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Abstract: The COVID-19 pandemic continues to be a problem in South Africa. Individuals affected
and infected by the disease suffer from stigma resulting in increased COVID-19 infections. In this
paper, we developed a mathematical model to assess the effects of stigma on COVID-19 in South
Africa, using low, moderate, and high stigma regimes in the population. The mathematical model
was analysed and the basic reproduction number, R0, of the COVID-19 model with stigma was
determined. The model was then fitted to data of the four COVID-19 waves for the new daily
infected cases, and the estimated parameter values from different waves are presented. The effects
of stigma on COVID-19 waves were examined using the four stigma regimes (high, moderate, low,
and stigma-free regimes). Our results revealed that stigma is instrumental in the increase in the
number of COVID-19 infections. It is also a significant contributor to sustaining COVID-19 in the
population and probably in other infectious diseases such as HIV/AIDS and sexually transmitted
diseases. The results obtained can influence policy directions with respect to stigma and its impact
on the transmission dynamics of diseases.

Keywords: COVID-19; stigma; modelling; global stability; basic reproduction number; sensitivity
analysis; model fitting
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1. Introduction

Coronavirus (COVID-19) is an infectious disease caused by the Severe Acute Respi-
ratory Syndrome Coronavirus 2 (SARS-CoV-2) that was not previously observed within
a population or geographic location [1]. The pandemic dramatically changed peoples’
lives worldwide since it first appeared in Wuhan, China, at the beginning of December
2019 [2]. People’s lives have been negatively impacted by COVID-19-related suffering
and lockdowns at community and household levels [3]. Lockdown regulations radically
changed social contact by replacing face-to-face meetings with virtual meetings to reduce
the spread of COVID-19. Social distancing, frequent hand washing, and the use of face
masks in public are some of the most critical health behaviors to reduce virus transmission
from an infectious patient to others [4,5].

Stress caused by lockdowns, and fear of being infected fuelled the rise of stigma in
local communities [2]. The stigma of origin is a Greek word that refers to a marking burned
into the skin of criminals, enslaved people, or traitors to visibly identify them as ‘blemished’
or ‘morally polluted persons’. These individuals were to be avoided, especially in public
places [6]. Pescosolido [7] defined stigma as a sign of disgrace that sets a person apart
from others. Stigma also involves negative attitudes or discrimination against someone
based on a distinguishing characteristic such as obesity, mental illness, health condition,
or disability [8]. According to Campbell and Deacon [9], there are three main types of
stigma: enacted stigma, felt stigma, and tribal stigma. Enacted stigma, also known as
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external deformities, entails the experience of unfair treatment by others due to their
perceived perception of an individual. Felt stigma, also known as internal stigma, refers
to the shame and expectation of discrimination that prevents people from talking about
their condition and stops them from seeking help [10]. Tribal stigma refers to shame
and discrimination affiliated with a specific race, ethnicity, religion, etc. [9]. Stigma may
result in delaying or avoiding treatment and seeking access to health services, which
compromises the outcome of an individual’s medical condition [11], and, in the worst
cases, in individuals dying before reaching health facilities. Stigma correlates with a lack of
understanding of how COVID-19 spreads, a need to blame someone, fears about disease
and death, and social media [12]. The stigma associated with COVID-19 is based on the
fact that there is still information that is not known about the disease and misinformation
driven by social media [13].

Differential equations provide remarkable essential tools to fight diseases by un-
derstanding and predicting the dynamics of infectious diseases under several distinct
circumstances [14]. It is one of the most significant branches of mathematics that has been
used to model different systems and processes [15]. Additionally, the theory of arbitrary
order differential equations received extensive popularity due to its vast applicability in
various branches of science and engineering [16].

Mathematical modeling of the epidemiology of COVID-19 in South Africa has recently
become a powerful tool to study the dynamics of the pandemic and the importance of
various control strategies so as to advise public health policymakers who aim to construct
suitable intervention programs to fight the spread of COVID-19. Mukandavire et al. [17]
looked at quantifying early COVID-19 outbreak transmission in South Africa and vaccine
efficacy scenarios. They discovered that a highly efficacious vaccine would have been
required to contain COVID-19 in South Africa. Nyabadza et al. [18] looked at modelling
the potential impact of social distancing on the COVID-19 epidemic in South Africa. Their
results showed that an increase in social distancing would decrease the spread of COVID-19.
Gatyeni et al. [19] looked at the application of optimal control to the dynamics of COVID-19
disease in South Africa. Their numerical findings suggest that the joint implementation of
effective mask usage, physical distancing, and active screening and testing, are effective
measures that can be used to curtail the spread of the disease in the human population.

The effects of stigma on infectious diseases such as leprosy and tuberculosis (TB) have
been studied [20,21], but very few studies have looked at how stigma impacts the ongoing
COVID-19 pandemic. To this end, it is important to look at how different levels (regimes)
of stigma impacted the four waves of the pandemic in South Africa. Those studies indicate
that stigma does indeed play a role in increasing the number of infected individuals. It was
demonstrated that the disease prevalence and incidence were high when stigma was high
and declined gradually when the combination of both treatment and a health campaign was
implemented. Thus, assessing the effects of stigma in stigmatised individuals is essential
to determine its veracity towards the progression of COVID-19 and in devising control
methods. Additionally, according to [22], COVID-19 caused stigma and discrimination
against certain groups across the continent, including South Africa. When COVID-19 began
to spread, people suffered discrimination and stigma as they were blamed for the spread of
COVID-19. In some townships in South Africa, for instance, families of those who tested
positive for COVID-19 experienced ill-treatment and discrimination due to the stigma
associated with the virus. In this study, we thus proposed a simple mathematical model
for the transmission dynamics of COVID-19 that can account for the effects of stigma to
determine the potential impact of stigma on the dynamics of COVID-19 in South Africa.
In particular, we classified stigma as either low, moderate, or high and determined how the
number of infections was impacted by the different levels of stigma for the different waves
of COVID-19 experienced in South Africa.

