Ê(Wimq)

{
x∗im −

∑n
i′=1 I(tmq ≤ R∗i′m)Ê{ξi′m exp(x∗Ti′mβm + ZT

i′mbi′)}x∗i′m
∑n

i′=1 I(tmq ≤ R∗i′m)Ê{ξi′m exp(x∗Ti′mβm + ZT
i′mbi′)}

}
= 0 .

For estimation of λmq, we have the closed form expression

λmq =
∑n

i=1 I(tmq ≤ R∗im)Ê(Wimq)

∑n
i=1 I(tmq ≤ R∗im)Ê{ξim exp(x∗Tim βm + ZT

imbi)}
, (6)

for q = 1, . . . , km and m = 1, . . . , M. To estimate γ, one can maximize − log ‖Σi(γ)‖ −
Ê{bT

i Σ−1
i (γ)bi} with the Σi’s given by Σ = n−1 ∑n

i=1 Ê(bT
i bi).

Now, we summarize the EM algorithm described above as follows.
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Step 1. Choose initial estimates φ(0), Λ(0), γ(0) of φ, Λ, γ, respectively.
Step 2. In the (s+ 1)th iteration, calculate Ê[ξim exp(x∗Tim β(s) + ZT

imbi)], Ê[Wimq] and Ê[bT
i Σ−1

(γ(s))bi] by using, for example, the Gaussian quadrature method. s = 0, 1, 2, . . .
Step 3. Update Λ(s+1) by (6) with current φ(s), γ(s), and then update γ(s+1) by maximizing
− log ‖Σi(γ)‖ − Ê{bT

i Σ−1
i (γ)bi}. In addition, estimate φ(s+1) by employing the one-step

Newton–Raphson method.
Step 4. Repeat Steps 2–3 until the convergence such that the absolute difference of the
log-likelihood values between two consecutive iterations is less than a given positive value
ε such as 10−3.

4. Asymptotic Properties

Let θ̂ =
(

β̂T
1 , . . . , β̂T

M, γ̂T, Λ̂1, . . . , Λ̂M
)T

denote the estimator of θ = (βT
1 , . . . , βT

M, γT,
Λ1, . . . , ΛM)T defined above and θ0 = (βT

01, . . . , βT
0M, γT

0 , Λ01, . . . , Λ0M)T the true value

of θ. Define ζ0 =
(

βT
01, . . . , βT

0M, γT
0
)T and ζ̂ =

(
β̂T

1 , . . . , β̂T
M, γ̂T)T

. In this section, we
will establish the asymptotic properties of θ̂, and for this, we first describe the regularity
conditions needed.

Define

Q∗m(t, b; βm, Λm) = exp
(
−Gm

[∫ t

0
exp{βT

mx∗m + bTZm}
])

dΛm(s) ,

Dm(Um, b; βm, Λm) = ∑Km
l=0 ∆ml{Q∗m(Uml , b; βm, Λm) − Q∗m(Um,l+1, b; βm, Λm)}, Um =

(Um1, . . . , Um,Km), ∆ml = I(Uml 6 Tm < Um,l+1), and p(b|γ) = (2π)−d/2|Σ(γ)|−1/2

exp(−bTΣ(γ)−1b/2). For the asymptotic properties of θ̂, we need the following
regularity conditions.

Condition 1. The true value ζ0 belongs to a known compact set A
⊗

B
⊗

C, where A denotes a
compact set of RpM, B a compact set in RM, and C a compact set of Rq in the domain of γ such that
Σ(γ) is a positive-definite matrix with eigenvalues bounded away from zero and ∞. In addition, the
true value Λ0m(·) is continuously differentiable with positive derivatives in [0, τm].

Condition 2. The covariate vector Xm and Zk are bounded in [0, τm].

Condition 3. For the transformation function Gm, assume that it is twice continuously differen-
tiable on [0, ∞) with Gm(0) = 0, G

′
m(x) > 0 and Gm(∞) = ∞.

Condition 4. Assume that supγ∈C
∫

b g(b)p(j)(b|γ)db < ∞ for any smooth function g(·) and
j = 0, 1, 2. Here, p(j)(b|γ) denotes the jth derivative of p(b|γ) with respect to γ.

Condition 5. If there exists a vector u and some constants vm, m = 1, . . . , M such that(
uT ∂

∂ζ
+

M

∑
m=1

vm
∂

∂ym

)∣∣∣∣∣
(ζ,y1,...,yM)=(ζ0,Λ10(c1),...,ΛM0(cM))

· log
∫

b

M

∏
m=1

Dm(Um, b; β, βu, Λm)p(b | γ)db = 0

for each of these values, then u = 0pM+M+q and vm = 0. In addition, 0pM+M+q denotes a
(pM + M + q)-dimensional vector of zeros.

