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Abstract: Ontology is the kernel technique of the Semantic Web (SW), which models the domain
knowledge in a formal and machine-understandable way. To ensure different ontologies’ commu-
nications, the cutting-edge technology is to determine the heterogeneous entity mappings through
the ontology matching process. During this procedure, it is of utmost importance to integrate dif-
ferent similarity measures to distinguish heterogeneous entity correspondence. The way to find
the most appropriate aggregating weights to enhance the ontology alignment’s quality is called
ontology meta-matching problem, and recently, Evolutionary Algorithm (EA) has become a great
methodology of addressing it. Classic EA-based meta-matching technique evaluates each individual
through traversing the reference alignment, which increases the computational complexity and
the algorithm’s running time. For overcoming this drawback, an Interpolation Model assisted EA
(EA-IM) is proposed, which introduces the IM to predict the fitness value of each newly generated
individual. In particular, we first divide the feasible region into several uniform sub-regions using
lattice design method, and then precisely evaluate the Interpolating Individuals (INIDs). On this
basis, an IM is constructed for each new individual to forecast its fitness value, with the help of
its neighborhood. For testing EA-IM’s performance, we use the Ontology Alignment Evaluation
Initiative (OAEI) Benchmark in the experiment and the final results show that EA-IM is capable of
improving EA’s searching efficiency without sacrificing the solution’s quality, and the alignment’s
f-measure values of EA-IM are better than OAEI’s participants.

Keywords: ontology matching; evolutionary algorithm; interpolation model; lattice design

MSC: 68T30; 68W50

1. Introduction

As the kernel technique of Semantic Web (SW) [1], ontology plays an increasingly key
role in such domains as information integration [2], data warehouse [3], e-commerce [4]
and knowledge acquisition [5]. According to Bekelman et al. [6], an ontology usually
contains the following elements: class or conception: describes the objects collection that
are common in a specific province from an abstract perspective. For example, “book” can
be represented as a class of all book objects in a bookstore; property or relation: explains
the relationships of two entities in a particular province; individual or instance: describes
the specific objects that correspond to concepts in the real world; function: the descriptions
on a specialized relationship, which links the class to its parent class or an instance; axiom:
the descriptions on the theorem that are always true in a particular domain. Figure 1
shows an example of a medical ontology of COVID-19, where the rectangle represents
class, one-way arrow between the rectangles denotes the relationship or property, e.g.,
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“coronaviruses” is a subclass of RNA viruses. The instance is represented with circular ova,
e.g., “glucocorticoids” is an instance of the medicine.

Figure 1. An Example of Medical Ontology On COVID-19.

Although an ontology plays an significant role in the area of knowledge engineering,
because of human subjectivity, different ontologies exist the problem of semantic hetero-
geneity [7], e.g., two ontologies might develop with different OWL languages. Ontology
heterogeneity issue greatly affects the communications among different ontologies and
the co-operations of their intelligent applications. To achieve the final purpose of SW, it is
critical to determine the correspondences between heterogeneous entities, i.e., matching
ontologies [8]. Figure 2 illustrates the process of matching two heterogeneous ontologies,
where O1 and O2, respectively, denote two ontologies, A and A′ are, respectively, the final
alignment and a partial alignment that could be determined by other ontology matchers, p
is a parameter set for the matching process, and r is an external resource set. On this basis,
we can formally define the ontology matching process as a function f , which takes as input
O1, O2, A′, p and r, and outputs A.

Figure 2. Ontology matching process.

Since the rapid growth of the ontology, an ontology might own thousands or even
more entities, and their semantic relationships become more and more complicated [9],
then the ontology matching process gets very complicated. In the ontology matching
process, how to measure the similarity of two entities to distinguish the accurate matching
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elements is a key step in the ontology matching process, which is usually addressed
by similarity measures. Similarity measures calculate to the degree of similarity of two
entities, which can be divided into two broad categories, which, respectively, based on
two entities’ syntax information and linguistic information. Different similarity measures
have their own advantages and disadvantages and the applicable scope. Since using only
one similarity measure is not enough to obtain satisfying ontology matching results, it is
required to integrate multiple measures to enhance the result’s confidence. Ontology meta-
matching investigates how to find the optimal integrating weights for similarity measures
to improve the ontology alignment’s quality [10], which is a open challenge due to the
complex heterogeneous context on entities and the high computational complexity on the
matching process [11]. Due to the following two characteristics: (1) the potential parallel
search mechanism enables EA to effective explore all the feasible regions; (2) the strong
exploration helps prevent the algorithm from falling into the local optimum, and converge
to the global optimum, Evolutionary Algorithm (EA) becomes a popular methodology for
addressing ontology meta-matching problem [12–14].

With respect to the EA-based ontology meta-matching technique, the population’s
evaluation is critical for its performance. However, the expensive evaluation, i.e., the
evaluation on an individual requires large computational resources, would deteriorate the
algorithm’s performance. In the empirical experiment, the classic EA might take about
30 s to evaluate an individual fitness. To improve the algorithm’s efficiency, this work
proposes an Interpolation Model assisted EA, which is able to forecast the newly generated
individual’s fitness value with a problem-specific IM to save the running time. In particular,
we first used the lattice design method [15] to divide the feasible region into several uniform
sub-regions and evaluated the representative solutions. After determining which region the
newly generated individual was in, an IM was built by using its neighborhood to calculate
the fitness value. In particular, the contributions made in this work are as follows:

• a mathematical optimization model on EA-IM based ontology meta-matching problem
is constructed;

• a binomial IM based on lattice design is presented to forecast the fitness of the individ-
uals, which is constructed according to the relationship between ontology alignment’s
two evaluation metrics;

• an EA-IM is proposed to efficiently address the ontology meta-matching problem.