The paper is arranged as follows: in the next section, the model is formulated. Section 3
presents the model properties and the model analysis is presented in Section 4. In Section 5,
simulations and a sensitivity analysis are presented and the last section concludes the paper.
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2. Model Formulation

We proposed a model with the following six compartments: susceptible, exposed, in-
fectious, hospitalized, and recovered individuals where the infectious population is divided
into two, namely stigmatised and unstigmatised infectious populations. The susceptible
individuals S(t) are recruited at a constant rate π, where these individuals can become
infected and move into the exposed class E(t). We assume that exposed individuals become
symptomatic at a rate σ. Some individuals with symptomatic infection choose to disclose
their COVID-19 status and move to the unstigmatised individuals In(t). In contrast, others
choose to conceal their COVID-19 status and move to the stigmatised class Is(t) to avoid
being discriminated against by the community. This is modelled by the parameter p, where
0 < p < 1, with p being the proportion of infected that are stigmatised. We assume that
those who initially conceal their COVID-19 illness can move to the In(t) population at a
rate γ, either by changing their minds, or disclosing their COVID-19 condition, thereby
delaying access to health facilities. Individuals in In(t) are hospitalized or recover at a rate κ
or ρ, respectively. Individuals in Is(t) recover at a rate ω. Hospitalized individuals recover
at a rate α. Individuals in all compartments are assumed to have a natural death rate µ.
Hospitalized individuals have an additional death rate δ caused by COVID-19 disease.
We assume that disease induced deaths are only in the hospitalization class since the only
recorded data cases for deaths are from the hospitals. The force of infection is given by

λ(t) =
β(Is(t) + εIn(t))

N(t)
, (1)

where β is the infection rate and ε ∈ [0, 1] is the modification parameter that measures the
relative infectiousness of individuals in In(t) compared to individuals in Is(t). The total
population N(t) is given by

N(t) = S(t) + E(t) + In(t) + Is(t) + H(t) + R(t).

Based on the flow diagram, Figure 1, the model assumptions, and the parameter
descriptions, the differential equations that represent the COVID-19 model are given by

dS
dt

= π − (µ + λ)S,

dE
dt

= λS− a1E,

dIn

dt
= (1− p)σE + γIs − a2 In,

dIs

dt
= pσE− a3 Is,

dH
dt

= κ In − a4H,

dR
dt

= ρIn + ωIs + αH − µR,



(2)

where
a1 = µ + σ, a2 = µ + κ + ρ, a3 = µ + ω + γ, a4 = µ + δ + α,

with positive initial conditions given by

S(0) = S0 > 0, E(0) = E0 ≥ 0, In(0) = I0
n ≥ 0, (3)

Is(0) = I0
s ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0.

We define time, t = 0, to be the time when COVID-19 started in South Africa. The num-
ber of susceptible population is initially strictly greater than zero, given that before the start
of the epidemic, there were no infected.
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Figure 1. A model flow diagram for COVID-19 infection dynamics. The diagram shows the flow
of individuals from one compartment to the other as their infection status with respect to the
disease changes.

3. Model Properties

In this section, we show that our model is well-posed. To show the well-posedness of
the model, we proved that all solutions of the system of equations (2) with positive initial
conditions remained positive for all t ≥ 0. We also showed that the solutions were bounded
for all t ≥ 0 in the positive region Ω, where Ω is a biologically feasible region, and the
model should be biologically meaningful. Thus, based on the biological analysis, the model
system (2) will be considered in the region below:

Ω =

{
(S, E, In, Is, H, R) ∈ R6

+ : 0 ≤ N ≤ π

µ

}
. (4)

This region is positively invariant with respect to the model system (2).

3.1. Positivity of Solutions of the Model

Since model (2) monitors the human population, all the state variables must be positive
and the solutions to the model system (2) with positive initial conditions (3) should remain
positive for t ≥ 0. Here, we show that the solutions of model (2) remain positive in the
positive orthant given any non-negative initial conditions.

Theorem 1. For the given initial conditions in (3), the solutions of model system (2) remains
positive for all t > 0 in Ω.

Proof. Given that the initial conditions are all non-negative, the first equation of (2) gives

dS
dt

+ (µ + λ)S ≥ 0, (5)
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so that after integration we have

S(t) ≥ S(0)e−
(

µt+
∫ t

0 λ(τ)dτ
)
> 0, ∀t > 0.

Since the exponential function is positive and S(0) > 0, it is guaranteed that the
solution of S(t) remains positive for all time t ≥ 0.

The second equation of the model system (2) gives

dE
dt

+ a1E ≥ 0,

which gives

E(t) ≥ E(0)e−a1t > 0, ∀t > 0.

Similarly, it can easily be shown that In(t) ≥ 0, Is(t) ≥ 0, H(t) ≥ 0 and R(t) ≥ 0 for
all time t > 0 and completes the proof.

3.2. Boundedness of Solutions

We have the following theorem to show that these solutions are uniformly unique:

Theorem 2. The solutions of model system (2) with initial conditions (3) are contained in the
region Ω.