Condition 6. Assume that P(τm ≥ τ0, exp(u) > 0) > 0 for the follow-up time τm and latent
variable u, where τ0 denotes the longest study time and the variance of exp(u) is bounded and there
exists a positive small constant ε > 0 such that exp(u) > ε almost surely. Moreover, for τm and u,
the function F(s) = E[exp(u)I(τm ≥ s)] is continuous for s ∈ [0, τ0].
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Note that Conditions 1 and 2 are standard conditions in survival analysis, and it is easy
to check that Condition 3 on the transformation function holds for the logarithmic family
Gr(x) = r−1 log(1 + rx)(r > 0) and the Box–Cox family Gd(x) = d−1

{
(1 + x)d − 1

}
(d >

0). Moreover, Condition 4 holds for modeling multivariate data with frailty models, and
Condition 5 is required for the identifiability of the model. In addition, Condition 6
describes the relationship between the latent variable u and the parameters of interest.
Most of the conditions above are purely for technique purposes and hold in general, in
particular, for periodic follow-up studies.

Let ‖ · ‖ denote the Euclidean norm and define P f =
∫

f (x)dP(x) and
Pn f = n−1 ∑n

i=1 f (Xi) for a function f and a random variable X with distribution P.
The following two theorems give the asymptotic properties of θ̂.

Theorem 1. Suppose that Conditions 1–6 hold. Then, as n → ∞, we have that
∥∥ζ̂ − ζ0

∥∥
+∑M

m=1 supt∈[0,τm ]

∣∣Λ̂m(t)−Λ0m(t)
∣∣→ 0 almost surely.

Theorem 2. Suppose that Conditions 1–6 hold. Then, as n→ ∞, we have that
√

n(ζ̂n − ζ0)→d

N(0, I−1
0 ), where I0 = P{l̃(θ0)l̃(θ0)

T} with l̃(θ0) given in the Appendix A.

We will sketch the proof for the results described above in Appendix A. For inference
about ζ, it is apparent that one needs to estimate the covariance matrix, and for this, one
can see from Appendix A that it would be difficult to derive a consistent estimator of I0.
Thus, we propose to employ the profile likelihood approach to estimate the covariance
matrix of ζ̂ (Murphy & van der Vaart, 2000) [28]. Specifically, let C denote the set of all
step functions with nonnegative jumps at tmq and define pln(ζ) = maxΛ∈C log Ln(ζ, Λ),
the profile log-likelihood. Then, one can estimate the covariance matrix of ζ̂ by the negative
inverse of the matrix with the (j, k)th element given by

pln(ζ̂)− pln
(
ζ̂ + hnek

)
− pln

(
ζ̂ + hnej

)
+ pln

(
ζ̂ + hnek + hnej

)
h2

n
.

In the above, ej denotes the jth canonical vector inRd and hn is a constant of order n−1/2.
Note that to calculate pln(ζ) for each ζ, one can reuse the proposed EM algorithm with
β held fixed and the only step in the EM algorithm is to explicitly evaluate Ê(Wimq) and
Ê(ξim) to update λm using above. The iteration converges quickly in general by setting λ̂m
to be the initial value.

5. A Simulation Study

In this section, we give some of the simulation results obtained from a study performed
to evaluate the finite sample performance of the proposed method with the focus on
estimation of the βm’s. In the study, we considered the situation with M = 2 correlated
failure times of interest and two covariates. For the covariates, it was assumed that the
first covariate follows the Bernoulli distribution with the success probability of 0.5 and the
second covariate, the uniform distribution over (0, 1). To generate the true failure times, we
first set Zim to be one and generated the latent variables bi’s from the normal distribution
N(0, σ2) with σ2 = 0.25 and the latent variables ui’s from the normal distribution with
the mean 0 and variance 1. Then, given the Xim’s, Zim’s, bi’s and ui’s, the Ti1’s and Ti2’s
were generated under model (1) with Gm(x) = r−1

m log(1 + rmx), Λ1(t) = log(1 + 0.5t) and
Λ2(t) = 0.5t for r1 = r2 = 0, r1 = r2 = 0.5 or r1 = r2 = 1, respectively.

