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Abstract: In order to construct the multiple traveling wave solutions of the nonlocal modified
Korteweg de Vires (mKdV) equation, the modified tanh-function approach for local soliton equations
is extended to a nonlocal complex mKdV equation. The central idea of this method is to use the
solution of the Riccati equation to replace the tanh function in the tanh function (THF) method. As an
application, we investigate a new traveling wave solution for the nonlocal complex mKdV equation
of Ablowitz and Musslimani. Moreover, some exciting diagrams show the underlying dynamics of
some given solutions.
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1. Introduction

It is noted that the exact solution of the soliton equation is one of the critical problems
of soliton theory. These exact solutions usually predict the complex physical phenomena
underlying these mathematical models [1–12]. For this field, the simple method is the
tanh function method [3–7,10,13,14] and its more general form, namely, the extended tanh
function approach, which is further advanced by Wazwaz [15,16] and Fan [17].

The Korteweg de Vries equation (KdV) equation and the mKdV equation are typ-
ical soliton equations that characterize the development of weak- and small-amplitude
waves [18]. A complex version of the mKdV equation is

qt + 6ε|q|2qx + qxxx = 0 (ε = ±1) (1)

which appears in [19]. The initial problem and structural stability of Equation (1) are
studied in [20,21]. Not long ago, Musslimani and Abowitz proposed the nonlocal complex
mKdV equation in [22]

qt(x, t) + 6σq(x, t)q∗(−x,−t)qx(x, t) + qxxx(x, t) = 0 (σ = ±1) (2)

Here, q(x, t) is a complex-valued function of t and x; the complex conjugation is
denoted by the symbol *. Some exact solutions of Equation (2) had been studied by using
the Darboux transformation or inverse scattering transform method in [21,23]. Furthermore,
asymptotic analysis of the mKdV equation was studied in [24]. These solutions show that
the nonlocal mKdV Equation (2) has some new properties that are different from local
mKdV Equation (1) in [25,26]. For example, in a physical application, the nonlocal mKdV
equation has delayed time-reversal symmetry [27]. However, it was not found that the
extended tanh function method (ETFM) can be used to solve the nonlocal complex mKdV
equation. In this paper, the extended tanh function method of the local soliton equation is
developed for the nonlocal complex mKdV equation, and exact solutions are obtained.
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The structure of this paper is as follows. The first part briefly introduces the current
study for the mKdV equation. See Section 2 for ETFM procedures. We apply ETFM to the
nonlocal mKdV equation in Section 3. Section 4 is the conclusion.

2. Extended Tanh Function Method

For Nonlinear Evolution Equations system:

H(v, u, vt, ut, vx, ux, vxt, uxt, · · · ) = 0. (3)

K(v, u, vt, ut, vx, ux, vxt, uxt, · · · ) = 0. (4)

H and K are polynomials v(x, t) and u(x, t). The main steps are:
Step 1. Use the following converters,

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = x + ct. (5)

C is a constant. The systems (3) and (4) are then converted to nonlinear ordinary
differential equations.

H1(v, u, v′, u′, v′′, u′′ · · · ) = 0. (6)

K1(v, u, v′, u′, v′′, u′′ · · · ) = 0. (7)

where H1 and K1 are polynomials of the derivatives of u(ξ) and v(ξ), while u′ = du
dξ ,

v′ = dv
dξ .
Step 2. Suppose solutions of Equations (6) and (7),

u(ξ) =
m

∑
i=0

aiφ
i v(ξ) =

n

∑
i=0

biφ
i. (8)

where ai 6= 0, bi 6= 0 are undetermined constants, φ is suitable for the Riccati equation.

φ′ = d + φ2. (9)

where φ′ = dφ
dξ , the solution of Equation (9) has three types according to the constant d:

Case 1. If d < 0, then

φ = −
√
−d tanh(

√
−dξ), or φ = −

√
−d coth(

√
−dξ). (10)

Case 2. if d = 0, then

φ = −1
ξ

. (11)

Case 3. if d > 0, then

φ =
√

d tan(
√

dξ), or φ = −
√

d cot(
√

dξ). (12)

Step 3. Find the positive integer n, m in Equation (8). Make the highest derivative
equal to the highest power of the nonlinear term in the Equations (6) and (7), m and n
are determined.