Proof.

dN
dt

= π − µN − δH ≤ π − µN. (6)

The solution (6), obtained by separating variables and integrating is given by

N(t) ≤ π

µ
−
(

π

µ
− N0

)
e−µt, (7)

If N0 < π
µ , then the upper bound of N(t) is π

µ when t → ∞ . If N0 ≥ π
µ , then N(t)

decreases to π
µ when t→ ∞ and approaches Ω asymptotically. Since N is the sum of all state

space variables, each of the individual state variables is less or equal to π
µ . Additionally,

the positivity and boundedness of solutions ensure that Ω is a feasible region. Therefore,
for the model system (2), the region Ω is positively invariant, and all solutions starting in
Ω stay in Ω.

4. Model Analysis

In this section, the reproduction number is calculated, equilibrium points are com-
puted, and an stability analysis is established.

4.1. Equilibrium Points
4.1.1. Disease Free Equilibrium Point

The model has equilibrium points obtained by setting the right-hand side of system
(2) to zero so that

π − (µ + λ∗)S∗ = 0, (8)

λ∗S∗ − a1E∗ = 0, (9)

(1− p)σE∗ + γI∗s − a2 I∗n = 0, (10)

pσE∗ − a3 I∗s = 0, (11)

κ I∗n − a4H∗ = 0, (12)

ρI∗n + ωI∗s + αH∗ − µR∗ = 0. (13)
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From Equation (11), express I∗s in terms of E∗

I∗s = Q0E∗, where Q0 =
pσ

a3
. (14)

Substituting (14) into (10), we get

I∗n = Q1E∗, where Q1 =
(1− p)σ + γQ0

a2
. (15)

From Equation (12), we have

H∗ = Q2E∗, where Q2 =
κQ1

a4
. (16)

Substituting Equations (14)–(16) in Equation (13), we have

R∗ = Q3E∗, where Q3 =
ρQ1 + ωQ0 + αQ2

µ
. (17)

From the force of infection in (1), we have

λ∗ =
Q4

N∗
E∗, where Q4 = β(Q0 + εQ1). (18)

Substituting (18) for λ∗ in Equation (9), we have(
Q4

N∗
S∗ − a1

)
E∗ = 0. (19)

So, E∗ = 0 or

S∗

N∗
=

1
R0

, where R0 =
Q4

a1
. (20)

Thus, when E∗ = 0 we obtain the disease free equilibrium points (DFE), E0, given by

E0 =

(
π

µ
, 0, 0, 0, 0, 0

)
. (21)

4.1.2. Basic Reproduction Number

In epidemiological models, the basic reproduction number R0 is the expected number
of secondary cases produced by a typical infective individual in a completely susceptible
population [23]. In this case, we evaluated R0 to measure the average number of new
individuals infected by COVID-19 generated by a single infected individual in a susceptible
population. If R0 < 1, on average, the infected individual produces less than one infection
during their ability to initiate infection, and the disease will die out. Otherwise, if R0 > 1,
an infected individual produces more than one infected individual in a wholly suscep-
tible community, and the disease persists. We used the next generation matrix method,
see [23,24], to derive the basic reproduction number R0 of the model. R0 is defined to be
the largest eigenvalue of the matrix FV−1, with F representing the new infections matrix
and V−1 represents the inverse of the transfer matrix, V, so that

F=



0 βε β 0

0 0 0 0

0 0 0 0

0 0 0 0


, V=



a1 0 0 0

−(1− p)σ a2 −γ 0

−pσ 0 a3 0

0 −κ 0 a4


,



Mathematics 2022, 10, 3253 7 of 23

V−1=



1
a1

0 0 0

a4σ
(
a3(1− p) + pγ

)
a1a2a3a4

1
a2

γ

a2a3
0

pσ

a1a3
0

1
a3

0

κσ
(
a3(1− p) + pγ

)
a1a2a3a4

κ

a2a4

κγ

a2a3a4

1
a4


,

and FV−1=



βpσ

a1a3
+

βεσ
(
a3(1− p) + pγ

)
a1a2a3

βε

a2

β

a3
+

βεγ

a2a3
0

0 0 0 0

0 0 0 0

0 0 0 0


.

The basic reproduction number of COVID-19 with stigma is given by

R0 = R1 + R2, (22)

where

R1 =
βpσ

a1a3
, R2 =

βσε

a1a2a3

(
a3(1− p) + pγ

)
. (23)

The expression in R1 represents the number of new COVID-19 infections generated
by stigmatised infectious population Is. It contains the product of transmission rate β,

the fraction
pσ

a1
moving to stigmatised population Is, and

1
a3

is the average time spent

in the Is compartment. The expression in R2 represents the number of new infections
generated by the non-stigmatised infectious population In. The product of infectious rate
due to non-stigmatisation is given by βε, the fraction of exposed individuals moving to

non-stigmatised population is given by
σ(1− p)

a1
, and

1
a2

is the average time spent in the In

compartment. Following, Theorem 2, in [24], E0, is locally asymptotically stable whenever
R0 < 1 and unstable when R0 > 1.