For the generation of the observation process and the observed data, we first assumed
that the τ′i s follow the uniform distribution over the interval [2, 3] and generated the K∗i ’s
from the Poisson distribution with the mean

Λih(τi; Xi, ui) = τi exp(XT
i α + ui)
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given the Xi’s and ui’s. Note that in the above, we took Λ0h(t) = t and αm = 1. Given the
K∗i ’s, we took Ui1 < . . . < UiK∗i

to be the order statistics of the random sample of size K∗i
from the uniform distribution over (0, τi). In the following, we considered two sets of true
values, (0, 0, 0)T and (0.5, 0.5, 0.5)T , for the regression parameters β1 = (βx11, βx12, βu1)

T

and β2 = (βx21, βx22, βu2)
T , corresponding to Ti1 and Ti2, respectively. The results given

below are based on n = 200 or 400 with 1000 replications.
Table 1 gives the results on the estimation of β1 and β2 given by the proposed estima-

tion procedure with r1 = r2 = 0, r1 = r2 = 0.5 and r1 = r2 = 1. Here, we calculated the
estimated bias (Bias) given by the average of the estimates minus the true value, the sample
standard error (SSE) of the estimates, the average of the estimated standard errors (ESE)
and the 95% empirical coverage probability (CP). The results suggest that the proposed
estimator of the regression parameters seems to be unbiased and the variance estimation
based on the profile likelihood approach also seems to be reasonable. Furthermore, the
results on the empirical coverage probabilities indicate that the normal approximation
to the distribution of the proposed estimator of the regression parameters appears to be
appropriate. In addition, the results got better in general with the increasing sample size,
as expected.

Table 1. Simulation results on estimation of β with the bi’s generated from the normal distribution.

True Value
r1 = r2 = 0 r1 = r2 = 0.5 r1 = r2 = 1

Bias SSE SEE CP Bias SSE SEE CP Bias SSE SEE CP

n = 200

βx11 0 0.030 0.248 0.252 0.945 0.006 0.289 0.288 0.951 0.031 0.251 0.259 0.945
βx12 0 0.028 0.412 0.422 0.957 0.021 0.479 0.476 0.953 0.029 0.418 0.452 0.957
βu1 0 −0.024 0.141 0.143 0.938 −0.026 0.164 0.163 0.945 −0.024 0.142 0.142 0.938
βx21 0 0.044 0.236 0.236 0.953 0.001 0.278 0.276 0.948 0.044 0.242 0.252 0.953
βx22 0 0.001 0.390 0.422 0.949 0.011 0.459 0.460 0.949 0.001 0.403 0.429 0.949
βu2 0 −0.013 0.138 0.135 0.960 −0.026 0.159 0.158 0.945 −0.014 0.138 0.140 0.960

βx11 0.5 0.040 0.233 0.246 0.944 0.024 0.291 0.290 0.955 0.033 0.314 0.317 0.950
βx12 0.5 0.025 0.378 0.410 0.955 −0.007 0.485 0.501 0.951 0.020 0.508 0.533 0.948
βu1 0.5 0.010 0.135 0.142 0.956 −0.026 0.165 0.168 0.942 −0.022 0.177 0.179 0.948
βx21 0.5 0.028 0.227 0.238 0.949 0.017 0.280 0.282 0.949 0.062 0.307 0.316 0.947
βx22 0.5 0.011 0.358 0.436 0.953 0.011 0.466 0.484 0.956 0.054 0.489 0.498 0.949
βu2 0.5 −0.005 0.135 0.131 0.943 −0.027 0.160 0.160 0.950 −0.022 0.176 0.179 0.958

n = 400

βx11 0 0.009 0.171 0.178 0.952 0.010 0.200 0.204 0.954 −0.001 0.226 0.228 0.949
βx12 0 0.001 0.280 0.283 0.952 −0.003 0.327 0.329 0.954 0.017 0.370 0.374 0.946
βu1 0 −0.023 0.097 0.104 0.949 −0.036 0.112 0.113 0.944 0.036 0.127 0.130 0.942
βx21 0 0.009 0.162 0.180 0.941 0.007 0.191 0.194 0.946 0.009 0.219 0.222 0.942
βx22 0 0.001 0.260 0.287 0.948 0.014 0.314 0.321 0.951 0.003 0.358 0.366 0.955
βu2 0 −0.025 0.093 0.096 0.942 −0.037 0.108 0.109 0.948 −0.036 0.124 0.123 0.946

