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Abstract: In this article, we derived conditions on the coefficient functions a(z) and b(z) of the
differential equations y′′(z) + a(z)y′(z) + b(z)y(z) = 0 and z2y′′(z) + a(z)zy′(z) + b(z)y(z) = 0,
such their solution f (z) with normalization f (0) = 0 = f ′(0)− 1 is starlike in the lemniscate domain,
equivalently z f ′(z)/ f (z) ≺

√
1 + z. We provide several examples with graphical presentations for a

clear view of the obtained results.
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1. Introduction

Let A denote the class of functions f in the open unit disk D = {z : |z| < 1},
and normalized by the conditions f (0) = 0 = f ′(0)− 1. If f and g are analytic in D, then f
is subordinate [1] to g, written f ≺ g, or f (z) ≺ g(z), z ∈ D, if there is an analytic self-map
ω of D satisfying w(0) = 0 and |w(z)| < 1 such that f (z) = g(ω(z)), z ∈ D. In particular,
if g is univalent and g(0) = f (0), then f (D) ⊂ g(D).

Denote by S∗ and C, respectively, the important subclasses ofA consisting of univalent
starlike and convex functions. Geometrically f ∈ S∗ if the linear segment tw, 0 ≤ t ≤ 1, lies
completely in f (D) whenever w ∈ f (D), while f ∈ C if f (D) is a convex domain. Related
to these subclasses is the Cárathèodory class P consisting of analytic functions p satisfying
p(0) = 1 and Re p(z) > 0 in D. Analytically, f ∈ S∗ if z f ′(z)/ f (z) ∈ P , while f ∈ C if
1 + z f ′′(z)/ f ′(z) ∈ P .

A function f ∈ A is lemniscate convex if 1+ (z f ′′(z)/ f ′(z)) lies in the region bounded
by right half of lemniscate of Bernoulli given by {w : |w2 − 1| = 1}, which is equivalent
to the subordination 1 + (z f ′′(z)/ f ′(z)) ≺

√
1 + z. Similarly, the function f is lemnis-

cate starlike if z f ′(z)/ f (z) ≺
√

1 + z. On the other hand, the function f ∈ A is lemnis-
cate Carathéodory if f ′(z)) ≺

√
1 + z. Clearly, lemniscate Carathéodory function is a

Carathéodory function and hence is univalent.
For studying different classes of analytical functions, the principle of differential

subordination [2,3] is a vital tool. Following Lemma 1, derived by using the principle of
differential subordination is useful in sequence to study geometric properties related to
the lemniscate.

Lemma 1 ([4]). Let p ∈ H[1, n] with p(z) 6≡ 1 and n ≥ 1. Let Ω ⊂ C, and Ψ : C3 ×D → C
satisfy

Ψ(r, s, t; z) 6∈ Ω (1)
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whenever z ∈ D, and for m ≥ n ≥ 1, −π/4 ≤ θ ≤ π/4,

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
and

(
(t + s)e−3iθ

)
≥ 3m2

8
√

2 cos(2θ)
. (2)

If Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω for z ∈ D, then p(z) ≺
√

1 + z in D.

The following inequalities are true for r and s as given in (2):

|s + r2 − 1| ≥ 1
2
√

2
+ 1 and |r− 1| ≤

√
2− 1. (3)

In Section 2, we consider a set of differential equations

y′′(z) + a(z)y′(z) + b(z)y(z) = 0

and
z2y′′(z) + a(z)zy′(z) + b(z)y(z) = 0.

Using Lemma 1, we derived conditions on a(z) and b(z) for which the solution of
the above differential equations are lemniscate starlike. The work is motivated by the
articles [5,6] where several geometric properties of the solution of general ordinary differ-
ential equations are considered. In Section 3, we demonstrate the special cases by choosing
a(z) and b(z) which leads to several well known special differential Equations [7] like as
confluent hypergeometric, Bessel, etc,. We also provide some graphical demonstrations
and highlight open problems.