4.1.3. Endemic Equilibrium Point

The total population at equilibrium N∗ is given by

N∗ = S∗ + Q5E∗, where Q5 = 1 + Q1 + Q0 + Q2 + Q3. (24)

Substituting (24) for N∗ in Equation (20), we have

E∗ =
S∗(R0 − 1)

Q5
. (25)

Substituting (18), (20), and (24) in Equation (8), we have

S∗ =
πQ5R0

µQ5R0 + (R0 − 1)Q4
. (26)

Substituting (26) in (25), we have

E∗ =
πR0(R0 − 1)

µQ5R0 + (R0 − 1)Q4
.
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The remaining expressions for the endemic equilibrium (EE) points are

I∗s =
πQ0R0(R0 − 1)

µQ5R0 + (R0 − 1)Q4
, I∗n =

πQ1R0(R0 − 1)
µQ5R0 + (R0 − 1)Q4

,

H∗ =
πQ2R0(R0 − 1)

µQ5R0 + (R0 − 1)Q4
, R∗ =

πQ3R0(R0 − 1)
µQ5R0 + (R0 − 1)Q4

.

So, system (2) has a unique endemic equilibrium point if and only if R0 > 1.

4.2. Global Stability of the Equilibria

In this section, we show that E0 is globally asymptotically stable if R0 ≤ 1, and we
prove that EE is globally asymptotically stable if R0 > 1.

Theorem 3. The disease-free equilibrium of the model system (2) is globally asymptotically stable
if R0 ≤ 1.

Proof. Consider a Lyapunov function,

V = E + ν1 In + ν2 Is + ν3H + ν4R,

where ν1, ν2, ν3, ν4 and ν5 are positive constants to be determined. Differentiating V with
respect to t, we get

V̇ =Ė + ν1 İn + ν2 İs + ν3Ḣ + ν4Ṙ,

=
(

λS− a1E
)
+ ν1

(
(1− p)σE + γIs − a2 In

)
+ ν2

(
pσE− a3 Is

)
+ ν3

(
κ In − a4H

)
+ ν4

(
ρIn + ωIs + αH − µR

)
,

=
β(Is + εIn)S

N
− a1E + ν1

(
(1− p)σE + γIs − a2 In

)
+ ν2

(
pσE− a3 Is

)
+ ν3

(
κ In − a4H

)
+ ν4

(
ρIn + ωIs + αH − µR

)
.

Note that S
N ≤ 1,

V̇ ≤
(

β + ν1γ− ν2a3 + ν4ω
)

Is +
(

βε− ν1a2 + ν3κ + ν4ρ
)

In +
(
− a1 + ν1(1− p)σ + ν2 pσ

)
E

+
(

βε− ν1a2 + ν3κ + ν4ρ
)

In +
(
− ν3a4 + ν4α

)
H − ν4µR.

Making ν3 = 0 and ν4 = 0, we obtain

ν1 =
βε

a2
and ν2 =

a1

pσ
− (1− p)βε

pa2
.

Substituting for ν1 and ν2 we obtain
V̇ ≤ B(R0 − 1)Is,

where
B =

a1a3

pσ
.

If R0 < 1, then V̇ < 0. V̇ = 0 if either R0 = 1 or Is = 0 or both R0 = 1 & Is = 0. It is
sufficient to consider R0 = 1 since it implies Is = In = E = H = R = 0. Thus, the largest
compact invariant set in Ω such that V̇ = 0 when R0 = 1, is the singleton DFE. By Lasalle’s
Invariance Principle [25,26], the disease free equilibrium is globally asymptotically stable
when R0 ≤ 1.
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We then prove the global stability of the endemic equilibrium point for a special case,
i.e., the limiting system of (2), in which N is assumed to at its maximum value, say N∗.
This transforms the force of infection to a mass action incidence function such that

λ =
β

N∗
(Is + εIn) = β1(Is + εIn), where β1 =

β

N∗
.

Theorem 4. If R0 > 1, the endemic equilibrium, EE of the model Equation (2), is globally
asymptotically stable in Ω.

Proof. The state variables R and H can be considered to be redundant since they are
not directly involved in the infection dynamics of the system. We thus considered a
reduced system with only four state variables, without necessarily impacting the stability
of the larger system. Given that the endemic equilibrium exists if and only if R0 > 1, we
considered a Lyapunov function defined by

L =

(
S− S∗ − S∗ ln S

)
+ A

(
E− E∗ − E∗ ln E

)
+ B

(
In − I∗n − I∗n ln In

)

+C
(

Is − I∗s − I∗s ln Is

)
,

where A, B, and C are constants to be determined. Differentiating L with respect to t we get

L̇ =

(
1− S∗

S

)
Ṡ + A

(
1− E∗

E

)
Ė + B

(
1− I∗n

In

)
İn + C

(
1− I∗s

Is

)
İs. (27)

The steady state solutions of system (2) give

π =
(
µ + λ∗

)
S∗, a1 =

λ∗S∗

E∗
, a2 =

(1− p)σE∗

I∗n
+

γI∗s
I∗n

, a3 =
pσE∗

I∗s
.

Substituting the expressions for the derivatives of the state variables yields,

L̇ =

(
1− S∗

S

)(
(µ + λ∗)S∗ − (µ + λ)S

)
+ A

(
1− E∗

E

)(
λS− λ∗S∗

E∗

E

)

+B
(

1− I∗n
In

)(
(1− p)σE + γIs −

(
(1− p)σE∗ + γI∗s

)
In

I∗n

)

+C
(

1− I∗s
Is

)(
pσE− pσE∗

Is

I∗s

)
.

