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Abstract: This analysis focuses on extending and developing some previous studies of energy
transport through nanofluids to include the states of combined convection flow of a Williamson
hybrid nanofluid that flows around a cylinder. Mathematical models that simulate the behavior
of these upgraded nanofluids are constructed by expanding the Tiwari and Das model, which are
then solved numerically via Keller box approaches. The accuracy of the results is emphasized by
comparing them with the previous published outcomes. Nanosolid volume fraction 0 ≤ χ ≤ 0.1,
combined convection−1 ≤ λ ≤ 5, radiation factor 0.1 ≤ R ≤ 6, Weissenberg number 0.2 ≤We ≤ 0.9,
and magnetic factor 0.1 ≤ M ≤ 1 are the factors that have been taken into consideration to examine
the energy transfer performance of Williamson hybrid nanofluid. Numerical and graphical outcomes
are obtained using MATLAB, analyzed, and discussed in depth. According to the outcomes, the
Weissenberg number reduces energy transfer and friction forces. Both the combined convective
coefficient and the radiation factor improved the rate of energy transfer and increased the velocity of
the host fluid. The fluid velocity and rate of energy transfer can be reduced by increasing the magnetic
factor. The nanoparticle combination of silver and aluminum oxide (Ag-Al2O3) has demonstrated
superiority in enhancing the energy transfer rate and velocity of the host fluid.

Keywords: Williamson hybrid nanofluid; combined convection; magnetohydrodynamics; thermal
radiation; Tiwari and Das model

MSC: 76B99

1. Introduction

Many fluids that play critical roles in energy transmission are not subject to Newton’s
laws; in other words, the viscosity or flow characteristics of these non-Newtonian fluids are
affected not only by temperature or pressure but are also positively or negatively affected
by stress. This has led to the emergence of many mathematical models that have tried to
predict the behavior of these non-Newtonian fluids. Among the most widely used non-
Newtonian models is the Williamson model, which has been constructed by Williamson [1]
to simulate the characteristics of the flow of shear-thinning fluids. In the following decades,
many studies established their own mathematical models based on the Williamson model,
in addition to including many factors that have a great impact on the rate of energy transfer.
Nadeem et al. [2] simulated the behavior of the Williamson liquid flowing past a stretching
sheet. Nadeem and Hussain [3] examined the energy transport in a Williamson fluid
flowing over an exponentially stretching surface. Malik et al. [4,5] presented a numerical

Mathematics 2022, 10, 3191. https://doi.org/10.3390/math10173191 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173191
https://doi.org/10.3390/math10173191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1623-2178
https://orcid.org/0000-0001-6505-4067
https://orcid.org/0000-0003-4381-5851
https://doi.org/10.3390/math10173191
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173191?type=check_update&version=2


Mathematics 2022, 10, 3191 2 of 19

study about the influence of heat generation (absorption) and chemical reactions on energy
transmission in Williamson fluid flowing over a stretching cylinder. Iqbal et al. [6] utilized
the Shooting Technique to solve the governing model of Williamson liquid flow around an
exponentially stretching cylinder. Ogunseye et al. [7] combined the Williamson and Casson
models for a flow simulation of the viscoelastic nanoliquid over a vertical moving cylinder.
Hussain et al. [8] presented a numerical simulation of the flow of magnetohydrodynamic
viscid Williamson using the Buongiorno nanofluid model. Loganathan and Sangeetha [9]
conducted a numerical investigation into the energy transfer performance of Williamson
nanoliquids. Almaneea [10] investigated the reinforces of mass and heat transmission
under thermal changes in Williamson liquid via hybrid nanosolids.