2. Lemniscate Starlike Functions

In this section, we state and prove our main results. We consider two ordinary
differential equations and derived the conditions by which the solution of those differential
equations is lemniscate starlike. It is worth noting here that the existence of the solution of
those differential equations is altogether a different case of study. Here, with examples we
show that there are functions that are the solution of considered differential equations.

Theorem 1. Suppose that F is the solution of the differential equation

y′′(z) + a(z)y′(z) + b(z)y(z) = 0 (4)

with the normalization F(0) = 0, F′(0) = 1. Suppose that F(z) 6= 0 for all z ∈ D \ {0}. If the
analytic functions a and b satisfy the inequality

4(
√

2− 1)|za(z)− 1|+ 4|zb(z) + a(z)| < 4 +
√

2, (5)

then F is lemniscate starlike in D.

Proof. Suppose that F(z) 6= 0 (∀z ∈ D \ {0}) is a solution of the differential Equation (4)
with the condition F(0) = 0 and F′(0) = 1. Define

p(z) :=
zF′(z)
F(z)

.

A computation yield

zF′(z) = p(z)F(z), (6)

z2F′′(z) =
(
zp′(z) + (p(z)− 1)p(z)

)
F(z). (7)
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Since, F is the solution of (4), it follows

z2F′′(z) + a(z)z2F′(z) + b(z)z2F(z) = 0.

This along with (6) and (7) gives

zp′(z) + (p(z)− 1)p(z) + za(z)p(z) + z2b(z) = 0. (8)

Let Ω := {0}, and the function Ψ : C2 ×D→ C is defined by

Ψ(r, s; z) = s + (r− 1)r + za(z)r + z2b(z) (9)

Then, from (8), it follows Ψ(p, zp′; z) ∈ Ω. By considering r and s as mention in Lemma 1
along with (9) and inequalities in (3) gives

|Ψ(r, s; z)| = |(s + r2 − 1) + (za(z)− 1)(r− 1) + z2b(z) + za(z)|
≥ |s + r2 − 1| − |za(z)− 1||r− 1| − |zb(z) + a(z)|

≥
(

1
2
√

2
+ 1
)
− (
√

2− 1)|za(z)− 1| − |zb(z) + a(z)| > 0.

This implies that Ψ(r, s; z) /∈ Ω. From Lemma 1, it follows that p(z) = zF′(z)/F(z) ≺√
1 + z.

Theorem 2 (Lemniscate Starlike functions). Let a and b be two analytic functions defined in D
for which the differential equation

z2y′′(z) + a(z)zy′(z) + b(z)y(z) = 0 (10)

has the solution F satisfying F(0) = 0 = F′(0)− 1, and F(z) 6= 0 for all z ∈ D \ {0}. Suppose
that

4(
√

2− 1)|a(z)− 1|+ 4|a(z) + b(z)| < 4 +
√

2. (11)

Then, F is lemniscate starlike in D.

Proof. The proof is simlar to the proof of Theorem 1, we omit the details. In this case,
the function Ψ : C2 ×D→ C is defined by

Ψ(r, s; z) = s + (r− 1)r + a(z)r + b(z) (12)

and

|Ψ(r, s; z)| ≥ |s + r2 − 1| − |a(z)− 1||r− 1| − |a(z) + b(z)|

≥
(

1
2
√

2
+ 1
)
− (
√

2− 1)|a(z)− 1| − |a(z) + b(z)| > 0.

The rest of the explanation as given in the proof of Theorem 1.

3. Examples of Leminscate Starlike Functions

In this section, we present some examples involving special functions which prove
that the solution set of the differential Equations (4) and (10) is non-empty. Further, we
provide conditions for which those solutions are lemniscate starlike.
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3.1. Example Involving Error Function

Our first example involves the error function. The error function, denoted by erf [8] is
defined as

erf (z) :=
2√
π

∫ z

0
e−t2

dt =
2√
π

∞

∑
n=0

(−1)n

n! (2n + 1)
z2n+1.

The error function can also be expressed by the confluent hypergeometric functions through√
πerf (z) = 2z1F1(1/2; 3/2;−z2). Functional inequalities involving the real error functions

can be found in [9]. In [10], Coman determined the radius of starlikeness of the error
function. Now, we state and prove our first Theorem involving the error function.