We then consider (27) term by term, starting with the S related terms, so that,

(
1− S∗

S

)(
(µ + λ∗)S∗ − (µ + λ)S

)
=
−µ
(
S− S∗

)2

S
+

(
1− S∗

S

)(
λ∗S∗ − λS

)
,

=
−µ
(
S− S∗

)2

S
+

(
1− S∗

S

)[
β1 I∗s S∗

(
1− Is

I∗s

S
S∗

)
+β1εI∗n S∗

(
1− In

I∗n

S
S∗

)]
.

If we set

w =
S
S∗

, x =
E
E∗

, y =
In

I∗n
, z =

Is

I∗s
,
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then the terms related to S reduce to

−µ
(
S− S∗

)2

S
+ β1 I∗s S∗

(
1− 1

w

)(
1− wz

)
+ β1εI∗n S∗

(
1− 1

w

)(
1− wy

)
. (28)

The terms related to E, In and Is, are, respectively,

A
(

1− E∗

E

)(
λS− λ∗S∗

E
E∗

)
= A

(
1− E∗

E

)[
β1(Is + εIn)S− β1(I∗s + εI∗n)S

∗ E
E∗

]
,

= Aβ1 I∗s S∗
(

1− 1
x

)(
zw− x

)

+Aβ1εI∗n S∗
(

1− 1
x

)(
yw− x

)
,

(29)

B
(

1− I∗n
In

)(
(1− p)σE + γIs − a2 In

)
= B

(
1− I∗n

In

)(
(1− p)σE + γIs

−
(
(1− p)σE∗ + γI∗s

)
In

I∗n

)
,

= B(1− p)σE∗
(

1− 1
y

)(
x− y

)

+BγI∗s

(
1− 1

y

)(
z− y

)
,

(30)

and

C
(

1− I∗s
Is

)(
pσE− a3 Is

)
= C

(
1− I∗s

Is

)(
pσE− pσE∗

Is

I∗s

)
,

= CpσE∗
(

1− 1
z

)(
x− z

)
.

(31)

The coefficients of x, y, and z are thus set to zero and solved for A, B, and C. We obtain

A = 1, B =
d2

d3 + d4
, C =

d1 + d4B
d5

,

where

d1 = β1 I∗s S∗, d2 = β1εI∗n S∗, d3 = (1− p)σE∗, d4 = γI∗s , d5 = pσE∗.

After some algebraic manipulations, Equation (27) reduces to

L̇ = −µ(S− S∗)2

S
+ d1

(
3− 1

w
− wz

x
− x

z

)
+ d2

(
3− 1

w
− wy

x
− x

y

)

+
d2d4

d3 + d4

(
3− z

y
− x

z
− y

x

)
+

d2d4

d3 + d4

(
2− y

x
− x

y

)
.

(32)
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Given that the term −µ(S− S∗)2

S
≤ 0, from the expression (32), and the arithmetic

mean–geometric mean inequality, see [27], the remaining terms are non-positive. Addition-
ally, L̇ = 0 only if w = 1, w = x = y = z. Therefore, the largest invariant set where L̇ = 0
is the singleton of EE. By the Lasalle’s Invariance Principle [25,26], EE is thus globally
asymptotically stable with respect to the invariant set Ω.

5. Numerical Simulations
5.1. Model Validation

Given that the available data (both the new daily recorded cases and demographic data)
on South Africa’s COVID-19 epidemic are not sufficient to estimate all model parameters
needed for the fitting process, a number of assumptions had to be made for such parameters.
We fit the model (2) to data to different waves using the least-squares fitting routine function
(lsqcurvefit) in MATLAB. The method helps obtain the values of the parameters that are
then used in the numerical simulations.

The fitting process involved the used of a model system (2) for all the four waves,
while considering each wave separately. We first fit the model to the first wave using the
initial conditions established at the beginning of the pandemic. The populations in each
compartment at the end of the first wave provide the initial conditions for the second wave
and the initial conditions of the third wave were the populations in each compartment at the
end of the second wave and so on. These initial conditions are displayed in Tables 1 and 2.
So, each wave will then have its own parameter values depicting the parameters that
provide the best fit for that wave.

Figure 2 shows the model fitting plots to data from [1] for all four COVID-19 waves.
Model (1) fits well to the COVID-19 new daily cases in South Africa.

(a) (b)

(c) (d)
Figure 2. Model fit to data for COVID-19 waves in South Africa. (a) Wave 1 model fit. (b) Wave 2
model fit. (c) Wave 3 model fit. (d) Wave 4 model fit.

The curve fitting process generates different parameter values in Tables 1 and 2 ac-
cording to each wave data, with some of the parameters obtained from the cited research.
The initial conditions were obtained from [1]. We fit the model without incorporating
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stigma; thus, in this case, the parameters p and γ were equal to zero, and ε = 1. The pa-
rameter values for each wave were then used to perform the sensitivity analysis for each
wave, whose results are depicted in Figure 3.

(a) (b)

(c) (d)

Figure 3. PRCCs for Is during the COVID-19 waves. (a) Wave 1. (b) Wave 2. (c) Wave 3. (d) Wave 4.

Table 1. Parameter values for COVID-19 waves 1 and 2. While, some of the parameter values were
obtained from literature, those with some given intervals were estimated to be between the minimum
and maximum values depicted in the interval.