The increasing demand for improving energy transfer through ordinary fluids has led
to the invention of several methods to this end. Choi and Eastman’s [11] incorporation of
the concept of nanofluids into the realm of energy transport for the first time in 1995 was one
of the most important methods ever proposed in the field of energy transfer improvement.
This was followed by several studies to confirm the effectiveness of these tiny particles and
their prominent effect on all factors mainly affecting energy transfer. Studies [12–14] found
that nanosolids immersed in liquids at low concentrations (1–5% vol) have the ability to
raise the thermal conductivity of the host fluids by more than 20%. Eastman et al. [15]
discovered that the inclusion of the nanometal is more efficient in boosting the thermal
conductivity of the base liquid than the inclusion of some nanosolid oxides. Other studies,
such as Heris et al. [16], were interested in studying the extent of the improvement in the
heat transfer coefficient, which is a better indicator than improving the thermal conductivity
of nanoliquids employed in some applications, such as designing heat exchange equipment.
They found that the rate of improvement in the energy transport coefficient is more than
twice the rate of improvement in thermal conductivity. Kuznetsov and Nield [17] conducted
a study to expand and improve some of the previous investigations. As a result, many
mathematical models have been established that examine all aspects that govern the transfer
of energy, including the one-phase model, such as the Tiwari and Das model, which was
found to demonstrate the direct impact of the volume fraction of a nanosolid on all physical
quantities related to the rate of energy transfer. Many researchers have employed this model,
which has proven its efficiency and realism over more than two decades. Tham et al. [18,19],
Sheremet and Pop [20], Dogonchi et al. [21], Alwawi et al. [22,23], Hamarsheh et al. [24],
Sreedevi and Reddy [25], Khan et al. [26], Jamshed et al. [27], Swalmeh et al. [28,29], and
others utilized the Tiwari and Das model to simulate heat transmission problems. The
Tiwari and Das model was expanded and developed in this project to examine our problem.

Recently, a new and improved generation of nanomaterials called hybrid nanomateri-
als has begun to emerge and spread, as they have been synthesized in much experimental
research. The main goal of hybrid nanomaterials is to create a nano-compound with inte-
grated features in terms of thermal conductivity, stability, energy transport rate, etc. [30–34].
On the other hand, many numerical studies have been carried out in an attempt to model
the behavior of this upgraded nanofluid. Moghadassi et al. [35] confirmed numerically
that hybrid nanofluids had the highest values of the heat convection factor as well as
a superiority in the Nusselt number when compared to mono-nanofluid. Mehryan [36]
employed the finite element technique to solve the governing equation of a square cavity
filled with mono-hybrid nanoliquid in the case of mixed convection. Aminian et al. [37]
numerically simulate the MHD convection caused by external sources in a cylinder filled
with porous media. Alharbi et al. [38] numerically analyzed the thermal performance
of mono-hybrid nanoliquid around a cylinder subjected to a magnetic field. Patil and
Kulkarni [39] modeled the combined convection flow of magnetized hybrid nanofluid
around a slender cylindrical shape. Alwawi et al. [40] reported the characteristic flow of
magnetized H2O/H2O-ethylene glycol as a host hybrid nano liquid that flows around a
cylinder. Patil [41] analyzed the energy transport through a flowing upgrade nanoliquid
from a vertical cylindrical surface with a chemical reaction. Williamson hybrid nanofluid
flow has also been addressed in recent studies [42–47].
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In practice, heat transport via combined convection is important in several engineer-
ing and manufacturing implementations. It is clearly visible in electronic cooling systems
and nuclear reactors, as well as in food production, solar thermal collectors, etc. On the
other hand, magnetohydrodynamics (MHD) has gained prominence and has been the
subject of much research due to its ability to control the rate of energy transfer. It can be
found in a wide range of applications, including modern metallurgy and metalworking
processes, electromagnetic pumps, nuclear reactor cooling, MHD propulsion, and plasma
studies. Furthermore, the critical role of thermal radiation as a controlling factor in polymer
manufacturing processes, particularly in polymer extrusion, cannot be ignored. Motivated
by previous studies that did not address or examine our problem and considering the
enormous engineering and industrial applications, the present numerical simulation ex-
pands on some previous studies to include the flow of Williamson hybrid nanofluid that
flows around a horizontal circular in the case of combined convection under the impact of
thermal radiation and magnetism. The impressions of critical factors on physical quantities
related to energy transfer are showcased via graphs and tables for the cylindrical surface. It
is expected that the current study’s findings will not only provide helpful information for
future applications but will also provide support for previously published works.

2. Significance of Study

The problem of combined convection flow and heat transfer on a horizontal circular
cylinder in Williamson hybrid nanofluids under thermal radiation and magnetic field was
studied in this paper. The hybrid nanofluid has attracted the attention of researchers on
account of the possibility that hybrid nanofluids may have utility in solving convection
problems and improving fluid heat transfer. Hence, nanofluids can enhance the thermal
conductivity features between these fluids and the bodies, which is widely accounted
for and surveyed in modern mechanical engineering fields. Additionally, this theoretical
consideration supplies approximate numerical solutions for testing the thermo-physical
influences of the oxides and nanoparticles on Williamson fluids in the presence of combined
convection boundary layer flow about a horizontal circular cylinder. It is expected that the
outputs gained will contribute to the best understanding of Williamson hybrid nanofluids
in the presence of combined flow over a horizontal circular cylinder around the boundary
layer area. The problem investigated in this article is resolved numerically by the Matlab
coding program, thus the computations aid in the development of computational tools and
knowledge that have the capacity to obtain the physical behaviors, such as the effects of
thermal radiation on Williamson hybrid nanofluids parameters on the interesting physical
quantities. Thus, the development of the software packages may be of assistance to
researchers in modeling and simulation.