The function

f1(z) :=
√

πα

2
ez2/(2α)erf

(
z√
2α

)
, α > 0 (13)

is lemniscate starlike for α > 4(
√

2 + 1)/(8− 3
√

2).
Since erf (0) = 0, it follows that f1(0) = 0. Taking derivative of both side of (13),

it follows

f ′1(z) =
√

π

2α
ze

z2
2α erf

(
z√
2α

)
+ 1 (14)

Clearly, f ′1(0) = 1. Further, a derivative of (14) yields

f ′′1 (z) =
√

π

2α
ze

z2
2α erf

(
z√
2α

)
+ 1 (15)

A computation gives

α f ′′1 (z)− z f ′1(z)− f1(z)

=

α

√2πe
z2

2α (α+z2)erf
(

z√
2α

)
+2
√

αz


2α3/2 − z

√ π
2 ze

z2

2α erf
(

z√
2α

)
√

α
+ 1

−√πα
2 erf

(
z√
2α

)
exp

(
z2

2α

)
= 0.

Thus, f1 is a solution of the differential equation αy′′(z)− zy′(z)− y(z) = 0.
Let a(z) = −z/α and b(z) = −1/α in (5). Then

4(
√

2− 1)
∣∣∣∣− z2

α
− 1
∣∣∣∣+ 4

∣∣∣− z
α
− z

α

∣∣∣− 4−
√

2 ≤ 4(
√

2 + 1)
|α| − (8− 3

√
2) < 0,

provided |α| > 4(
√

2 + 1)/(8− 3
√

2).
Clearly for α > α0 = 4(

√
2 + 1)/(8− 3

√
2) = 2.57012, the function

Hα(z) :=
z d

dz

(√
πα
2 ez2/(2α)erf

(
z√
2α

))
√

πα
2 ez2/(2α)erf

(
z√
2α

) =
z d

dz

(
ez2/(2α)erf

(
z√
2α

))
ez2/(2α)erf

(
z√
2α

) ≺
√

1 + z.

To investigate the minimum value of α0, we experiment graphically for various values
of α. From Figure 1, it is certain thatHα(z) ≺

√
1 + z for α > α0 = 2.57012, however, it is

also evident that α0 can be lower down to a number between (1.67, 1.7). Based on this fact,
we state an open PB as below:
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Open Problem 1. There exist a α0 ∈ (1.67, 1.7), such that
√

πα
2 ez2/(2α)erf

(
z√
2α

)
is lemniscate

starlike for α ≥ α0.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

: 1 + z , H1.5>

(a) Graph ofH1.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

: 1 + z , H1.6>

(b) Graph ofH1.6

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

: 1 + z , H1.67>

(c) Graph ofH1.67

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

: 1 + z , H1.7>

(d) Graph ofH1.7

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

: 1 + z , H1.8>

(e) Graph ofH1.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

: 1 + z , H2>

(f) Graph ofH2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

: 1 + z , H2.5>

(g) Graph ofH2.6

Figure 1. Hα for α = 1.5, 1.6, 1.67, 1.7, 1.8, 2, 2.6.

3.2. Example Involving Classical Bessel Function

The Bessel function Jν of order ν is the solution of the differential equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0. (16)

Several results related to the geometric properties of the Bessel function and its generaliza-
tions can be seen in [11–22] and references therein.

Here, we consider the function

f2(z) =
π

sin
(

2πν√
β

)(J
− 2ν√

β

(
2√

β

)
J 2ν√

β

(
2
√

ez

β

)
− J 2ν√

β

(
2√

β

)
J
− 2ν√

β

(
2
√

ez

β

))
, ν /∈ Z, β > 0.
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Clearly,

f2(0) =
π

sin
(

2πν√
β

)
J
− 2ν√

β

(
2√

β

)
J 2ν√

β

(
2√

β

)
− J 2ν√

β

(
2√

β

)
J
− 2ν√

β

(
2√

β

) = 0.