Symbol Parameter Description Value Source

Wave 1 initial conditions: S0 = 61, 399, 999, E0 = 0, I0
n = 1, H0 = 0, R0 = 0

π Recruitment rate. 11,244 [10,000–25,000] [28]
µ Natural mortality rate. 0.0161 [0.0160–0.0162] [29]
β Infection rate. 0.8438 [0–1.0] Fitted
σ Rate at which exposed become infectious. 0.5 [0.2–0.6] [30]
ρ Rate at which non-stigmatised recover. 0.4492 [0–1] Fitted

κ
Rate at which non-stigmatised are
hospitalized. 0.5749 [0–1] Fitted

δ Death rate due to COVID-19. 0.15 [0–0.2] [31]
α Recovery rate of hospitalized individuals. 0.4345 [0.2–0.5] [32]

Wave 2 initial conditions: S0 = 59, 435, 578, E0 = 0, I0
n = 2888, H0 = 0, R0 = 701, 534

π Recruitment rate. 11,244 [10,000–25,000] [28]
µ Natural mortality rate. 0.0161 [0.0160–0.0162] [29]
β Infection rate. 1.5 [0–2] Fitted
σ Rate at which exposed become infectious. 0.6 [0.2–0.6] Fitted
ρ Rate at which non-stigmatised recover. 0.439 [0–1] Fitted

κ
Rate at which non-stigmatised are
hospitalized. 0.263 [0–1] Fitted

δ Death rate due to COVID-19. 0.31 [0–0.35] [33]
α Recovery rate of hospitalized individuals. 0.5 [0.2–0.5] Fitted
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Table 2. Parameter values for COVID-19 waves 3 and 4. While, some of the parameter values were
obtained from literature, those with some given intervals were estimated to be between the minimum
and maximum values depicted in the interval.

Symbol Parameter Description Value Source

Wave 3 initial conditions: S0 = 58, 636, 134, E0 = 0, I0
n = 880, H0 = 0, R0 = 1,502,986

π Recruitment rate. 11,244 [10,000–25,000] [28]
µ Natural mortality rate. 0.0161 [0.0160–0.0162] [29]
β Infection rate. 1.5 [1.5–3] Fitted
σ Rate at which exposed become infectious. 0.4500 [0.2–0.6] Fitted
ρ Rate at which non-stigmatised recover. 0.9413 [0–1] Fitted

κ
Rate at which non-stigmatised are
hospitalized. 0.1369 [0–1] Fitted

δ Death rate due to COVID-19. 0.1400 [0–0.2] Fitted
α Recovery rate of hospitalized individuals. 0.6500 [0.2–0.7] Fitted

Wave 4 initial conditions: S0 = 58, 636, 898, E0 = 0, I0
n = 116, H0 = 0, R0 = 2,818,236

π Recruitment rate. 11,244 [10,000–25,000] [28]
µ Natural mortality rate. 0.0161 [0.0160–0.0162] [29]
β Infection rate. 1.9999 [1.5–3] Fitted
σ Rate at which exposed become infectious. 0.6000 [0.2–0.6] Fitted
ρ Rate at which non-stigmatised recover. 1.0000 [0–1] Fitted

κ
Rate at which non-stigmatised are
hospitalized. 1.0000 [0–1] Fitted

δ Death rate due to COVID-19. 0.3143 [0–0.35] Fitted
α Recovery rate of hospitalized individuals. 0.6500 [0.2–0.7] Fitted

5.2. Sensitivity Analysis

A sensitivity analysis looks at the process of how uncertainty in the output of a system
can be distributed to different sources of uncertainty in the model [34]. This analysis is
used to explore the entire parameter space of a model with 1000 simulations per run by
using Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC) [35].
PRCC values range from −1 to 0 to +1, with the magnitude indicating the sensitivity of the
state function to the parameter uncertainty and the sign indicating whether the correlation
is positive or negative. A zero correlation coefficient indicates that no association exists
between the measured variables. The closer the coefficient to ±1, the stronger it exists
between the two variables [36,37].

In this study, the parameters with a significant influence on the stigmatised population
Is are shown in Figure 3 for all four waves of COVID-19. Figure 3a shows the PRCC analysis
for COVID-19 first wave. Parameters β, p, and γ show PRCC values of more than 0.5 in
the first wave of COVID-19. From Figure 3a, we observe that the most influential LHS
parameters for the outcome measure in the Is are as follows:

• Increasing the effective transmission rate β, which drives the infection in the total
population, and also increases stigmatised infections.

• An increase in the proportion p of stigmatised infections will also increase the stigma
in the population

• The parameter γ negatively correlates with Is, meaning the increase in unstigmatisa-
tion will decrease the COVID-19 stigmatised population.

On the other hand, in Figure 3b, for the second wave of COVID-19, we observe a
strong correlation in parameters π, p, and κ. Increasing the recruitment rate π will also
impact the stigmatised population. The parameters p and κ are negatively correlated to Is.
In Figure 3c,d, for the third and fourth wave of COVID-19, we observe a strong correlation
in parameters β, p, and γ.

The p-value of the PRCC shows the significance of the value. A state variable is
sensitive to a parameter if the absolute value of the PRCC is more significant than 0.5 (>0.5
or <−0.5) and the corresponding p-value is lower than 0.05 [38]. The results showing the
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p-value for each parameter from the PRCC plots are summarized in Table 3. In this table,
essential contributors to uncertainty have their p-values shown in dark bold.