3. Mathematical Formulations

This section explores the mathematical formulation for the problem of combined
convection boundary layer flow in an electro-conductive Williamson hybrid nanofluid.
Additionally, a radiative horizontal circular cylinder is considered, and a magnetic field
is imposed. The abbreviations for constant wall temperature, gravity vector, and uniform
stream velocity are Tw, g, and U∞, respectively. The observed dimensional variables, m and
n, measure the circumference surface and distance perpendicular to the circular cylinder,
respectively, see Figure 1.
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Figure 1. MHD Williamson hybrid nanofluid physical model. 

Respecting the above considerations, the dimensional rulings can be written as (see 
[40,48,49]): 

0
u v

m n

 
 

 
 (1)

2

2

2 2
2

2 2

2

( )sin ,

HNF

HNF HNF HNF HNF O

u u p u u
u v v

m n m n n

u u m
g T T B u

m n a



   

                    
              

 (2)

2

2

2 2
2

2 2

2

( ) cos ,

HNF

HNF HNF HNF HNF O

u u p u u
u v v

m n n n n

u u m
g T T B u

m n a



   

                    
              

 (3)

2 2

2 2

1
,

( )
R

HNF
HNF

QT T T T
u v

m n m n c np



     

         
 (4)

Whereas the initial profiles, boundary conditions (constant wall temperature) of our 
study are expressed as [50]: 

0, 0,wu v T T at n     

( ), , ,eu u m T T p p at n      (5)

The uniform stream U∞ flows perpendicular to the cylinder, therefore the free stream 
velocity ( ) / sin( / )eu m U m a . The technique for converting dimensional governing 
equations to non-dimensional equations is done by using non-dimensional variables, 
which are defined as follows: (see [51]): 

Figure 1. MHD Williamson hybrid nanofluid physical model.

Respecting the above considerations, the dimensional rulings can be written as
(see [40,48,49]):
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= 0 (1)

ρHNF
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√
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+

µHNF

(
∂2u
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∂2u
∂n2

)
+ ρHNFβHNFg(T − T∞) sin

(m
a
)
− σHNFB2

Ou,
(2)

ρHNF

(
u ∂u

∂m + v ∂u
∂n

)
= − ∂p

∂n +
√

2vΓ
(

∂2u
∂n2

∂u
∂n

)
+

µHNF

(
∂2u
∂m2 +

∂2u
∂n2

)
+ ρHNFβHNFg(T − T∞) cos

(m
a
)
− σHNFB2

Ou,
(3)

u
∂T
∂m

+ v
∂T
∂n

= αHNF

(
∂2T
∂m2 +

∂2T
∂n2

)
− 1

(ρcp)HNF

∂QR
∂n

, (4)

Whereas the initial profiles, boundary conditions (constant wall temperature) of our
study are expressed as [50]:

u = v = 0, T = Tw at n = 0,

u→ ue(m), T → T∞, p→ p∞ at n→ ∞, (5)

The uniform stream U∞ flows perpendicular to the cylinder, therefore the free stream
velocity ue(m) = U∞/ sin(m/a). The technique for converting dimensional governing
equations to non-dimensional equations is done by using non-dimensional variables, which
are defined as follows: (see [51]):

m =
(m

a
)
, n = Re1/2( n

a
)
, u =

(
u

U∞

)
, v =

(
v

U∞

)
Re1/2

ue(m) = ue(m)
U∞

, θ = T− T∞
Tw− T∞

, p = p− p∞
ρ f (U2

∞)
.

(6)

where Re = U∞a/v f represents the Reynolds number, and the Prandtl number is sym-

bolized by Pr =
v f
α f

. Further, QR = − 4τ
3ω

∂T4

∂n = 16τ
3ω T3 ∂T

∂n is the Rosseland diffusion ap-
proximation for radiation, which was proposed by Howell et al. [52], where τ and ω are
Stefan–Boltzmann and mean absorption coefficients. Table 1 describes the properties of
hybrid nanofluids and mono nanofluids.
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Table 1. Properties of mono and hybrid nanoliquids [40,53].