βx11 0.5 0.005 0.158 0.163 0.949 0.012 0.187 0.190 0.949 0.031 0.215 0.22 0.942
βx12 0.5 0.019 0.253 0.254 0.954 0.023 0.299 0.305 0.957 0.010 0.344 0.363 0.949
βu1 0.5 −0.025 0.090 0.096 0.935 −0.031 0.105 0.105 0.937 −0.034 0.121 0.120 0.944
βx21 0.5 0.012 0.153 0.166 0.952 0.008 0.183 0.185 0.942 0.024 0.211 0.219 0.946
βx22 0.5 0.035 0.239 0.259 0.956 0.007 0.289 0.302 0.949 0.011 0.333 0.348 0.953
βu2 0.5 −0.024 0.089 0.094 0.941 −0.032 0.104 0.104 0.94 −0.03 0.120 0.115 0.943

As mentioned before, the proposed estimation procedure can be applied to any distri-
bution for the latent variables bi’s. To see this, we repeated the study above, except that
we generated the bi’s from the uniform distribution over (−1, 1), and Table 2 presents the
obtained results on the estimation of β1 and β2 with n = 200 and r1 = r2 = 0. One can see
that they are similar to those given in Table 1 and again suggest that the proposed approach
seems to work well for the situations considered. To see the performance of the proposed



Mathematics 2022, 10, 3257 10 of 17

approach with different types of covariates, we also repeated the study giving Table 1,
except that both covariates were assumed to follow the standard normal distribution and
give the obtained results with n = 200 and r1 = r2 = 0 in Table 3. They indicate that the
proposed estimation procedure seems to be robust to different types of covariates.

Table 2. Simulation results on estimation of β with the bi’s generated from the uniform distribution
and r1 = r2 = 0.

True Value Bias SSE ESE CP

βx11 0 −0.005 0.238 0.240 0.948
βx12 0 −0.004 0.404 0.404 0.953
βu1 0 0.001 0.134 0.134 0.946
βx21 0 −0.001 0.223 0.232 0.950
βx22 0 −0.004 0.374 0.412 0.945
βu2 0 0.003 0.126 0.126 0.957

βx11 0.5 0.031 0.223 0.231 0.948
βx12 0.5 0.035 0.361 0.401 0.956
βu1 0.5 −0.021 0.129 0.134 0.947
βx21 0.5 0.022 0.215 0.231 0.948
βx22 0.5 0.054 0.342 0.412 0.947
βu2 0.5 −0.012 0.129 0.129 0.955

Table 3. Simulation results on estimation of β with the covariates generated from the normal
distribution and r1 = r2 = 0.

True Value Bias SSE ESE CP

βx11 0 −0.003 0.127 0.125 0.949
βx12 0 0.003 0.126 0.126 0.953
βu1 0 −0.006 0.142 0.145 0.950
βx21 0 0.003 0.120 0.119 0.938
βx22 0 −0.001 0.120 0.119 0.941
βu2 0 0.004 0.133 0.141 0.957

βx11 0.5 0.037 0.142 0.141 0.946
βx12 0.5 0.027 0.141 0.141 0.954
βu1 0.5 −0.011 0.146 0.152 0.948
βx21 0.5 0.037 0.137 0.135 0.945
βx22 0.5 0.033 0.138 0.134 0.939
βu2 0.5 −0.008 0.143 0.148 0.949

Note that in the proposed estimation procedure, it has been assumed that the obser-
vation process Ñi(t) is a non-homogeneous Poisson process and one may be interested in
the performance of the proposed method if this assumption is not true. To see this, we
repeated the study giving Table 1, except that the Ñi(t)’s were assumed to be mixed Poisson
processes with the intensity function

λih(t|Xi, ui) = vi λ0h(t) exp
(

XT
i α + ui

)
given the vi’s, where the vi’s were generated from the gamma distribution. Table 4 presents
the results on the estimation of β1 and β2 given by the proposed approach with n = 200
and r1 = r2 = 0, and they indicate that the approach seems to be robust with the processes
Ñi(t)’s.
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Table 4. Simulation results on estimation of β with mixed Poisson observation processes and
r1 = r2 = 0.