The rest of the paper is organized as follows: Section 2 presents the related work of
ontology meta-matching; Section 3 shows the definitions on ontology matching and the
similarity measures; Section 4 presents the construction of Interpolation Model (IM) and the
IM-assisted EA; Section 5 shows the experimental results; Section 6 draws the conclusion.

2. Related Work

Similarity measure determines to what extent two entities is similar, and the combi-
nation of multiple similarity measures can enhance the quality of alignment. Ontology
meta-matching dedicates to investigate the way to find the integrating weights of similarity
measures to enhance the ontology alignment’s quality. EA is an outstanding algorithm to
overcome ontology meta-matching problem due to its parallel search mechanism and strong
exploration, and in recent years, lots of work about EA-based ontology meta-matching
techniques are researched. Next, we will review the techniques of EA-based ontology
meta-matching in chronological order.

Naya et al. [16] first introduced EA into the field of ontology meta-matching to
enhance ontology alignment’s quality. They investigated how to use EA to aggregate
multiple similarity measures to optimize the quality of matching results. Starting from
the initial population, each individual represented a particular measures combination,
and the algorithm iterated to generate the best measures combination. This work was
impressive for the development of ontology meta-matching study. Martinez-Gil et al. [17]
also proposed an approach based on EA to address the ontology meta-matching problem,
which is Genetics for Ontology Alignments (GOAL). Specifically, GOAL described the
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feasible domain as parameters that were encoded as a chromosome, so the authors devised
a way to translate the decimal numbers into a set of floating-point numbers to an arbitrary
range of [0, 1]. The authors then constructed one fitness function to select which individuals
in the population were more likely to be retained. The experiment proved that GOAL had
better scalability and could optimize the matching process. For effectively optimizing the
weight of similarity aggregation without knowing the ontology features, Giovanni et al. [18]
proposed Memetic Algorithm (MA) to perform the ontology meta-matching to find the sub-
optimal alignments. Specifically, MA brings the local search strategy into EA’s evolutionary
process, and improved converging speed while ensuring the quality of the solution. This
work had shown that the memetic method was an effective way of improving the classic EA-
based meta-matching techniques. On this basis, Giovanni et al. [19] proposed an ontology
alignment system based on MA, which adjusted its specific instance parameters adaptively
with the FML-based fuzzy adjustment to improve the algorithm’s performance. To match
several pairs of ontologies at the same time, and overcome the shortcomings of f-measure,
Xue et al. [20] proposed the MatchFmeasure, a rough evaluation index without reference
matching, and Uniform Improvement Ratio (UIR), a metric to complement MatchFmeasure.
This method was able to align multiple pairs of ontologies simultaneously, and avoided the
bias improvements on the solutions. In order to better enhance the efficiency of ontology
meta-matching process, the Compact EA (CEA) was proposed and used to optimize the
aggregating weights [21]. Experimental results showed that CEA could greatly reduce the
running time and increase the efficiency. Later on, Parallel CEA (PCEA) [22] was presented
to address the meta-matching problem, which combined the parallel technique and compact
encoding mechanism. Comparing with CEA, PCEA could further decrease the execution
time and main memory consumption of the tuning process, without sacrificing the quality of
alignment. Lv et al. [23] proposed a new meta-matching technology for ontology alignment
with grasshopper optimization (GSOOM), which used The Grasshopper Optimization
Algorithm (GOA) to find the corresponding relationship between the source ontology and
target ontology by optimizing the weight of multiple similarity measures. They modeled
the ontology meta-matching problem as an optimization GOA individual fitness problem
with two objective functions. More recently, Lv et al. [24] introduced an adaptive selection
strategy to overcome the premature convergence, which was able to dynamically adjust
the selection pressure of the population by changing individual fitness values.

One of the drawbacks that make the existing EA-based matching techniques unable
to widely be used in the practical scenarios is their solving efficiency, i.e., they need long
running time to find the final alignment especially when evaluating the population. In
this work, to address the issue of expensive evaluation, an EA-IM based ontology meta-
matching technique is proposed, which makes use of the problem-specific IM to save the
algorithm’s running time. In particular, the lattice design is introduced to divide the feasible
regions into several parts, which is able to ensure the the accuracy of the approximate
evaluation.

3. Preliminaries
3.1. Ontology, Ontology Alignment and Ontology Matching Process

In this work, ontology is defined as follows:

Definition 1. An ontology can be seen as a 6-tuple O = (C, P, I, ϕCP, ϕCI , ϕPI) [25], where:

• C is a nonempty set of classes;
• P is a nonempty set of properties;
• I is a nonempty set of instances:
• ϕCP: P −→ C× C associates a property pεP with two classes;
• ϕCI : C −→ φ(I) associates a class cεC with a subset of I which represents the instances of

the concept c;
• ϕPI : P −→ φ(I2) associates a property pεP with a subset of Cartesian product I × I which

represents the pair of instances related through the property p.
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To address the ontology heterogeneity issue, the most common method is executing the
ontology matching process to determine ontology alignment, which is defined as follows:

Definition 2. Given two ontology O1 and O2, an ontology alignment is the set of matched elements,
and the matched element can be seen as a 5-tuple (id, e1, e2, confidence, relation), where:

• id is the identifier of the matching element;
• e1 and e2 are entities of ontology O1 and O2, respectively;
• con f idence is the confidence value of the matched element (generally in the range [0, 1]);
• relation represents the matching relation between entities e1 and e2, such as equivalence

relation or generalization relation.

Definition 3. The ontology matching process is regarded as a β function [26] AO = β(O1, O2, AI ,
p, r), where O1 and O2 are the two ontologies to be matched, respectively, AI is an input alignment,
p is a set of parameters, r is a set of resources, AO is a new alignment between O1 and O2. The
output alignment AO is a set of semantic matchings; they can connect entities belonging to O1 with
similar entities belonging to O2. The relationship that exists between two ontology entities can be
seen as equivalence(≡).