Table 3. Output from PRCC analysis.

p-Value

Parameters Wave 1 Wave 2 Wave 3 Wave 4

π 0.879990 2.401 × 10−2 0.71379 0.910930
µ 0.091592 0.059767 0.72549 0.897160
β 1.4 × 10−7 4.7 × 10−2 1.6 × 10−2 1.2 × 10−2

ε 0.960410 0.633470 0.81915 0.975520
p 7.4 × 10−6 0.000000 3.205 × 10−3 1.3 × 10−9

σ 0.034164 0.779620 2.3 × 10−2 0.0020758
ρ 0.0001013 0.002839 0.84352 0.221730
κ 1.1 × 10−7 4.7 × 10−9 2.4 × 10−5 0.082288
γ 8.7 × 10−2 2.5 × 10−4 2.1 × 10−2 5.6 × 10−2

δ 0.106480 0.306690 0.13593 0.089534
ω 0.619720 0.454630 0.10030 0.653620
α 0.126880 0.633470 0.55529 0.548380

5.3. Effects of Parameters on the R0

We analysed the effects of parameters on R0 using the contour plots in all three COVID-
19 waves. We chose two significant parameters, σ, and γ, and gave the contour plot as
a function of R0. Figure 4 shows that when σ increases, R0 also increases, and when γ
increases, R0 decreases. This implies that new infections are produced when the exposed
population becomes infectious, and when stigmatised individuals move to the unstigma-
tised population, new infections become less in the population.

(a) (b)

(c) (d)
Figure 4. Contour plots of R0. (a) Wave 1. (b) Wave 2. (c) Wave 3. (d) Wave 4.
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5.4. Effects of Stigma

To assess and analyse the effects of stigma in COVID-19, we examined four regimes:
high stigma, moderate stigma, low stigma, and stigma-free by focusing in the parameters γ
& p. We define the four categories in terms of parameter values as follows:

i high stigma γ = 0, p = 0.49,
ii moderate stigma γ = 0.4, p = 0.49,
iii low stigma γ = 0.8, p = 0.49, and
iv stigma-free γ = 0, p = 0.

We varied the impact of stigma using the rate at which stigmatised become non-
stigmatised individuals γ to assess mild versus high stigma regimes and turned off the pro-
portion p of individuals in E class entering the stigma compartment for the no-stigma case.

Figures 5a, 6a, 7a and 8a used the parameter values from Table 1, except that we
changed the rate at which stigmatised become non-stigmatised to γ = 0.1. This shows a
situation where the population has a high stigma. Most of the individuals remain in the
stigmatised population for a while. In this case, the number of stigmatised individuals
exceeds that of non-stigmatised individuals, sustaining a high level of infected individuals.

Figures 5b, 6b, 7b and 8b show a moderate stigma in the population, where γ = 0.4.
These plots indicate a slow progression from stigmatised individuals to a non-stigmatised
population.

Figures 5c, 6c, 7c and 8c show a low stigma in the population, where γ = 0.8. These
plots indicate that stigmatised individuals move to a non-stigmatised population.

Figures 5d, 6d, 7d and 8d show a case where there is no stigma in the population
(γ = 0 and p = 0). This indicates that all infected individuals are not stigmatised.

• Wave 1

(a) (b)

(c) (d)
Figure 5. Comparison between non-stigmatised and stigmatised populations, varying γ for fixed
values of p for the cases where there is stigma. (a) High stigma, γ = 0 and p = 0.49. (b) Moderate
stigma, γ = 0.4 and p = 0.49. (c) Low stigma, γ = 0.8 and p = 0.49. (d) Stigma-free, γ = 0 and p = 0.

• Wave 2
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(a) (b)

(c) (d)
Figure 6. Comparison between non-stigmatised and stigmatised populations, varying γ for fixed
values of p for the cases where there is stigma. (a) High stigma, γ = 0 and p = 0.49. (b) Moderate
stigma, γ = 0.4 and p = 0.49. (c) Low stigma, γ = 0.8 and p = 0.49. (d) Stigma-free, γ = 0 and p = 0.

• Wave 3

(a) (b)

(c) (d)
Figure 7. Comparison between non-stigmatised and stigmatised populations, varying γ for fixed
values of p for the cases where there is stigma. (a) High stigma, γ = 0 and p = 0.49. (b) Moderate
stigma, γ = 0.4 and p = 0.49. (c) Low stigma, γ = 0.8 and p = 0.49. (d) Stigma-free, γ = 0 and p = 0.
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• Wave 4

(a) (b)

(c) (d)
Figure 8. Comparison between non-stigmatised and stigmatised populations, varying γ for fixed
values of p for the cases where there is stigma. (a) High stigma, γ = 0 and p = 0.49. (b) Moderate
stigma, γ = 0.4 and p = 0.49. (c) Low stigma, γ = 0.8 and p = 0.49. (d) Stigma-free, γ = 0 and p = 0.

5.5. Cumulative Cases

In the figures below, we analyze cumulative cases for each wave and per regime
using the same stigma regimes, parameters, and initial conditions as in previous figures. In
Figure 9a, we observe that the first wave of COVID-19 had the lowest number of stigmatised
individuals when the stigma was high. In contrast, the second wave had the highest
number of cumulative cases. The reason could be that the second wave was associated
with a higher incidence of COVID-19, more rapid hospital admissions, and increased
in-hospital mortality [39]. Figure 9b,c show that when stigma is moderate and low, there
are no stigmatised individuals during the first wave, and the fourth wave has higher
stigmatised individuals.