A careful computation as in [5] (Example 3, Page 561), it follows that f ′2(0) = 1 and f2 is
the solution of the differential equation

βF′′(z) + (ez − ν2)F(z) = 0.

For a(z) = 0 and b(z) = (ez − ν2)/β, (5) implies

4(
√

2− 1)|za(z)− 1|+ 4|zb(z) + a(z)| − 4−
√

2

<
4
β

∣∣∣ez − ν2
∣∣∣− 8 + 3

√
2

≤ 4
β

(
e2 − 2ν2e cos(1) + ν4

)
− 8 + 3

√
2

Thus, an application of Theorem 1 conclude that for fixed β > 0, if there exist a ν for which

4(ν4 − 2ν2e cos(1) + e2) ≤ (8− 3
√

2)β, (17)

then f2 is Lemniscate starlike in D.
To investigate about the existence of β and corresponding ν for which the inequality

(17) holds, we found that it is possible only when β > β0 ≈ 5.56986.

3.3. Example Involving Airy Functions

In this example, we consider the function

f3(z) =
Γ
(

1
3

)(
35/6Bi

(
3
√

az
)
− 34/3 Ai

(
3
√

a z
))

6 3
√

a
, a 6= 0.

Here, Ai and Bi are well-known Airy functions [8] which are independent solutions of the
differential equation y′′(z)− zy(z) = 0 with initial value

Ai(0) =
1

32/3Γ
( 2

3
) , Ai′(0) = − 1

31/3Γ
(

1
3

) , Bi(0) =
1

31/6Γ
( 2

3
) , Bi′(0) =

31/6

Γ
(

1
3

) .

Thus,

f3(0) =
Γ
(

1
3

)(
35/6Bi(0)− 34/3 Ai(0)

)
6 3
√

a
=

Γ
(

1
3

)
6 3
√

a

(
35/6

31/6Γ
( 2

3
) − 34/3

32/3Γ
( 2

3
)) = 0

and

f ′3(0) =
Γ
(

1
3

)(
35/6 3
√

aBi′(0)− 34/3 3
√

aAi′(0)
)

6 3
√

a
=

Γ
(

1
3

)
6

(
3

Γ
(

1
3

) +
34/3

31/3Γ
(

1
3

)) = 1

Further computation yields that f3 is the solution of the differential equation

F′′(z)− a z F(z) = 0.



Mathematics 2022, 10, 3254 7 of 10

Thus, by (5), f3 is lemniscate starlike for |a| < (8− 3
√

2)/4 ≈ 0.93934.

3.4. Example Involving Generalized Bessel Functions

One of the most significant functions included in the literature of geometric functions
theory is the generalized and normalized Bessel functions of the form

Up(z) =
∞

∑
n=0

(−1)ncn

4n(κ)n

zn

n!
, 2κ = 2p + b + 1 6= 0,−2,−4,−6, . . . ;

which is the solution of

4z2U′′(z) + 4κzU′(z) + czU(z) = 0. (18)

For b = c = 1, the function Up represents the normalized Bessel function of order p, while
for b = −c = 1, the function Up represents the normalized modified Bessel function of
order p. The Spherical Bessel function can also be obtain by using b = 2, c = 1.

The inclusion of Up in various subclasses of univalent functions theory is extensively
studied by many authors [11–15,17,19,23,24] and some references therein. Recently, the lem-
niscate convexity and other properties of Up is studied in [24].

Now consider

f4(z) = zUp(z).

A differentiation gives

z f ′4(z) = z2U′p(z) + zUp(z) =⇒ z2U′p(z) = z f ′4(z)− f4(z).

Differentiate again we have

z2U′′p(z) + 2zU′p(z) = z f ′′4 (z)

=⇒ z3U′′p(z) = z f ′′4 (z)− 2(z f ′4(z)− f4(z))

All the above calculation together with (18) implies that f4 is the solution of the differential
equation

4z f ′′4 (z) + 4(κ − 2)z f ′4(z) + (cz− 4κ + 8) f4(z) = 0. (19)

Choosing a(z) = κ − 2 and b(z) = (cz− 4κ + 8)/4.