True Value Bias SSE ESE CP

βx11 0 0.002 0.246 0.250 0.952
βx12 0 0.013 0.418 0.429 0.951
βu1 0 0.001 0.137 0.136 0.951
βx21 0 −0.002 0.233 0.241 0.948
βx22 0 0.006 0.387 0.419 0.946
βu2 0 −0.001 0.130 0.131 0.949

βx11 0.5 0.037 0.233 0.241 0.948
βx12 0.5 0.075 0.376 0.400 0.949
βu1 0.5 −0.034 0.133 0.136 0.945
βx21 0.5 0.037 0.226 0.257 0.953
βx22 0.5 0.038 0.357 0.435 0.949
βu2 0.5 −0.029 0.132 0.142 0.952

For the initial value in the EM algorithm here, we set φ(0) = 0, λ
(0)
mq = 1

km
, q = 1, . . . , km,

and γ(0) = 0.25. It is worth to point out that we did try other initial values and the proposed
EM algorithm seems to be robust with respect to the selection of the initial values. In other
words, we did not encounter non-convergence issue in the simulation study. We also
considered some other setups, including multivariate cases and the case with more than
one covariate and obtained similar results.

6. An Application

In the section, the estimation procedure proposed in the previous sections is applied
to the set of bivariate interval-censored data arising from an AIDS clinical trial, AIDS
Clinical Trial Group 181, described in Goggins and Finkelstein (2000) [11]. The study
concerns the opportunistic infection cytomegalovirus (CMV) and examined the study
patients periodically. At each clinical visit or observation, among other information, the
blood and urine samples were collected and tested to detect the existence of the CMV virus
in the sample, which is also commonly referred to as the shedding of the virus. In addition,
for each patient, the CD4 count, indicating the status of a person’s immune system and
being commonly used to measure the stage of HIV infection, was also recorded at the entry
time. For the analysis here, we are mainly interested in if the baseline CD4 account, the
indicator of the initial stage of HIV disease, is related to the CMV shedding risk in either
blood or urine.

The data set consists of 204 subjects, and they belong to two groups based on their
baseline CD4 counts, either less than 75 or otherwise. More specifically, the two groups
have 111 and 93 patients, respectively. On the observation of the CMV shedding times,
some patients gave left-censored observations and some right-censored observations. The
others provided some intervals or interval-censored observations, given by the last negative
and first positive test dates. That is, we have bivariate interval-censored data on the CMV
shedding times in the blood and urine. The percentages of right-censored observations for
the CMV shedding times in the blood and urine are about 85% and 43%, respectively, which
indicate that the CMV shedding risk in the urine may be higher than that in the blood.
For the application of the proposed estimation procedure, let Ti1 and Ti2 denote the CMV
shedding times in the blood and urine associated with the ith patient, respectively, and
define Xi = 1 if the ith subject’s baseline CD4 count was less than 75 and 0 otherwise. As
in the simulation study, we took Gm(x) = r−1

m log(1 + rmx) and set Zi = 1 for all patients.
Table 5 presents the estimation results given by the proposed approach for different

combinations of r1 = 0, 0.5, 1 and r2 = 0, 0.5, 1, and they include the estimated covariate
effects, β̂blood and β̂urine, the estimated standard errors (SE) and the p-values for testing no
covariate effect (P). In addition, we have calculated the Akaike Information Criterion (AIC,
Akaike, 1973 [29]) and Bayesian Information Criterion (BIC, Schwarz, 1978 [30]) for the
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selection of the optimal model. One can see from the table that the AIC and BIC values are
quite close for all combinations of r1 and r2, and the same is true for the estimated effects.
By choosing r1 = r2 = 0, which correspond to the proportional hazards models for both
the Ti1’s and Ti2’s, we have β̂blood = 2.312 and β̂urine = 1.143 with the estimated standard
errors being 0.396 and 0.142, respectively. They suggest that the patients with lower CD4
at the baseline experienced CMV shedding in both blood and urine significantly early. To
provide a graphical view about the difference between the CMV shedding in the blood
and urine, Figure 1 presents the estimates of the baseline marginal survival functions given
by the proposed method with r1 = r2 = 0 for the CMV shedding times in the blood and
urine, respectively. They suggest that as discussed above, the CMV shedding in the urine
occurred much earlier than in the blood.

Table 5. Analysis results for the AIDS clinical trials data.

r1 r2 βblood βurine SEblood SEurine Pblood Purine AIC BIC

0 0 2.312 1.143 0.396 0.142 0.000 0.001 727.917 744.507
0.5 2.333 1.291 0.401 0.208 0.000 0.002 733.972 750.563
1 2.381 1.437 0.413 0.256 0.000 0.002 738.959 755.550

0.5 0 2.483 1.141 0.424 0.141 0.000 0.001 727.327 743.918
0.5 2.504 1.288 0.430 0.206 0.000 0.002 733.405 749.996
1 2.552 1.435 0.442 0.255 0.000 0.002 738.426 755.016

1 0 2.652 1.140 0.451 0.140 0.000 0.001 726.826 743.416
0.5 2.670 1.285 0.457 0.205 0.000 0.002 732.924 749.514
1 2.717 1.433 0.469 0.254 0.000 0.002 737.981 754.572

Figure 1. Estimated marginal survival functions for the CMV shedding times in the blood and urine.