Figure 3 shows the illustration of two heterogeneous ontologies and their alignment.
These two ontologies have descriptions of concepts, properties, and instances. Concepts
also have inclusion relationships. In this figure, class is described with the rectangle with
rounded corners, e.g., class “Chairman” is a specialization (subclass) of class “Person”; The
relation between entities has the relation of equivalence and inclusion, entity correspon-
dence is denoted by the thick arrow that links an entity of O1 with an entity of O2, which
is represented with the relationship which will be reflected by the correspondence, e.g.,
“Author” in O1 is more general than Regular author in O2. The “SubjectArea” in O1 and
the “Topic” in O2 are a pair of heterogeneous entities, and they are equivalent. An entity is
connected with its attributes by dotted lines, e.g., “has email” is a property of the entity
“Human” which is defined on the string field.

Figure 3. An Example of Heterogeneous Ontologies and Ontology Alignment.

3.2. Similarity Measure

When matching two ontologies, only those mappings with high similarity value would
be regarded as the correct ones. Therefore, how to measure the similarity of two entities
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to distinguish the correct entity correspondence is critical for ontology matching process.
Similarity measure can be used to evaluate the similarity value of two entities to distinguish
the correct matching elements. In the ontology matching domain, since syntax-based
similarity measure and linguistic-based similarity measure are frequently used [27], in this
work, we select two syntax-based similarity measures, i.e., SMOA [28] and N-Gram [29],
and one linguistic-based similarity measure, i.e., Wu and Palmer method [30].

SMOA calculates two string’s similarity by taking into account both their similarities
and differences between two strings, which is defined in Equation (1):

SMOA(r1, r2) = com(r1, r2)− di f (r1, r2) + winklerlmpr(r1, r2) (1)

where com(r1, r2) is the commonality between two string r1 and r2, di f (r1, r2) is their
difference and winklerlmpr(r1, r2) is the result’s optimisation using the method introduced
by Winkler.

Specifically, com(r1, r2) first iteratively obtains the maximum common character sub-
string between the strings r1 and r2 until there is no common character substrings. When-
ever a maximum public character substring is found, it will be removed from the original
string, and the search continues for the next maximum public character substring. Finally,
divide the length of the longest common character substring found by the sum of the
lengths of the strings r1 and r2 to get the commonality between them. In particular, their
commonality is defined as following:

com(r1, r2) =
2×∑i|maxComStringi|

|r1|+ |r2|
(2)

where maxComStringi is the i-th longest common substring between r1 and r2, |r1| and |r2|
are r1 and r2’s cardinality. di f (r1, r2) is determined by the length of the character substring
that does not match in the first iteration of com(r1, r2), which can be defined as Equation (3):

di f (r1, r2)=
1
2
× |d(r1)|·|d(r2)|

p+(1−p)(|d(r1)|+|d(r2)|)−|d(r1)||d(r2)|
(3)

where d(r1) = |r1−maxComStringi |
|r1|

and d(r2) = |r2−maxComStringi |
|r2|

, respectively. p is a pa-
rameter used to adjust a different importance to the difference component of the SMOA
(typically p = 0.6). In the next, we show an example of calculating SMOA value between
two strings “14522345345667890” and “1234567890”. First, their longest common sub-
string is “67890”, and thus |maxComStringi| = 5. Then, the number of |r1| and |r2| are
17 and 10, respectively, and the value of com(r1, r2) and winklerlmpr(r1, r2) are 0.38 and
0.68, respectively. The number of |d(r1)| is 0.5, and the number of |d(r2)| is 0.71, we can
obtain di f (r1, r2) = 0.24 according to Equation (3). Finally, two strings’ SMOA value is 0.82
according to Equation (1).

According to [31], N-gram is also a great syntax-based similarity measure because it is
able to analyze the similarity between two strings with fine granularity. Given a string, the
N-gram of the string represents the segment of the original word sliced by length N, that is,
all the n-length substrings in the string. If you have two strings and take their N-gram, you
can define the N-gram distance between them in terms of the number of substrings they
have in common. As a similarity measure, N-gram can be defined as Equation (4):

N-gram(r1, r2) =
2 · comm(r1, r2)

Nr1 + Nr2
(4)

where r1 and r2 are the two strings to be compared, and each of them is divided according
to certain rules. In the experiment, we set N to 3 and three letters are divided into groups
for segmentation. In addition, comm(r1, r2) represents the number of sub-strings that are
identical between the r1 and r2 strings. Nr1 and Nr2 represent the number of substrings r1
and r2 are segmented, respectively. For example, the word “platform” can be cut into six
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substrings: “pla”, “lat”, “atf”, “tfo”, “for”, and “orm”. The word “plat” can be cut into two
substrings: “pla” and “lat”. The same substrings of r1 and r2 are “pla” and “lat”. When
calculate the N-gram similarity between “platform” and “plat”, the number of r1 substrings
Nr1 = 6, the number of r2 substrings Nr2 = 2, and the number of common substrings r1 and
r2 which is com(r1, r2) = 2 can be substituted into the Equation (4).

Different from the above two metrics, Wu and Palmer’s method uses WordNet [32]
to measure the semantic distance of two words. WordNet is an online English vocabulary
retrieval system. As a linguistic ontology and semantic dictionary, WordNet is widely used
in natural language processing. Here, the closer two terms are to their common parent in
semantic depth in WordNet, the more similar they become. Given two words r1 and r2,
their linguistic similarity is calculated as follows:

Wup(r1, r2) =
2 · depth(LCA(r1, r2))

depth(r1) + depth(r2)
(5)

where LCA(r1, r2) is the closest common parent concept between r1 and r2, depth(LCA(r1, r2))
represents the depth position of the common parent, depth(r1) and depth(r2) represent
the depth position of r1 and r2 in WordNet dictionary, respectively. The smaller the gap
between depth(LCA(r1, r2)) and depth(r1) and depth(r2), the closer the kinship between
common parent LCA(r1, r2) and r1 and r2, that is, the closer r1 and r2 are. Figure 4 shows
an example. The “Animal” in the figure is located in the first layer of the network, which is
the lowest layer. According to the Wup calculation rule, both “Bird” and “Fish” are in the
second layer, and the nearest common parent is the “Animal” in the first layer. Therefore,
the similarity between “Bird” and “Fish” is 2⁄(2 + 2) = 0.5. The concepts “Sparrow” and
“Parrot” are both in the third layer, and their common parent is the "bird" in the second level,
so that the similarity between “Sparrow” and “Parrot” is 4/(3 + 3) ≈ 0.67. Such results
are consistent with the human perception of the world, that “sparrows” and “parrots” are
more similar than “Bird” and “Fish”.