Properties of the Mono Nanofluid Properties of the Hybrid Nanofluid

ρMNF = (1− χoxide)ρ f + χoxideρoxide, ρHNF =
(

1− χAg

)
[(1− χoxide)ρ f + χoxideρoxide] + χAgρAg,

(
ρcp
)

MNF = (1− χoxide)
(
ρcp
)

f + χoxide
(
ρcp
)

oxide,

(
ρcp
)

HNF =(
1− χAg

)
[(1− χoxide)(ρCp) f + χoxide(ρCp)oxide] + χAg(ρCp)Ag,

βMNF = (1− χoxide)β f + χoxideβoxide βHNF =
(

1− χAg

)
[(1− χoxide)β f + χoxideβoxide] + χAgβAg.

µMNF =
µ f

(1−χoxide)
2.5 , µHNF =

µ f

(1−χAg)
2.5
(1−χoxide)

2.5 ,

kMNF
k f

=
(koxide+2k f )−2χoxide(k f−koxide)
(koxide+2k f )+χoxide(k f−koxide)

, kHNF
kb f

=
kAg+2kb f−2χAg(kb f−koxide)
kAg+2kb f +χAg(kb f−koxide)

, kb f
k f

=
kAg+2k f−2χAg(k f−kAg)
kAg+2k f +χAg(k f−kAg)

,

αMNF = kMNF

(ρcp)MNF

, αHNF = kHNF
(ρcp)HNF

,

σMNF
σf

= 1 + 3(σ−1)χoxide
(σ+2)−(σ−1)χoxide

, σ = σoxide
σf

σHNF
σb f

= [
σAg+2σb f−2χAg(σb f−σAg)

σAg+2σb f +χAg(σb f−σAg)
], σb f

σf
= [

σoxide+2σf−2χoxide(σf−σoxide)

σoxide+2σf +χoxide(σf−σoxide)
]

In the case of a combined convection hybrid nanofluid, Equations (6) and the thermo-
physical properties in Table 1 would be substituted. Likewise, it can use the advantageous
boundary layer approximation technique (Re→∞), to determine (−∂P/∂m) = (∂ue/∂m)
and (∂P/∂n) = 0 (see [51]). That is, the equations that govern radiation influences on
electro-conductive Williamson hybrid nanofluid with the magnetic field are:

∂u
∂m

+
∂v
∂n

= 0 (7)

u ∂u
∂m + v ∂u

∂n = ue
∂ue
∂m +

ρ f
ρHNF

(
1

(1−χAg)
2.5(1−χoxide)

2.5

)
∂2u
∂n2 + We

(
∂2u
∂n2

∂u
∂n

)
+ 1

ρHNF

((
1− χAg

)
[(1− χoxide)ρ f + χAg

ρAg βAg
β f

] + χoxide
ρoxide βoxide

β f

)
λθ sin m − ρ f

ρHNF

σHNF
σf

Mu,
(8)

(
Pr

1+(3/4)R

)(
u ∂θ

∂m + v ∂θ
∂n

)
=

[
kHNF/k f

(1−χAg)[(1−χoxide)+χoxide(ρCp)oxide/(ρCp) f ]+χAg(ρCp)Ag/(ρCp) f

]
∂2θ
∂n2 ,

(9)

which is equivalent to We = Γη Gr3/4

a3 , M =

(
σf B2

o a2Gr−1/2

ρ f v f

)
, λ = Gr

Re2 where We, M

and λ are the Weissenberg number, the magnetic parameter, and the mixed convection
parameter. Furthermore, by replacing the properties given in Table 1 and Equation (6), we
yield the following non-dimensional boundary conditions

u = v = 0, θ = 1, at n = 0,
u→ 0, θ → 0, p→ 0, as n→ ∞.

(10)

Let’s now reduce the system (7)–(10) using the procedure of transformation variables,
which are defined as: (see [7])

ψ = m f (m, n), θ = θ(m, n), (11)

u =
∂ψ

∂m
and v = −∂ψ

∂n
(12)

where ψ is called the stream function.
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By exploiting the transformation variables (11) and (12), the non-dimensional govern-
ing equations are reduced into the following partial differential equations:

ρ f
ρHNF

(
1

(1−χAg)
2.5(1−χoxide)

2.5

)
∂3 f
∂n3 + We ∂3 f

∂n3
∂2 f
∂n2 + f ∂2 f

∂n2 −
(

∂ f
∂n

)2
+

1
ρHNF

((
1− χAg

)
[(1− χoxide)ρ f + χoxide

ρoxide βoxide
β f

] + χAg
ρAg βAg

β f

)
λ sin n

n θ

− ρ f
ρHNF

σHNF
σf

M ∂ f
∂n = m

(
∂ f
∂n

∂2 f
∂m∂n −

∂ f
∂m

∂2 f
∂n2

) (13)

[
kHNF/k f

(1−χAg)[(1−χoxide)+χoxide(ρCp)oxide/(ρCp) f ]+χAg(ρCp)Ag/(ρCp) f

]
∂2θ
∂n2

+
(

Pr
1+(3/4)R

)
f ∂θ

∂n = m
(

∂ f
∂n

∂θ
∂m −

∂ f
∂m

∂θ
∂n

)
,

(14)

Subject to:
f = ∂ f

∂n = 0, θ = 1 at n = 0,
∂ f
∂n → 0, θ → 0, as n→ ∞.