In addition, with r1 = r2 = 0, the proposed method yielded β̂u1 = 2.845 and
β̂u2 = 0.958 with the estimated standard errors of 0.112 and 0.116, respectively. They
indicate that the observation process was significantly correlated with the CMV shedding
times in both blood and urine. That is, we had dependent or informative censoring. To
investigate the effects of informative censoring on the covariate effects, we assumed that
βu1 = βu2 = 0, meaning independent interval censoring, and obtained β̂blood = 1.560 and
β̂urine = 1.306 with the estimated standard errors being 0.514 and 0.326, respectively. They
would correspond to the p-values of 0.015 and 0.011 for testing βblood = 0 and βurine = 0,
respectively. Although these results are similar to those given above, it is apparent that they
underestimated the effects of the baseline CD4 on the risks of the CMV shedding times.
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7. Discussion and Concluding Remarks

In the preceding sections, the regression analysis of case K multivariate interval-
censored failure-time data was discussed under a general class of semiparametric transfor-
mation models in the presence of informative censoring. For the problem, an approximate
maximum likelihood estimation procedure was proposed and the resulting estimators of
the regression parameters were shown to be consistent and asymptotically normal. In
the method, the frailty approach was employed to characterize the informative censoring
as well as the relationship among the correlated failure times of interest. To implement
the proposed approach, a novel EM algorithm was developed and the numerical studies
indicated that the proposed method works well in practical situations. In addition, it was
applied to a set of real bivariate interval-censored data arising from an AIDS clinical trial.

The proposed approach can be seen as a generalization of the method given by
Zeng et al. (2017) [15] to allow for informative interval censoring, which can occur quite
often, as discussed above and in the literature. In particular, it has been shown that in
the presence of informative censoring, the analysis that ignores it could lead to biased or
misleading results and conclusions. The proposed method has the advantages that it does
not need or impose an assumption on the distribution of the latent variables and it is quite
flexible and can be easily implemented. Moreover, the type of the data considered here
includes most types of the failure-time data discussed in the literature as special cases and
the model (1) gives many commonly used models.

As discussed above, although model (1) is quite flexible, it may not be straightforward
to choose an optimal model for a given set of data, and one commonly used procedure
for this is to apply the AIC or BIC. As an alternative, one may prefer to develop a model-
checking or data-driven technique. However, this may be difficult and such a method does
not seem to exist even for simple types of multivariate interval-censored data. It is worth
noting that instead of the proposed approximation maximum likelihood estimation method,
one may consider a full maximum likelihood estimation procedure. For this, however, one
would need to specify or postulate some distributions for the latent variables bi’s, which
may be hard to be verified, and also the implementation would be much more complicated.
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Appendix A. Proof of Theorems 1 and 2

In this Appendix, we will sketch the proof of the two theorems given above.

Proof of Theorem 1. To prove the consistency, we can verify the condition of Theorem
5.7 of Van der Vaart (1998) [31]. BV[0, τm] denotes the functions whose total variation in
[0, τm] are bounded by a given constant. Define M = {θ : θ ∈ A

⊗
B
⊗

C
⊗

BV
⊗

M},
where BV

⊗
M = BV[0, τ1]

⊗
BV[0, τ2]

⊗
. . .
⊗

BV[0, τM] and M0 is a similar space with M
containing θ0. Moreover, define the metric ρ(θ, θ0) on the parameter space M as ρ(θ, θ0) =

https://doi.org/10.1007/0-387-37119-2
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∑M
m=1 ‖βxm − β0xm‖2 + ∑M

m=1 ‖βum − β0um‖2 + ‖γ − γ0‖2 + ∑M
m=1 supt∈[0,τm ] |Λm(t)−

Λ0m(t)|. Let L(θ) be the likelihood, so the log-likelihood is

l(θ) = log
∫ { M

∏
m=1

Dm(Um, b; βm, Λm)

}
p(b|γ)db

Then, the class of function Dm(Um, b; βm, Λm) is a Donsker class. By condition 4, we know
that l(θ) is bounded away from zero. Therefore, l(θ,O) belongs to some Donsker class
due to the preservation property of the Donsker class under the Lipschitz-continuous
transformations. Then, we can conclude that supθ∈M |Pnl(θ,O)− Pl(θ0,O)| converges in
probability to 0 as n→ ∞.