Step 4. Substitute Equations (8) and (9) into Equations (6) and (7). The coefficients of
φi(i = 1, 2, · · · ) are combined, and then the coefficient equals zero. To obtain the values of
ai and bi, Mathematica is used to solve algebraic equations.

Step 5. Substitute bi and ai into Equation (8) to access the exact solutions of Equations (3)
and (4).
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3. Application to Nonlocal Complex mKdV Equation

Equation (2) is a nonlinear integrable system. By symmetry reduction

σq∗(−x,−t) = r(x, t), σ = ±1, (13)

Equation (2) converts to two classical equations

qt(x, t) + qxxx(x, t)− 6q(x, t)r(x, t)qx(x, t) = 0. (14)

rt(x, t) + rxxx(x, t)− 6q(x, t)r(x, t)rx(x, t) = 0. (15)

To obtain an exact solitary wave solution for mKdV Equation (2), transform Equations (14)
and (15) by

r(x, t) = R(ξ), q(x, t) = Q(ξ), ξ = x + ct. (16)

Then Equations (14) and (15) are reduced to two ordinary differential equations,

cQ′ + Q′′′ − 6QRQ′ = 0. (17)

cR′ + R′′′ − 6RQR′ = 0. (18)

According to the law of homogeneous equilibrium, the highest derivative term
qxxx(x, t) is equal to the power of the nonlinear term q(x, t)r(x, t)qx(x, t) of the Equa-
tion (14), n + 3 = 2n + 1 + m, that is, m = n = 1. Then assume:

Q(ξ) = a0 + a1φ, (19)

R(ξ) = b0 + b1φ. (20)

where φ satisfies Riccati Equation (9). Then,

Q′ = a1φ′ = a1(d+ φ2), Q′′ = 2a1φφ′ = 2a1φ(d+ φ2), Q′′′ = 2a1d2 + 8a1dφ2 + 6a1φ4 (21)

R′ = b1φ′ = b1(d + φ2), R′′ = 2b1φφ′ = 2b1φ(d + φ2), R′′′ = 2d2b1 + 8db1φ2 + 6b1φ4. (22)

Substitute (19)–(21) for (17), and substitute (19), (20), (22) for (18). When the same
power term of φ is combined and the coefficients φi is set to 0, the nonlinear equation of
a0, a1; b0, b1 and c are obtained.

2a1d2 − 6a0db0a1 + da1c = 0
a2

1b0d + a0a1db1 = 0
8a1d− 6a0a1b0 − 6a2

1b1 + a1c = 0
a2

1b0 + a0a1b1 = 0
a1 − a2

1b1 = 0

(23)


2b1d2 − 6a0db0b1 + db1c = 0

a0db2
1 + a1db0b1 = 0

8db1 − 6a0b0b1 − 6a1db2
1 + b1c = 0

a0b2
1 + a1b0b1 = 0

b1 − a1b2
1 = 0

. (24)

Four groups of solutions of Equation (23) are obtained in Mathematica.

{a1 = 0},{
d =
−6a2

0 − a2
1c

2a2
1

, b0 = − a0

a2
1

, b1 =
1
a1

}
,

{
a0 = − ia1

√
c√

6
, d = 0, b0 =

i
√

c√
6a1

, b1 =
1
a1

}
,
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{
a0 =

ia1
√

c√
6

, d = 0, b0 = -
i
√

c√
6a1

, b1 =
1
a1

}
.

Equation (24) is solved to obtain the other four solutions.