Figure 4. Depth position diagram.

3.3. Similarity Aggregation Strategy

Since the complex heterogeneous characteristics between two ontologies, a single
similarity measure is hard to ensure its effectiveness on all matching tasks. Therefore, we
need to integrate multiple similarity measures to improve the result’s confidence. The most
common strategy of aggregating similarity measures is the weighted sum method [33],
which is defined as Equation (6):

simmagg(ei, ej) =
n

∑
k=1

wk · simmk(ei, ej), subject to
n

∑
k=1

wk = 1 (6)
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where ei, ej are, respectively, two entities from two different ontologies, and wk is the
aggregating weight for kth similarity measure simmk. For example, assuming there are three
similarity measures, whose similarity values on two entities are, respectively, simm1 = 0.75,
simm2 = 0.62 and simm3 = 0.83, given the aggregating weight vector (w1, w2, w3) =
(0.2, 0.3, 0.5)T where ∑ wi = 1, and the final similarity value is ∑ wi × simmi = 0.2× 0.75 +
0.3× 0.62 + 0.5× 0.83 = 0.75.

3.4. Ontology Meta-Matching Problem

In the field of ontology matching the quality of the final matching is usually measured
by the correctness and completeness of the correspondence found. In particular, precision
calculates the fraction of matched alignments which are truly correct, and recall calculates
the percentage of correct matches found compared to the total number of existing correct
matches [34]. In general, precision and recall are comprehensively trade off through
f-measure, which is a weighted summed average of them. In this work, f-measure is used
to measure the quality of the ontology alignment’s result [35]. Formally, precision, recall
and f-measure are, respectively, defined as following:

precision =
|R

⋂
A|

|A| (7)

recall =
|R

⋂
A|

|R| (8)

f −measure =
2 · precision · recall
precision + recall

(9)

where R is the reference alignment and A is the alignment.
Given two ontologies O1 and O2, supposing the best alignment of O1 and O2 is a

one-to-one relationship, the more correspondences between O1 and O2, and the similarity
of the correspondence is proportional to the quality of the alignment. Therefore, ontology
alignment quality measure can be obtained as follows:

I(A) = α× F(A) + (1− α)× ∑
|A|
i δi

|A| (10)

where |A| is the number of correspondences in the alignment A, F() is a function that
evaluates A’s f-measure, δi represents the ith correspondence’s similarity value in A and
δi is a tuning parameter which trades off the ontology alignments characterized by high
precision or high recall. Based on the previous work [36], we set δi to 0.2. Therefore, we can
define the ontology meta-matching problem as follows:

max I(X)

s.t. X = (x1, x2, · · · , xn)
T ,

n

∑
i=1

xi = 1, xi ∈ [0, 1], i = 1, 2, · · · , n

(11)

where the decision variable X is the parameter set, e.g., the weights for aggregating multiple
similarity measures and the threshold for filtering the aggregated alignment.

4. Evolutionary Algorithm with Interpolation Model

When evaluating an individual, the traditional way needs to traverse all the corre-
spondences in the reference alignment, which requires long running time. To address this
issue, an interpolation model is proposed, which is able to significantly save the running
time of EA. The framework of EA-IM based ontology meta-matching is shown in Figure 5:



Mathematics 2022, 10, 3212 9 of 20

Figure 5. The framework of EA-IM based ontology meta-matching.

Before initializing the population, lattice design is used to divide the feasible domain,
and 16 standard individuals, i.e., INIDs, are set for calculating individual fitness. In
the process of population fitness evaluation, the three INIDs that are most similar to
individuals (that is, the closest distance) are firstly found, and interpolation prediction
model is constructed by using these three INIDs, then the fitness of individuals is obtained.
After that, the individuals are updated by the selection, crossover and mutation operations
of the evolutionary algorithm. The algorithm iterates until the maximum number of
times, and finally outputs the individuals representing the optimal solution. The following
introduction will focus on the coding mechanism of the algorithm, lattice design for feasible
domain, EA-IM based ontology matching and evolution operators.

4.1. Encoding Mechanism

The individuals in this article are binary coded, and since three measures are aggre-
gated in this article, each individual contains three similarity values, as well as a threshold
for filtering lower similarity values, which are updated with iteration. The encoding
scheme in this paper represents weights by defining segmentation points in the interval
[0, 1]. Presuming p is the required amount of weights, then set of segmentation points will
be obtained as s′ = {s′1, s′2, . . ., s′p−1}. An individual decoding process is to first select the
elements in S′ in ascending order to get s = {s1, s2, . . ., sp−1}, and then, the corresponding
weights are calculated by the following formula:

wk =


s1, k = 1

sk − sk−1,1 < k < p

1− sp−1

(12)

Since p− 1 bits are needed to indicate the split point and 1 bit to indicate the threshold,
P represents the length of individual codes. Figure 6 shows an instance of weight encoding
and decoding in which there are 6 weights used to integrate 6 different similarity measures:
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Figure 6. Weight coding and decoding examples.