Next, we need to verify another condition of Theorem 5.7 of Van der Vaart (1998) [31],
for any ε > 0,

sup
ρ(θ,θ0)>ε

Pl(θ,O) < Pl(θ0,O).

Following Gibbs’ inequality, we have that Pl(θ,O) ≤ Pl(θ0,O) for all θ ∈M with equality
holds if and only if l(θ,O) = l(θ0,O) almost surely. Assume that supρ(θ,θ0)>ε Pl(θ) =

Pl(θ0). Then, there exists a sequence θj such that Pl(θj)→ Pl(θ0) and ρ(θj, θ0) > ε. Because
A
⊗

B
⊗

C are compact and BV
⊗

M are uniformly bounded such that θjm converges to
θj0, and θjm is the subsequence of θj, where θj0 may or not be in M, but in M0. Clearly,
Pl(θ) is continuous with respect to θ, such that Pl(θj0) = Pl(θ0). By Condition 5 and
similar arguments to the proof of Theorem 2.1 of Chang et al. (2007) [32], we can show
the identifiability of the model parameters, so that θj0 = θ0. However, ρ(θjm, θ0) > ε, so
θjm cannot converge to θ0. This is a contradiction. Therefore, supρ(θ,θ0)>ε Pl(θ) < Pl(θ0).

Following Theorem 5.7 of Van der Vaart (1998) [31], we have ρ(θ̂, θ0) = op(1), which
completes the proof of Theorem 1.

Proof of Theorem 2. Define

Sβxm(θ) =
∂l(θ)
∂βxm

, Sβum(θ) =
∂l(θ)
∂βum

, Sγ(θ) =
∂l(θ)

∂γ
,

the score functions with respect to βxm, βum and γ, respectively. For m = 1, . . . , M, let hm(t) be
a nonnegative and nondecreasing function on [0, τm]. DefineH = {h = (h1(t), . . . , hM(t))},
Λε(t) = (Λ1,ε(t), . . . , ΛM,ε(t)), and

Hml(t; θ) =

∫
Bm(t, Uml , Um,l+1, b; βm, Λm)

{
∏M

m′=1,m′ 6=m Dm′ (Um′ , b; βm′ , Λm′ )
}

p{b | γ}db∫ {
∏M

m′=1 Dm′ (Um′ , b; βm′ , Λm′ )
}

p{b | γ}db
,

where Λm,ε(t) = Λm(t) + εhm(t) and

Bm(t, s1, s2, b; βm, Λm) = exp
{

βT
xmXm + uβum + bTZm

}
×
(

Qm(s2, b; βm, Λm)G′m

[∫ v

0
exp

{
βT

mx∗m + bTZm

}
dΛm(s)

]
I(s2 > t)

−Qm(s1, b; βm, Λm)G′m

[∫ u

0
exp

{
βT

mx∗m + bTZm

}
dΛm(s)

]
I(s1 > t)

)
.
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It follows that

Sβx (θ) =
M

∑
m=1

Km

∑
l=0

∫ τm

0
Hml(t; θ,A)XmdΛm(t) ,

Sβu(θ) =
M

∑
m=1

Km

∑
l=0

∫ τm

0
Hml(t; θ,A)udΛm(t) ,

Sγ(θ) =

∫ {
∏M

m=1 Dm(Um, b; βm, Λm)
}

p′γ{b | γ}db∫ {
∏M

m=1 Dm(Um, b; βm, Λm)
}

p{b | γ}db
,

where p′γ{b | γ} is the first-order derivative of p{b | γ}with respect to γ, βx = (βT
x1, . . . , βT

xM)T

and βu = (βu1, . . . , βuM)T.
To obtain the score operator forA, we consider submodelsAε(h), where h = (h1, . . . , hM)T

is a vector of functions in L2[0, τm]. Then, we have that dΛm,ε,hm = (1 + εhm)dΛm, and the
score function along the mth submodels for every Λm, m = 1, . . . , M has the form

SΛm(θ)(h) =
Km

∑
l=0

∆ml

∫ τm

0
Hml(t; θ)hm(t)dΛm(t) .

The efficient score for ζ at (ζ0, Λ0) is l̃(ζ0, Λ0) = Sζ(ζ0, Λ0)−∑M
m=1 SΛm(ζ0, Λ0)[h∗m],

where Sζ(ζ0, Λ0) =
(
Sβx1(θ0), . . . , SβxM (θ0), Sβu(θ0), Sγ(θ0)