{b1 = 0},{
d =
−6a2

0 − a2
1c

2a2
1

, b0 = − a0

a2
1

, b1 =
1
a1

}
,

{
a0 = − ia1

√
c√

6
, d = 0, b0 =

i
√

c√
6a1

, b1 =
1
a1

}
,{

a0 =
ia1
√

c√
6

, d = 0, b0 = − i
√

c√
6a1

, b1 =
1
a1

}
.

Riccati Equation (9) will have three types of general solutions according to
Equations (10)–(12).

Case 1. According to Equation (10), When d =
−6a2

0−a2
1c

2a2
1

, c > − 6a2
0

a2
1

, then d < 0, and

φ = −
√

6a2
0+a2

1c
2a2

1
tanh

√
6a2

0+a2
1c

2a2
1

ξ, or−
√

6a2
0+a2

1c
2a2

1
coth

√
6a2

0+a2
1c

2a2
1

ξ.

So Q(ξ) = q(x, t) = a0 + a1φ = a0 − a1

√
6a2

0+a2
1c

2a2
1

tanh
√

6a2
0+a2

1c
2a2

1
(x + ct) or

Q(ξ) = q(x, t) = a0 + a1φ = a0 − a1

√
6a2

0 + a2
1c

2a2
1

coth

√
6a2

0 + a2
1c

2a2
1

(x + ct).

Then

Q∗(−ξ) = q∗(−x,−t) = a0 + a1

√
6a2

0 + a2
1c

2a2
1

tanh

√
6a2

0 + a2
1c

2a2
1

(x + ct)

or

Q∗(−ξ) = q∗(−x,−t) = a0 + a1

√
6a2

0 + a2
1c

2a2
1

coth

√
6a2

0 + a2
1c

2a2
1

(x + ct).

R(ξ) = r(x, t) = b0 + b1φ = − 1
a2

1

(
a0 + a1

√
6a2

0 + a2
1c

2a2
1

tanh

√
6a2

0 + a2
1c

2a2
1

(x + ct)

)
or

R(ξ) = r(x, t) = b0 + b1φ = − 1
a2

1

(
a0 + a1

√
6a2

0 + a2
1c

2a2
1

coth

√
6a2

0 + a2
1c

2a2
1

(x + ct)

)
.

When a1 = ±1, we have r(x, t) = σq∗(−x,−t), σ = −1. According to the symmetric
reduction condition, the system Equations (14) and (15) coupled to the nonlocal complex
mKdV Equation (2). So, the common solutions of Equations (23) and (24) are{

a0 = ±
√
−2d + c

6
, b0 = −a0, b1 = ±1, a1 = ±1

}
.

MKdV Equation (2) solution

Q(ξ) = q(x, t) = a0 + a1φ = ±
√
−2d + c

6
−
(
±
√
−d tanh

√
−d(x + ct)

)
(25)
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or

Q(ξ) = q(x, t) = a0 + a1φ = ±
√
−2d + c

6
−
(
±
√
−d coth

√
−d(x + ct)

)
. (26)

As a special case, when c = 2, d = −2, solution (25) simplified to

Q(ξ) = q(x, t) = ±
[√

1
3
−
√

2 tanh
√

2(x + 2t)

]
. (27)

Solution (27) shown in Figure 1.

Figure 1. Graph of solution (27) taking the plus sign.

Case 2. According to Equation (11), when d = 0, c < 0, then φ = − 1
ξ , we have

Q(ξ) = q(x, t) = a0 − a1
1
ξ
= a0 − a1

1
(x + ct)

= − ia1
√

c√
6
− a1

1
(x + ct)

Q∗(−ξ) = q∗(−x,−t) = − ia1
√

c√
6

+ a1
1

(x + ct)
= a1

(
− i
√

c√
6
+

1
(x + ct)

)
R(ξ) = r(x, t) = b0 + b1φ =

1
a1

(
i
√

c√
6
− 1

(x + ct)

)
.

when a1 = ±1, we have σq∗(−x,−t) = r(x, t), σ = −1. By this symmetric reduction
condition, Equations (14) and (15) coupled to the nonlocal complex mKdV Equation (2),
next, the common solutions of Equations (23) and (24) will be{

a0 = −(± i
√

c√
6
), a1 = ±1, d = 0, b0 = ± i

√
c√
6

, b1 = ±1
}

.