Then, according to the five segmentation points, the decoded weights are
w1 = s1 − 0 = 0.175, w2 = s2 − s1 = 0.166, w3 = s3 − s2 = 0.124, w4 = s4 − s3 = 0.301,
w5 = s5 − s4 = 0.166, w6 = 1− s5 = 0.068.

4.2. Binomial Interpolation Model Based on Lattice Design

Due to the large searching space, it is hard to predict the position of a new individual
in the feasible region, and thus the most effective method is to uniformly divide the feasible
region into several grids in advance. In this work, the crossing points of the grids are called
Interpolating Individuals (INIDs), which are precisely evaluated. On this basis, we built IM
for evaluating the new individual’s fitness through its nearest INIDs. In particular, we use
the simple lattice design [37] to divide the feasible region to ensure the uniform distribution
of precisely evaluated individuals, which can accommodate more test processing and
theoretically can have a good control of the error of the test.

With respect to the setting of the number of INID, we need to weigh that the efficiency
and effectiveness of the algorithm. In this work, since the dimension of the feasible region
is 4, the total number of INID is exponentially related to the number of cut points in each
dimension. For example, if there are x cut points in each dimension, the total number of
INIDs is x4. It is obvious that one cut point will cause large deviation of individual fitness,
while three points would produce 34 = 81 INIDs, which would reduce the efficiency of our
algorithm. To better trade off the efficiency and effectiveness, we empirically set cut point
of each dimension as two. Therefore, we can get 24 = 16 INIDs. In addition, regarding
the configuration of two cutting points on each dimension, since we need to ensure the
uniform distribution of INIDs to the maximum extent, the optimal positions of two points
are set as those closest to 1/3 and 2/3 in the interval [0, 1], respectively. In the experiment,
we set the two cutting points as 0.33 and 0.66, respectively.

A simple example of dividing two dimensional region is shown in Figure 7 and nine
divided regions are marked with numbers from 1 to 9.

After that, given a new individual ind, we first construct a plane rectangular coordi-
nate system recall as the horizontal axis and precision the vertical axis, and find its three
nearest INIDs INID1, INID2 and INID3, where INID1 < INID2 < INID3 in terms of
their distances to ind. The distances between ind and INID1 and INID2 are d1 and d2,
respectively. Finally, ind’s recall recallpredict(ind) and precision recallpredict are calculated
according to the following formulas:

recallpredict =
d1 × INIDrecall

2 + d2 × INIDrecall
1

d1 + d2
(13)

precisionpredict =a× recall2
predict+b× recallpredict+c (14)
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where INIDrecall
1 and INIDrecall

2 are recall values of INID1 and INID2, respectively, and
a < 0, b > 0, c > 0 are the coefficients of a quadratic function determined by INID1,
INID2, and INID3.

Figure 7. An example of feasible region division.

An example of evaluating a new individual A with IM is shown in Figure 8. In the
figure, X1, X2 and X3 are, respectively, three INIDs closest to A, which can be used to
construct IM in the form of a quadratic function, d1 (d2) is the distance between A and X1
(X2). In the objective space, X1, X2 and A, respectively, correspond to X′1, X′2 and A′, and
since d′1 and d′2, which are, respectively, the distances between X′1 and A′, and X′2 A′, are
very small, A′ can be approximately regarded being on IM’s curve. Therefore, the ratio of

d1 and d2 is approximately equal to that of d′1 and d′2, i.e., d1
d2
≈ d′1

d′2
. Finally, with this ratio

and the coordinate values of x′1 and x′2, we can determine the coordinate values of A′ in the
objective space through Equations (13) and (14), i.e., A′’s recall and precision.

Figure 8. The interpolation model.
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The smaller the distance between two individuals, the more similar they are. In this
work, we use the Euclidean distance to calculate two individuals’ distance, which is defined
in Equation (15):

d(p1, p2) =

√√√√ F

∑
i=1

(p1i − p2i)2 (15)

where p1 and p2 are two individuals, and F is the number of their features.

4.3. Selection, Crossover and Mutation

Selection aims to select the best individuals in the population by fitness function or
other criteria to form the next generation of the population. Selection operation includes
roulette selection method, tournament selection method and random traversal sampling
method. In order to ensure that excellent individuals have more chances to reproduce, and
in consideration of the need to ensure the diversity of the population, the roulette wheel
selection method is used, the higher the fitness of the individuals are more likely to be
selected.

Crossover refers to the random selection of two individuals from the population,
through the exchange of two chromosomes, to produce a new individual to ensure the
diversity of the population. In practical application, the single point crossover operator is
the most widely used operator, which randomly selects a crossover location in the paired
chromosome and then performs gene transposition on the paired chromosome at this
crossover location. Using the single point crossover method, the selected individuals are
recombined according to a predetermined probability.

Mutation can prevent the EA from falling into the local optimal solution by changing
the gene value of some gene loci of some individuals in the population. In practical
application, a single point mutation, also known as bit mutation, is mainly used, that
is, only one bit in the gene sequence is mutated. Taking binary coding as an example, 0
becomes 1, and 1 becomes 0. We also adopt the method of single point variation.

5. Experiment
5.1. Experimental Configuration

In the experiments, we used the well-known Benchmark provided by Ontology Align-
ment Evaluation Initiative (OAEI) [38] to test EA-IM’s performance. OAEI is an interna-
tional ontology Alignment competition designed to evaluate various ontology alignment
algorithms for the purpose of evaluating, comparing, communicating and promoting ontol-
ogy alignment. OAEI’s Benchmark features wide. In particular, it contains 51 ontologies
from the same domain, and they are modified manually, some will change natural language
tags and comments, etc., while others will replace concepts with random strings. This can
fully measure the advantages and inferiority of different ontology matching algorithms.
Specifically, these ontologies are divided into three categories, i.e., 1XX, 2XX and 3XX. 1XX
(two same ontologies) are those testing cases whose ID begins with 1, whose ontologies
are usually used for concept testing, the ontologies of 2XX (two ontologies with different
lexical or structure features) are usually used for comparing different modifications, and
the ontologies of 3XX (two real world ontologies) are developed by different organizations
and come from the same domain in the real world. 16 INIDs of lattice design is shown in
Table 1.