4(
√

2− 1)|κ − 3|+ | cz
4
| < 4(

√
2− 1)|κ − 3|+ |c|

4
.

Finally, by (11), the function f4 is lemniscate starlike if

16(
√

2− 1)|κ − 3|+ |c| < 4 +
√

2.

In particular, the normalized Bessel z1−(p/2)Γ(1+ p)2pJp(
√

z) (κ = p+ 1, c = 1, b = 1)
and normalized modified Bessel z1−(p/2)Γ(1 + p)2pIp (κ = p + 1, c = −1, b = 1) is
lemniscate starlike for

|p− 2| < 3+
√

2
16(
√

2−1)
=⇒ 1.33395 < p < 2.66605.
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The range of p is slightly better than Corollary [4] (Corollary 2.5). Clearly, this is a very
small range of p. By curiosity, we try to understand the possibility of increasing the range
of p, through experimenting graphically the image of

Gp(z) =
z d

dz

(
z1−(p/2)Γ(1 + p)2pJp(

√
z)
)

z1−(p/2)Γ(1 + p)2pJp(
√

z)
.

It is evident that for p = −0.46, the image of Gp(D) lies slightly inside the lemniscate√
1 + z. On the other hand when p = −0.45, Gp(D) lies inside

√
1 + z. It is also clear that

when p increases, the image of Gp(D) shrinks and always lies inside the lemniscate
√

1 + z.
Based on this we can state the following open PB:

Open Problem 2. There exist a p0 ∈ (−0.45,−0.44) for which the normalized Bessel function
z1−(p/2)Γ(1 + p)2pJp(

√
z) is lemniscate starlike for p ≥ p0.

3.5. Example Involving Confluent Hypergeometric Functions

The geometric functions theory has a close association with the hypergeometric func-
tions 2F1 and the confluent hypergeometric functions 1F1 (refer to the articles [5,25–31]).

The differential equation

z2y′′(z) + (β− z)y′(z)− αzy(z) = 0

have the solution 1F1(α, β; z).
Now consider the function f5(z) := z1F1(α, β; z). Then, f5 is lemniscate starlike if

4(
√

2− 1)|β− 3|+ |α| < 8− 3
√

2. (20)

Consider a special case by taking α = 1 and β = 3. Then, we have f6(z) = z1F1(1, 3; z) =
(2(−1 + ez − z))/z. Clearly, the inequality (20) holds in this case. Figure 2 represents that
z f ′6(z)/ f6(z) ≺

√
1 + z.

1 + z

Hz f '6L � f6

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

Figure 2. z f ′6(z)/ f6(z) ≺
√

1 + z.

Next take β = 3 + α ( for α > −1). In this case, the inequality (20) holds for −1 < α <√
2. Thus,

Fα(z) =
z d

dz (z1F1(α, α + 3; z))
z1F1(α, α + 3; z)

≺
√

1 + z, for − 1 < α <
√

2.

However, the graphical experiment in Figure 3 indicates that the subordination may
holds for α ≥

√
2. We state the following possible improvement from Figure 3e,f.

Open Problem 3. For α > −1, the function z1F1(α, α + 3; z) is lemniscate starlike provided
α ≤ α0 ≈ 1.8.
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For Α=1/2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(a) Graph of F1/2

For  Α=1

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(b) Graph of F1

For Α = 2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(c) Graph of F√2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(d) Graph of F1.75

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4
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(e) Graph of F1.8
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(f) Graph of F1.85

Figure 3. Fα for α = 1/2, 1,
√

2, 1.75, 1.8, 1.85.

4. Conclusions

As presented in Section 2, we considered two second-order differential equations. We
derived the conditions on the coefficient functions a(z) and b(z), respectively, for y′(z) and
y(z) in the differential equation, for which the solution of the differential equations are
lemniscate starlike. The judicious choice of a(z) and b(z) provides different functions as
the solution of the differential equation and that is presented in Section 3. We also highlight
some open PBs in Section 3 based on graphical experiment.
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