Traveling wave solution of mKdV Equation (2) is obtained,

Q(ξ) = q(x, t) = a0 − a1
1

(x + ct)
= −

[
±
(

i
√

c√
6
− 1

(x + ct)

)]
. (28)
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Especially when c = −4, b = 0, the solution (28) simplified to

q(x, t) = ±
(

2√
6

+
1

(x - 4t)

)
. (29)

See Figure 2.

Figure 2. Graph of solution (29) taking the plus sign.

Case 3. According to Equation (12), if

c < −
6a2

0
a2

1
.

then

d =
−6a2

0 − a2
1c

2a2
1

> 0.

then

φ(ξ) =

√
−

6a2
0 + a2

1c
2a2

1
tan

√
−

6a2
0 + a2

1c
2a2

1
ξ,

or

−

√
−

6a2
0 + a2

1c
2a2

1
cot

√
−

6a2
0 + a2

1c
2a2

1
ξ.

So

Q(ξ) = q(x, t) = a0 + a1φ = a0+a1

√
−

6a2
0 + a2

1c
2a2

1
tan

√
−

6a2
0 + a2

1c
2a2

1
(x + ct)

or

Q(ξ) = q(x, t) = a0 + a1φ = a0 − a1

√
−

6a2
0 + a2

1c
2a2

1
cot

√
−

6a2
0 + a2

1c
2a2

1
(x + ct).

And

Q∗(−ξ) = q∗(−x,−t) = a0 − a1

√
−

6a2
0 + a2

1c
2a2

1
tan

√
−

6a2
0 + a2

1c
2a2

1
(x + ct),
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or

Q∗(−ξ) = q∗(−x,−t) = a0 + a1

√
−

6a2
0 + a2

1c
2a2

1
cot

√
−

6a2
0 + a2

1c
2a2

1
(x + ct).

And

R(ξ) = r(x, t) = b0 + b1φ = − 1
a2

1

(
a0 − a1

√
−

6a2
0 + a2

1c
2a2

1
tan

√
−

6a2
0 + a2

1c
2a2

1
(x + ct)

)
,

or

R(ξ) = r(x, t) = b0 + b1φ = − 1
a2

1

(
a0 + a1

√
−

6a2
0 + a2

1c
2a2

1
cot

√
−

6a2
0 + a2

1c
2a2

1
(x + ct)

)
.

When a1 = ±1, we have σq∗(−x,−t) = r(x, t), σ = −1. Under this symmetric reduction
condition, Equations (14) and (15) are coupled to a nonlocal complex mKdV Equation (2).
By this condition, the solutions of Equations (23) and (24) is obtained.{

a0 = ±
√
−2d + c

6
, b0 = −a0, b1 = ±1, a1 = ±1

}
.

Solution of the mKdV Equation (2)

Q(ξ) = q(x, t) = a0 + a1φ = ±
[√
−2d + c

6
+
√

d tan
√

d(x + ct)

]
, (30)

or

Q(ξ) = q(x, t) = a0 + a1φ = ±
[√
−2d + c

6
−
√

d tan
√

d(x + ct)

]
. (31)

Especially when c = −8, b = 1, the solution (30) simplified to

Q(ξ) = q(x, t) = ±[1+ tan(x− 8t)]. (32)

As is shown in Figure 3.

Figure 3. Graph of solution (32) taking the plus sign.
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4. Conclusions

The tanh function approach for the local soliton equation is extended to the nonlocal
complex mKdV equation using the solution of the Riccati equation, replacing the tanh
function in the tanh function method. As an application, several multiple traveling wave
solutions for the nonlocal complex mKdV equation are obtained. Furthermore, compared
with the local soliton equation, the extended tanh function method for the nonlocal complex
mKdV equation contains more restrictions on corresponding parameters.
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