First, we compare the matching results and running time of our algorithm with
classic EA-based ontology meta-matching to prove that our algorithm greatly improves
the efficiency of ontology matching under the condition of having good matching results.
Secondly, we compare the matching results of our algorithm with the participants above
OAEI, further illustrating the superiority of our matching results. To evaluate our algorithm
more comprehensively, the recall, precision and f-measure are used as well as algorithm’s
running time to evaluate our method. As mentioned above, recall measures the ratio of all
positive examples found in the sample, how many of the samples predicted to be positive
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by precision are truly positive samples, while f-measure represents the weighted average of
recall and precision. Algorithm generation time refers to the time it takes for the algorithm
to complete the number of generations we set in advance.

Table 1. 16 INIDs for building interpolation models.

(0.3, 0.3, 0.3, 0.3) (0.3, 0.3, 0.3, 0.6)

(0.3, 0.3, 0.6, 0.3) (0.3, 0.3, 0.6, 0.6)

(0.3, 0.6, 0.3, 0.3) (0.3, 0.6, 0.3, 0.6)

(0.3, 0.6, 0.6, 0.3) (0.3, 0.6, 0.6, 0.6)

(0.6, 0.3, 0.3, 0.3) (0.6, 0.3, 0.3, 0.6)

(0.6, 0.3, 0.6, 0.3) (0.6, 0.3, 0.6, 0.6)

(0.6, 0.6, 0.3, 0.3) (0.6, 0.6, 0.3, 0.6)

(0.6, 0.6, 0.6, 0.3) (0.6, 0.6, 0.6, 0.6)

To make the fair comparisons, EA-IM and EA’s parameters are set as the same, which
are as follows:

• Population size PopNum = 20,
• Crossover probability CP = 0.6,
• Mutation probability MP = 0.01,
• Maximum generation MaxGen = 1000,

The above configuration follows the following principles:

• Population size. The setting of the population size depends on the complexity of
the individual, and according to previous studies [39], population size should be in
the range [4×n, 6×n] where n is the decision variable’s dimension number. In this
work, the decision variable owns 4 dimensions, so the population size should be in
the range [16, 24]. The larger population size is, the longer time population might
take to converge. While the smaller it is, the higher probability of which the algorithm
suffers from the premature convergence [40]. Since the ontology meta-matching is a
small-scale issue, we set the population size as 20.

• Crossover and mutation probability. For crossover and mutation probabilities, small
probabilities will decrease the diversity of the population while large probabilities will
miss the optimal individuals [41]. Their suggested ranges are, respectively, [0.6, 0.8]
and [0.01, 0.05], and since the problem in this work is a low-dimensional problem,
we select CP = 0.6 and MP = 0.01, whose effectiveness are also verified in the
experiment.

• Maximum generation. In EA, the maximum of generations is directly proportional to
the scale of the problem [42], and the suggested range is [800, 2000]. Since the ontology
meta-matching problem in this work is a 4-dimensional problem, who’s searching
region is not very large, the maximum generation should be a relative small value,
and in the experiment, MaxGen = 1000 is robust on all testing cases.

In the experiment, we first compare EA-IM with classic EA-based ontology meta-
matching technique in Table 2 in terms of precision, recall and f-measure and the symbols
P, R and F, respectively, represent precision, recall and f-measure. Then, we show the
corresponding box-and-whisker plots in Figures 9–11. After that, we compare their running
time in Table 3, and finally, we compare EA-IM with OAEI’s participants in terms of f-
measure and running time in Tables 4 and 5. The results shown in the table and figures are
the mean value of 30 independent runs.
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Table 2. Comparison between EA-IM and EA on OAEI’s Benchmark.

Testing Case
EA-IM EA-IM EA-IM EA EA EA

P(stDev) R(stDev) F(stDev) P(stDev) R(stDev) F(stDev)

101 1.000 (0.000) 1.000 (0.024) 1.000 (0.013) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
103 1.000 (0.003) 1.000 (0.009) 1.000 (0.006) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
104 1.000 (0.000) 1.000 (0.003) 1.000 (0.002) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
201 0.989 (0.005) 0.907 (0.007) 0.946 (0.005) 0.989 (0.000) 0.928 (0.000) 0.957 (0.000)
203 1.000 (0.000) 0.979 (0.424) 0.990 (0.390) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
204 1.000 (0.000) 0.990 (0.041) 0.995 (0.023) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
205 0.974 (0.009) 0.794 (0.014) 0.875 (0.012) 0.989 (0.000) 0.918 (0.004) 0.952 (0.002)
206 1.000 (0.006) 0.876 (0.065) 0.934 (0.041) 1.000 (0.000) 0.928 (0.000) 0.963 (0.000)
207 1.000 (0.009) 0.887 (0.037) 0.940 (0.024) 1.000 (0.000) 0.938 (0.000) 0.968 (0.000)
221 1.000 (0.000) 0.990 (0.005) 0.995 (0.002) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
222 1.000 (0.007) 1.000 (0.008) 1.000 (0.007) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
223 0.990 (0.005) 0.990 (0.005) 0.990 (0.005) 1.000 (0.000) 0.990 (0.000) 0.995 (0.000)
224 1.000 (0.000) 1.000 (0.024) 1.000 (0.013) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
225 1.000 (0.000) 1.000 (0.005) 1.000 (0.003) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
228 1.000 (0.014) 1.000 (0.012) 1.000 (0.011) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
230 0.935 (0.000) 1.000 (0.000) 0.966 (0.000) 0.986 (0.001) 0.986 (0.000) 0.986 (0.001)
231 1.000 (0.000) 1.000 (0.005) 1.000 (0.002) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
232 1.000 (0.000) 1.000 (0.005) 1.000 (0.003) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
233 1.000 (0.015) 1.000 (0.015) 1.000 (0.013) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
236 1.000 (0.015) 1.000 (0.015) 1.000 (0.015) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
237 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.001) 1.000 (0.000) 1.000 (0.001)
238 0.990 (0.005) 0.979 (0.005) 0.984 (0.005) 0.990 (0.000) 0.990 (0.000) 0.990 (0.000)
239 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
240 0.969 (0.000) 0.939 (0.000) 0.954 (0.000) 1.000 (0.009) 0.970 (0.000) 0.985 (0.005)
241 1.000 (0.014) 1.000 (0.014) 1.000 (0.012) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
246 1.000 (0.000) 0.966 (0.000) 0.983 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
247 0.969 (0.000) 0.939 (0.000) 0.954 (0.000) 1.000 (0.009) 0.970 (0.000) 0.985 (0.005)
248 1.000 (0.000) 0.010 (0.000) 0.020 (0.000) 0.500 (0.000) 0.021 (0.000) 0.040 (0.000)
301 0.960 (0.008) 0.814 (0.007) 0.881 (0.006) 0.980 (0.001) 0.814 (0.000) 0.889 (0.001)
302 0.906 (0.012) 0.604 (0.006) 0.725 (0.005) 1.000 (0.000) 0.604 (0.000) 0.753 (0.000)
303 0.884 (0.017) 0.770 (0.029) 0.822 (0.023) 0.870 (0.028) 0.833 (0.020) 0.851 (0.001)