(15)

In the case of m ≈ 0, Equations (13)–(15) are determined at the stagnation points. This
results in

ρ f
ρHNF

(
1

(1−χAg)
2.5(1−χoxide)

2.5

)
∂3 f
∂n3 + We ∂3 f

∂n3
∂2 f
∂n2 + f ∂2 f

∂n2 −
(

∂ f
∂n

)2
+

1
ρHNF

((
1− χAg

)
[(1− χoxide)ρ f + χoxide

ρoxide βoxide
β f

] + χAg
ρAg βAg

β f
.
)

θ

− ρ f
ρHNF

σHNF
σf

M ∂ f
∂n = 0,

(16)

1
Pr

[
kHNF/k f

(1−χAg)[(1−χoxide)+χoxide(ρCp)oxide/(ρCp) f ]+χAg(ρCp)Ag/(ρCp) f

]
∂2θ
∂n2

+
(

Pr
1+(3/4)R

)
f ∂θ

∂n = 0
(17)

With the boundary conditions

f (0, n) = f ′(0, n) = 0, θ(0, n) = 1 as n = 0,
f ′(0, n)→ 0, θ(0, n)→ 0 as n→ ∞,

(18)

In a similar fashion [54], the physical groups highlighted in this analysis are Nusselt
number Nu, and skin friction Cf, which coincide with the expressions

C f =

(
τw

ρ f U2
∞

)
, Nu =

(
aqw

k f (Tw − T∞)
+ QR

)
, (19)

where

τw = µHNF

(
∂u
∂n

+

[
Γ√
2

(
∂u
∂n

)2
])

n= 0

,qw = −kHNF

(
∂T
∂n

)
n= 0

(20)

Using Equations (6) and (10), Cf and Nu are rewritten as

C f = Gr−1/4 1

(1− χAg)
2.5(1− χoxide)

2.5 m

(
∂2 f
∂n2 (η, 0) +

We
2

(
∂ f
∂n

(m, 0)
)2
)

,

Nu = −Gr1/4
(

1 +
4
3

R
)

kHNF
k f

∂θ

∂n
(m, 0), (21)

All parameters and symbols are presented in the nomenclature list.
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4. Numerical Method

The numerical method utilized in this study is called the Keller box method. This
method appears to be efficient with respect to the common numerical methods, and
regardless of the recent progress in other methods, it attains strong and very accurate
approximations for boundary layer convection problems. In addition, it is also flexible
to solve equations in different orders and without restrictions on the numerical solutions
(Cebeci and Bradshaw [55]). The Keller box scheme is briefly explained as follows: The
partial differential Equations (16) to (18) are reduced to a first-order system via the finite
difference scheme. After that, we apply the central differences method to get the finite
difference equations. And then, we use Newton’s method to linearize the resulting finite
difference equations, and it is most appropriate to write them in matrix-vector form because
this form will be solved by the block tri-diagonal elimination technique to get the most
recently calculated data. Thermo-physical characteristics of the considered nanoparticles
and water as a host fluid are given in Table 2. Additionally, Table 3 displayed the local
skin friction comparison values with published results investigated by Nazar et al. [56] (the
results are in parentheses). Hence, the new outcomes are in good agreement.

Table 2. Thermo-physical characteristics of base fluids and nanoparticles [23,57,58].

Material ρ (kg/m3) Cp (J/kgK) K (W/mK) B × 10−5 (K−1) σ (s/m) Pr

Water 997.1 4179 0.613 21 5.5 × 10−6 6.2
Ag 10,500 235 429 1.89 6.3 × 107 . . .
Al2O3 3970 765 40 0.85 3.5 × 107 . . .
SiO2 2220 745 1.38 0.055 10−21 . . .