5.6. Estimated Reproduction Number

Table 4 shows the estimated reproduction numbers for each COVID-19 wave per
stigma regime (high, moderate, low stigma, and stigma-free). The estimates in R1 rep-
resent the number of new COVID-19 infections generated by the stigmatised infectious
population, and R2 represents the number of new COVID-19 infections provoked by the
non-stigmatised contagious population. R0 gives the total number of new infections caused
by both infectious populations. Here, we observe that when stigma is high in the commu-
nity, the basic reproduction number is also high, and the contribution from the stigmatised
to R0 is higher than that from the unstigmatised. Additionally, when stigma is moderate
and low, R0 is still greater than one, and the stigmatised population’s contribution is higher
than the unstigmatised population. When there is no stigma in the community, R1 = 0
since R1 represents new infections generated by stigmatised individuals.
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(a) (b)

(c)

Figure 9. Comparison between cumulative stigmatised populations. (a) High stigma cumula-
tive cases. (b) Moderate stigma cumulative cases. (c) Low stigma cumulative cases.

Table 4. The estimated basic reproduction number for COVID-19 waves in South Africa.

Wave 1

High Moderate Low Stigma-free

R1 7.2258 0.8804 0.4688 0
R2 3.8768 0.8249 0.6270 0.7873
R0 11.1025 1.7054 1.0957 0.7873

Wave 2

High Moderate Low Stigma-free

R1 9.4060 1.5035 0.8170 0
R2 5.2237 1.3468 1.0100 1.1944
R0 14.6296 2.8502 1.8270 1.1944

Wave 3

High Moderate Low Stigma-free

R1 7.4634 1.4457 0.8004 0
R2 4.7434 1.4289 1.0734 1.2404
R0 12.2069 2.8746 1.8738 1.2404

Wave 4

High Moderate Low Stigma-free

R1 12.5406 2.0045 1.08934 0
R2 4.2248 1.0892 0.8169 0.9660
R0 16.7655 3.0937 1.9062 0.9660
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5.7. Contribution of Stigma

This section shows how stigma is contributed to the population based on stigma
regimes. Table 5 shows the calculated area between stigmatised and non-stigmatised
populations. The area is also significant when stigma is in a high state regime.

Table 5. The area between two curves for COVID-19 waves.

High Moderate Low

Wave 1 2.9844 × 108 3.9118 × 106 2.5920 × 104

Wave 2 3.6056 × 108 2.7355 × 107 2.9714 × 106

Wave 3 2.7919 × 108 2.2650 × 107 2.1844 × 106

Wave 4 4.3391 × 108 4.3665 × 107 8.2119 × 106

Figures 10–12 show the contribution of stigma in the population. The area shaded with
red indicates how COVID-19 stigma affects the people in the community per stigma regimes.

5.7.1. High Stigma Regime

Figure 10 shows that high stigma in all four waves increases the stigmatised infec-
tious population, Is, and decreases the non-stigmatised infectious population, In. This
results from more people concealing their statuses to avoid being discriminated against by
the community.

(a) (b)

(c) (d)

Figure 10. High regime state. (a) Wave 1. (b) Wave 2. (c) Wave 3. (d) Wave 4.

5.7.2. Moderate Stigma Regime

Figure 11 shows that even though stigma is moderate, there is an increase in the
stigmatised infectious population, Is, and a decrease in the non-stigmatised infectious
population, In.
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(a) (b)

(c) (d)

Figure 11. Moderate regime state. (a) Wave 1. (b) Wave 2. (c) Wave 3. (d) Wave 4.

5.7.3. Low Stigma Regime

Figure 12 shows that low stigma in all four waves decreases the stigmatised infectious
population, Is, and increases the non-stigmatised infectious population, In. More people
are disclosing their COVID-19 status, and less stigma exists in the population.

(a) (b)

(c) (d)

Figure 12. Low regime state. (a) Wave 1. (b) Wave 2. (c) Wave 3. (d) Wave 4.
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6. Conclusions

Our motivation in undertaking the work presented here was to understand the po-
tential impact of stigma on the transmission dynamics of COVID-19 in South Africa. We
classified the stigma as either low, moderate, or high. We presented a deterministic model
to assess the impact of stigma on the transmission dynamics of COVID-19 in South Africa.
The model considers the susceptible, exposed, non-stigmatised, stigmatised, hospitalized,
and recovered humans. The model reproduction number R0 was determined by using
the next-generation matrix method. Mathematical analysis for the model showed that
the equilibrium points are locally asymptotically stable if R0 is more than one and if R0
is less than one is unstable. The Lyapunov functions were used in the establishment of
global stability for both disease-free and endemic equilibria. Furthermore, the sensitivity
analysis of the model equations was performed, p-values for parameters were obtained,
and numerical simulations based on the highly sensitive model parameters on R0, as shown
in Figure 3. We also analysed the effects of parameters on R0 using the contour plots in all
four COVID-19 waves. We thus see that low, moderate, or high stigma plays a significant
role in sustaining COVID-19 in the population. In Table 4, our analysis demonstrated that
R0 tends to range from 0.7489 to 14.6296 depending on stigma regimes.

The COVID-19 pandemic has continued to spread, causing many deaths, and stigma is
an essential factor in the spread of COVID-19. In practice, COVID-19 eradication strategies
should focus on reducing COVID-19-related stigma through educating individuals about
the disease. Our model has some limitations, which should be acknowledged. We combined
‘disclosure’ and ‘stigma’, whereas, in practice, the social phenomenon of COVID-19-related
stigma is more complex. We represent stigma by way of parameter choices, which simplifies
this case. Thus, further refinement for this study would be to model the stigma parameters
as randomly time-varying functions. Aspects of delays in the stigmatised accessing help
can also be modelled by delay differential equations.
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