Average 0.986 0.917 0.934 0.978 0.932 0.946

5.2. Experimental Results

It can be seen from Table 2 that the mean f-measure of EA-IM and EA are 0.934 and
0.946, respectively. In addition, to further measure their results’ degree of closeness, we
calculated their mean difference value. In particular, the mean difference first calculates
two method’s absolute value of their difference on each testing cases, and then calculates
their mean value. In the experiment, the mean difference value between EA-IM and EA
is 0.012, which shows that the results of EA-IM and EA are very close to each other. On
testing cases 1XX, the f-measure values of EA-IM are all 1.000, which shows that it is able
to effectively find all correct entity pairs under simple heterogeneous context. On testing
cases 2XX and 3XX, EA-IM is also able to find high-quality of alignments in terms of both
recall and precision. When facing complex heterogeneous ontologies, the utilization of
two syntax-based similarity measures and a linguistic-based similarity measure enables it
to distinguish heterogeneous entities under different contexts. We need to point out that
on testing case 248, EA-IM’s f-measure is relatively low. The ontology have little lexical
and linguistic information in this matching task, and it requires the matching technique
making use of the context information to find more correspondences. However, EA-IM
does not use the context-based similarity measure, which directly affects the quality of
alignment on these testing cases. In general, EA-IM’s results are very close to those of EA,
and it has a relatively low average standard deviation, which shows that the proposed IM
is effective to approximately evaluate the individual’s fitness and is also of help to enhance
the algorithm’s stability.

In Figure 9, the upper edge of both methods is 1.000; the lower edge of EA-IM is 0.974,
while the lower edge of EA is 1.000, with a difference of 2.6% between the results of the
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two methods; the median of EA-IM is 1.000, while the median of EA is 1.000. Therefore, it
visually illustrates that EA-IM and EA have a high degree of proximity in terms of precision.
In Figure 10, the upper edge of both methods is 1.000; the lower edge of EA-IM is 0.770,
while the lower edge of EA is 0.918, with a difference of 16.1% between the results of the
two methods. This gap is caused by the low results of EA-IM in testing case 248, 302 and
303 because of the more complex lexical information of these ontologies. However, this
does not affect the excellent performance of EA-IM in terms of the final result (f-measure);
the median of EA-IM is 0.990, while the median of EA is 1.000, with a difference of 1.0%.
In Figure 11, the upper edge of both methods is 1.000; the lower edge of EA-IM is 0.875,
while the lower edge of EA is 0.952, with a difference of 8.1% between the results of the two
methods; the median of EA-IM is 0.995, while the median of EA is 1.000, with a difference
of 0.5%. The experimental results shown in these figures further show the effectiveness
of IM.

Figure 9. Comparison of EA-IM and EA on the Box-and-whisker Plot in terms of precision.

Figure 10. Comparison of EA-IM and EA on the Box-and-whisker Plot in terms of recall.
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Figure 11. Comparison of EA-IM and EA on the Box-and-whisker Plot in terms of f-measure.

Table 3. Comparison of EA-IM and EA in terms of Running Time (millisecond).

Testing Case EA-IM EA

101 1459 32,762
103 1346 32,382
104 1448 32,214
201 1639 32,267
203 1899 32,802
204 2116 33,212
205 2130 33,267
206 1995 32,613
207 1784 33,615
221 1552 32,863
222 1623 32,832
223 1663 33,643
224 1479 33,913
225 2103 33,455
228 1721 22,436
230 2071 28,423
231 1951 33,460
232 2066 33,181
233 1738 22,404
236 1328 22,636
237 1735 32,362
238 2323 34,396
239 1708 22,190
240 2005 22,326
241 1830 22,696
246 1905 21,829
247 1818 22,177
248 2149 32,493
301 2031 26,488
302 1869 23,982
303 2125 25,481

Average 1826 29,395
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In Table 3, the average running time of EA-IM is 1826 milliseconds, while the aver-
age running time of EA is 29,395 milliseconds, and the improvement degree is 93.79%.
Regarding classic EA-based matching technique, each individual needs to be evaluated
by comparing its corresponding alignment with the reference one, which consumes huge
running time. With the introduction of IM, we construct a problem-specific mathematical
model to forecast the individual’s fitness value, which will decrease the computational
complexity, and therefore decrease the running time. From Table 4, EA-IM’s f-measure
values are higher than those of OAEI’s participants, which shows that the iterative refining
mechanism can effectively improve the alignment’s quality. From the above results, we
can draw the conclusion that EA-IM can efficiently address the ontology meta-matching
problem and determine high-quality alignments.