Table 3. The comparison values of C f for χAg = χOxide = 0, We = 0, M = 0, R = 0, Pr = 6.8, and
various values of λ.

m λ
−2.5 −1.5 −1.0 −0.5 0.0 1.0 1.84 1.85

0o 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.2 0.0222 0.1236 0.1661 0.2037 0. 2398 0.3081 0.3626 0.3627
(0.0226) (0.1254) (0.1672) (0.2058) (0.2421) (0.3099) (0.3630) (0.3637)

0.4 0.2234 0.3077 0.3862 0.4591 0.5946 0.6988 0.6990
(0.2243) (0.3093) (0.3872) (0.4601) (0.5954) (0.7012) (0.7024)

0.6 0.2693 0.4011 0.5192 0.6323 0.8348 0.9890 0.9945
(0.2721) (0.4045) (0.5234) (0.6334) (0.8358) (0.9932) (0.9950)

0.8 0.4287 0.5958 0.7427 1.0135 1.2195 1.2239
(0.4329) (0.5968) (0.7453) (1.0146) (1.2220) (1.2244)

1.0 0.3741 0.5927 0.7833 1.1189 1.3741 1.3762
(0.3749) (0.5939) (0.7840) (1.1203) (1.3756) (1.3785)

1.2 0.5025 0.7387 1.1138 1.4454 1.4452
(0.5037) (0.7431) (1.1480) (1.4487) (1.4521)

1.4 0.3068 0.6174 1.0977 1.4359 1.4446
(0.3074) (0.6209) (1.0994) (1.4425) (1.4464)

1.6 0.4146 0.9783 1.3636 1.3674
(0.4150) (0.9829) (1.3648) (1.3691)

1.8 0.0581 0.8082 1.2264 1.2261
(0.0591) (0.8124) (1.2290) (1.2335)

2.0 0.6044 1.0487 1.0551
(0.6061) (1.0525) (1.0573)

2.2 0.3698 0.8533 0.8591
(0.3847) (0.8552) (0.8601)

2.4 0.6555 0.6588
(0.6566) (0.6614)

2.6 0.4676 0.4771
(0.4728) (0.4772)

2.8 0.2860 0.3011
(0.3130) (0.3167)

3.0 0.1887
(0.1895)

3.14 0.2062
(0.2097)

5. Results and Discussion

Graphical representations of the impression of various critical factors on physical
groups related to heat transport are elaborated in Figures 2–16. The behavior of a Williamson
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hybrid nanofluid resulting from exposure to these factors is also discussed and analyzed.
Nanosolid volume fraction χ, combined convection λ, radiation factor R, Weissenberg
number We, and magnetic factor M are the factors that have been taken into considera-
tion, in which their ranges are 0 ≤ χ ≤ 1, −1 ≤ λ ≤ 4, 0.1 ≤ R ≤ 6, 0.2 ≤ We ≤ 0.9,
and 0.1 ≤ M ≤ 1. Figures 2 and 3 display how the Weissenberg number We affects the
Nusselt number and skin friction. As shown in Figure 2, the rate of energy transport
is suppressed in response to a rise in the Weissenberg number. Similarly, as shown in
Figure 3, the drag forces are reduced due to this rise. The growth in relaxation time as the
number of Weissenberg increases could be causing this behavior. Figures 4 and 5 show
how the reaction of the Nusselt number and skin friction with an increase in the radiation
factor. As the radiation factor R values grow, additional heat is gained by the Williamson
hybrid nanofluid, which enhances the transfer of energy through it and increases the skin
friction. Figures 6 and 7 depict how the Nusselt number and skin friction respond to
rising values of the combined convection factor λ. As can be seen, the effect of the increase
in the combined convection factor on both the Nusselt number and the skin friction is
positive, as its values increase, so do the Nusselt number and the skin friction. The cause
of this behavior is the growth in buoyant forces caused by rising combined convection
factor values. Figures 8 and 9 are plotted to show the impact of magnetic factor on Nusselt
number and skin friction. Both the Nusselt number and skin friction are observed to reduce
as the strength of the magnetic field intensifies. This phenomenon can be explained by the
creation of the Lorentz force as a result of passing a magnetic field through electrically con-
ductive moving fluids, which inhibits both the rate of energy transport and the drag forces.
Figures 10 and 11 show the significant effect of the volume fraction of silver nanosolid on
energy transfer and skin friction. It is concluded through these plots that growing χAg
improves heat transmission and reduces skin friction. It is well known that the growth
in nanosolid volume fraction leads to an enhancement in the thermal conductivity of the
Williamson host fluid, hence an augmentation in Nusselt number and a decrement in skin
friction occur.
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Figure 2. Illustration of We versus Nusselt number at fixed values of R = 0.2, λ = 0.1, & M = 1.
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Figure 5. Illustration of R versus skin friction at fixed values of We = 0.2, λ = 0.1, & M = 1.
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Mathematics 2022, 10, 3191 11 of 19