)T , h∗m is a (pM + M + q)-vector
function satisfying

P

(Sζ(ζ0, Λ0)−
M

∑
m=1

SΛm(ζ0, Λ0)[h∗m]

)T( M

∑
m=1

SΛm(ζ0, Λ0)[hm]

) = 0,

for each hm inH.
By following similar calculations in Section 3 of Chang et al. (2007) [32], we can

establish the existence of h∗m in the above equation. The efficient Fisher information matrix
I0 for ζ at (ζ0, Λ0) is defined as P

(
l̃(ζ0, Λ0)l̃(ζ0, Λ0)

T
)

. In the following, we will show that

I0 is positive definite. If the I0 is singular, then there exists a nonzero vector ν ∈ R(pM+M+q)

such that νT I0ν = 0. It follows that, with probability one, the score function along the
submodel

{
ζ0 + εν, Λ10 + ενTh∗1 , . . . , ΛM0 + ενTh∗M

}
is zero. Therefore,

νT

(
∂

∂ζ
+

M

∑
m=1

h∗m
∂

∂ym

)∣∣∣∣∣
(ζ,y1,...,yM)=(ζ0,Λ10(c1),...,ΛM0(cM))

· log
∫

b

M

∏
m=1
{Dm(Um, b, βm, Λm)}p(b | γ)db = 0.

Using Condition 5, we know that ν = 0, and this is a contradiction. Therefore, we can
conclude that νT I0ν = 0 implies ν = 0. That is, the efficient Fisher information matrix
is positive.

Define

Sζ,m(θ)[hm] =
∂

∂ε

∣∣∣∣
ε=0

Sζ(θ; Λm = Λmε) ,

and

Sm,j(θ)
[
h̃m, hj

]
=

∂

∂ε

∣∣∣∣
ε=0

SΛm

(
θ; Λj = Λjε

)[
h̃k
]
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for m = 1, . . . , M and j = 1, . . . , M, where ∂/ ∂ε|ε=0Λjε = hj. By Taylor expansion, we
can obtain

Pl̃(ζ0, Λ) = Pl̃(ζ0, Λ0) + P
{

M

∑
m=1

Sζm(θ)[Λm −Λm0]−
M

∑
m=1

M

∑
j=1

Sm,j(θ)[h∗m, Λm −Λm0]

}

+ Op

(
M

∑
m=1
‖Λm −Λm0‖2

)
.

Note that Pl̃(ζ0, Λ0) = 0, P
(
Sζ(θ)SΛm(θ)[hm]

)
= −P

(
Sζ,m(θ)[hm]

)
, P(SΛm(θ)

[
h̃m
]

SΛj(θ)[
hj
]
) = −P

(
Sm,j(ζ)

[
h̃m, hj

])
. By the consistency and the proof of Theorem of Zeng et al.

(2017), we can conclude that Pl̃
(
ζ0, Λ̂n

)
= Op

(
n−2/3

)
, which implies

√
nPl̃
(
ζ0, Λ̂n

)
= op(1).

We know from Example 19.11 of Van der Vaart (1998) [31] that the class of uni-
formly bounded functions with bounded variations is a Donsker class. By using Theorem
2.10.6 of Van der Vaart and Wellner (1996) [33], we can verify that l̃(ζ, Λ) is a uniformly
bounded Donsker class. In addition, we have proved that θ̂n is consistent. Therefore,√

n(Pn − P)(l̃(ζ̂n, Λ̂n)− l̃(ζ0, Λ0)) = op(1). Due to the fact that Pn l̃
(
θ̂n
)
= Pl̃(θ0) = 0 and

Pl̃
(
ζ0, Λ̂n

)
= op(1), we can have

−
√

nP
(
l̃
(
θ̂n
)
− l̃
(
ζ0, Λ̂n

))
=
√

nPn l̃(θ0) + op(1).

By the mean value theorem, we have

−
√

nP ∂

∂ζ
l̃
(
ζ ′, Λ̂n

)(
ζ̂n − ζ0

)
=
√

nPn l̃(θ0) + op(1),

where ζ ′ is a point between ζ̂n and ζ0. Because θ̂n is consistency and P
(
− ∂

∂ζ l̃(θ0)
)

=

P
(

l̃(θ0)l̃(θ0)
T
)
= I0, we can conclude that

√
n
(
ζ̂n − ζ0

)
= I−1

0
√

nPn l̃(θ0) + op(1)
d→ N

(
0, I−1

0

)
.

This completes the proof of Theorem 2.
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