Table 4. Comparison among EA-IM and OAEI’s participants in terms of f-measure on Benchmark.

Testing Case Edna AgrMaker AROMA ASMOV CODI Ef2Match Falcon GeRMeSMB MapPSO RiMOM SOBOM TaxoMap EA-IM

101 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00
103 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00
104 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00
201 0.04 0.92 0.95 1.00 0.13 0.77 0.97 0.94 0.42 1.00 0.95 0.51 0.95
203 1.00 0.98 0.80 1.00 0.86 1.00 1.00 0.98 1.00 1.00 1.00 0.49 0.99
204 0.93 0.97 0.97 1.00 0.74 0.99 0.96 0.98 0.98 1.00 0.99 0.51 0.99
205 0.34 0.92 0.95 0.99 0.28 0.84 0.97 0.99 0.73 0.99 0.96 0.51 0.88
206 0.54 0.93 0.95 0.99 0.39 0.87 0.94 0.92 0.85 0.99 0.96 0.51 0.93
207 0.54 0.93 0.95 0.99 0.42 0.87 0.96 0.96 0.81 0.99 0.96 0.51 0.94
221 1.00 0.97 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.99
222 0.98 0.98 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.46 1.00
223 1.00 0.95 0.93 1.00 1.00 1.00 1.00 0.96 0.98 0.98 0.99 0.45 0.99
224 1.00 0.99 0.97 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.51 1.00
225 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00
228 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 0.85 0.90 0.93 0.97 0.98 0.97 0.97 0.94 0.98 0.97 0.97 0.49 0.97
231 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00
232 1.00 0.97 0.97 1.00 0.97 1.00 0.99 1.00 1.00 1.00 1.00 0.51 1.00
233 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
237 0.98 0.98 0.97 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 0.46 1.00
238 1.00 0.94 0.92 1.00 0.99 1.00 0.99 0.96 0.97 0.98 0.98 0.45 0.98
239 0.50 0.98 0.98 0.98 0.98 0.98 1.00 0.98 0.98 0.98 0.98 0.94 1.00
240 0.55 0.91 0.83 0.98 0.95 0.98 1.00 0.85 0.92 0.94 0.98 0.88 0.95
241 1.00 0.98 0.98 1.00 0.94 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
246 0.50 0.98 0.97 0.98 0.98 0.98 1.00 0.98 0.98 0.98 0.95 0.94 0.98
247 0.55 0.88 0.80 0.98 0.98 0.98 1.00 0.91 0.89 0.94 0.98 0.88 0.95
248 0.03 0.72 0.00 0.87 0.00 0.02 0.00 0.37 0.05 0.64 0.48 0.02 0.02
301 0.59 0.59 0.73 0.86 0.38 0.71 0.78 0.71 0.64 0.73 0.84 0.43 0.88
302 0.43 0.32 0.35 0.73 0.59 0.71 0.71 0.41 0.04 0.73 0.74 0.40 0.73
303 0.00 0.78 0.59 0.83 0.65 0.83 0.77 0.00 0.00 0.86 0.50 0.36 0.82

Average 0.75 0.92 0.88 0.97 0.81 0.92 0.94 0.90 0.85 0.96 0.94 0.59 0.93

Table 5 shows the comparison among EA-IM and OAEI’s participants in terms of
running. In Table 5, the matcher’s f-measure per second is calculated by dividing its average
F measure by the average running time, which is a measure used by OAEI to measure
matcher efficiency. As can be seen, our algorithm is faster than other matchers, which is
because we have introduced IM to EA to improve the efficiency of ontology matching.
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Table 5. Comparison among EA-IM and OAEI’s participants in terms of running time.

Testing Case Running Time (Second) F-Measure per Second

AML 120 0.0031
CroMatcher 1100 0.0008

Lily 2211 0.0004
LogMap 194 0.0028

PhenoMF 1632 0.0000
PhenoMM 1743 0.0000
PhenoMP 1833 0.0000

XMap 123 0.0045
LogMapBio 54,439 0.0000

EA 29.395 0.0322
EA-IM 1.826 0.5115

6. Conclusions and Future Work

Ontology is a new reference model for information exchange, which can be used to get
the most accurate semantic normalization description. However, because of the subjectivity
of ontology designers, there exists heterogeneity problem between different ontologies,
which greatly hinders their semantic interoperability. To solve this problem, researchers
need to find semantically identical entities in two ontologies, which is the so-called ontology
matching. For EA-based ontology matching techniques, population’s evaluation is of great
importance to affect the performance of the algorithm. However, the traditional way of
evaluating an individual requires traversing the reference alignment, which results in high
computational cost and reduces the algorithm’s performance. To overcome this drawback,
we propose an EA-IM ontology meta-matching technique, which introduces the IM to
predict the fitness value of each newly generated individual. In particular, we first divide
the feasible region into several uniform sub-regions using lattice design method, and then
precisely evaluate INIDs. On this basis, an IM is constructed for each new individual
to forecast its fitness value, with the help of its neighborhood. The experimental results
show that IM can help EA greatly explore the feasible region and determine high-quality
alignments efficiently.

To further improve the performance of EA-IM, we are interested in adaptively ad-
justing the number of INIDs according to the matching task’s heterogeneity feature. In
addition, we are also interested in training the problem-specific similarity measures to
better distinguish the heterogeneous entities, which should take into consideration of the
entity’s context information. Last but not the least, when the scale of ontologies become
large, an efficiency-improving strategy, such as the correspondence pruning strategy, could
be introduced to control the scale of each similarity measure’s corresponding similarity
matrix, which is helpful to optimize the algorithm’s efficiency.
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