Mathematics 2022, 10, 3191 12 of 20 
 

 

 
Figure 7. Illustration of   versus  skin friction at fixed values of 0.2, 0.1,& 1.We R M    

 
Figure 8. Illustration of M  versus  Nusselt number at fixed values of 

0.2, 0.1,& 1.  We R  

0 20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m in degrees

C
f

 =-1,0,1,4Ag - Al
2
O

3
 / Water

Ag - SiO
2
 / Water

HNF (
Oxide

 = 0.1, 
Ag

= 0.05)
MNF (Oxide = 0.1, Ag= 0.0)

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m in degrees

N
u

M = 0.1, 0.6, 1

Ag - Al2O3 / Water
Ag - SiO2 / Water

HNF (Oxide = 0.1, Ag= 0.05)
MNF (Oxide = 0.1, Ag= 0.0)

Figure 7. Illustration of λ versus skin friction at fixed values of We = 0.2, R = 0.1, & M = 1.
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Figure 10. Illustration of χAg versus Nusselt number at fixed values of We = 0.2,
λ = 0.1, R = 2, & M = 1.



Mathematics 2022, 10, 3191 13 of 19

Mathematics 2022, 10, 3191 14 of 20 
 

 

 

Figure 11. Illustration of Ag  versus  skin friction at fixed values of 

0.2, 0.1, 2, & 1.   We R M  

The impact of the thermal radiation factor on temperature and velocity profiles is 
manifested in Figure 12. Elevating the thermal radiation factor values causes more energy 
to be imposed inside the Williamson hybrid nanofluid, which raises the velocity and tem-
perature profiles. Figure 13 report the influence of the combined convection parameter on 
temperature and velocity profiles. It is observed that ascending values of the combined 
convective factor cause a reduction in the temperature. This also resulted in an improve-
ment in the velocity profiles. In fact, this phenomenon is the result of the enhancement in 
the buoyant forces due to the increase in the mixed convection values. The effect of rising 
Weissenberg number values on temperature and velocity is plotted in Figure 14. Intensi-
fication in temperatures and curbing in velocity are observed via a higher Weissenberg 
number. The Weissenberg number is defined as the ratio of relaxation time to retardation 
time. When the retardation time decreases, an increase in the value of the Weissenberg 
number occurs, which is accompanied by a decrease in the velocity of the liquid as well 
as a decrease in the boundary layer thickness. It is clear that the velocity gradient de-
creases near the surface of the cylinder when the Weissenberg number increases. The in-
crease in this parameter is also accompanied by an increase in the temperature of the host 
hybrid nanofluid. Figure 15 demonstrate the behavior of both temperature and velocity 
with the increment in M. Temperature is an increasing map of M, while velocity is a de-
creasing map of M. This behavior was expected because the increase in the strength of the 
magnetic field generates a type of force known as the Lorentz force, which raises the tem-
perature of the Williamson hybrid nanofluid fluid and slows it down. In Figure 16, the 
responses of both temperature and velocity profiles to the increasing volume fraction of 
the nanosolid are shown. For rising values of the nanosolid volume fraction of Ag, the 
temperature tends to rise while the reaction velocity is reversed, as its values decrease. 
The increase in energy transport as Ag  increases could explain the rising temperature 
profiles and decreasing velocity. Finally, a noteworthy note made by the results is that 
regardless of the influencing factors examined in this study, the combination of silver with 
aluminum oxide gives water the highest speed, temperature, and energy transfer rate. 
Furthermore, the Ag-Al2O3/water combination also has the lowest drag forces.  

0 20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

3.5

m in degrees

C
f

HNF
MNF


Oxide = 0.1

Ag - Al2O3 / Water
Ag - SiO2 / Water


Ag = 0, 0.05, 0.1

Figure 11. Illustration of χAg versus skin friction at fixed values of We = 0.2,
R = 0.1, M = 2, & λ = 1.

The impact of the thermal radiation factor on temperature and velocity profiles is
manifested in Figure 12. Elevating the thermal radiation factor values causes more en-
ergy to be imposed inside the Williamson hybrid nanofluid, which raises the velocity
and temperature profiles. Figure 13 report the influence of the combined convection pa-
rameter on temperature and velocity profiles. It is observed that ascending values of the
combined convective factor cause a reduction in the temperature. This also resulted in
an improvement in the velocity profiles. In fact, this phenomenon is the result of the
enhancement in the buoyant forces due to the increase in the mixed convection values.
The effect of rising Weissenberg number values on temperature and velocity is plotted in
Figure 14. Intensification in temperatures and curbing in velocity are observed via a higher
Weissenberg number. The Weissenberg number is defined as the ratio of relaxation time
to retardation time. When the retardation time decreases, an increase in the value of the
Weissenberg number occurs, which is accompanied by a decrease in the velocity of the
liquid as well as a decrease in the boundary layer thickness. It is clear that the velocity
gradient decreases near the surface of the cylinder when the Weissenberg number increases.
The increase in this parameter is also accompanied by an increase in the temperature of
the host hybrid nanofluid. Figure 15 demonstrate the behavior of both temperature and
velocity with the increment in M. Temperature is an increasing map of M, while velocity is
a decreasing map of M. This behavior was expected because the increase in the strength
of the magnetic field generates a type of force known as the Lorentz force, which raises
the temperature of the Williamson hybrid nanofluid fluid and slows it down. In Figure 16,
the responses of both temperature and velocity profiles to the increasing volume fraction
of the nanosolid are shown. For rising values of the nanosolid volume fraction of Ag, the
temperature tends to rise while the reaction velocity is reversed, as its values decrease. The
increase in energy transport as χAg increases could explain the rising temperature profiles
and decreasing velocity. Finally, a noteworthy note made by the results is that regardless of
the influencing factors examined in this study, the combination of silver with aluminum
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oxide gives water the highest speed, temperature, and energy transfer rate. Furthermore,
the Ag-Al2O3/water combination also has the lowest drag forces.
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Figure 12. Illustration of R versus temperature and velocity at fixed values of We = 0.2,
λ = 0.1, & M = 1.
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Figure 13. Illustration of λ versus temperature and velocity at fixed values of We = 0.2,
R = 0.1, & M = 1.
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Figure 14. Illustration of We versus temperature and velocity at fixed values of λ = 0.2,
R = 0.1, & M = 1.
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Figure 15. Illustration of M versus temperature and velocity at fixed values of λ = 0.2,
R = 0.1, & We = 1.
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6. Conclusions

In this analysis, the characteristics of the energy transfer through the Williamson fluid
supported by the upgraded nanoparticles were dealt with. The Nanosolid volume fraction
χ, combined convection λ, radiation factor R, Weissenberg number We, and magnetic factor
M are the factors used to predict the behavior of Williamson hybrid nanofluid, and their
ranges are 0 ≤ χ ≤ 1, −1 ≤ λ ≤ 4, 0.1 ≤ R ≤ 6, 0.2 ≤ We ≤ 0.9, and 0.1 ≤ M ≤ 1. The
following points of significance were drawn:

1. As the magnetic parameter values are increased, the rate of energy transfer, fluid
velocity, and drag force decrease while the fluid temperature rises.

2. There is a direct relationship between the parameter of mixed convection on the one
hand, and the rate of energy transfer, drag force, and velocity of the host Williamson
fluid on the other hand.

3. Thermal radiation positively affects all physical quantities examined in this analysis.
4. Elevating the values of the Weissenberg number causes a curb in velocity, heat transfer

rate, and drag forces, as well as an increase in temperature.
5. The nanoparticle combination of silver and aluminum oxide (Ag-Al2O3) has demon-

strated superiority in enhancing the energy transfer rate and velocity of the host fluid.

Williamson hybrid nanofluids with combined convection flow under thermal radi-
ation and magnetic effects with boundary conditions such as constant wall temperature
was considered. Therefore, there are a lot of potential avenues for future research. For
example, ternary hybrid nanofluids, viscous dissipation, and other geometric bodies, such
as a solid sphere, stretching sheet, etc., as well as other boundary conditions, such as
Newtonian heating.
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Nomenclature

a Radius of cylindrical shape U∞ uniform free stream
Bo Magnetic field strength n y- component of velocity
Cf Skin friction coefficient vf Kinematic viscosity sof host liquid
(Cp) Heat capacity Greek symbols
f(x, y) Dimensionless stream function α Thermal diffusivity coefficient
g Gravity vector β Thermal expansion of host liquid
Gr Grashof number Γ relaxation time
J Micro-inertia density σ Electrical conductivity
kf Thermal conductivity θ Temperature of nanoliquid
M Magnetic parameter κ Vortex viscosity
Nu Nusselt Number λ Combined convection parameter
p Fluid pressure µ Dynamic viscosity
Pr Prandtl number ρ Density
QR Rosseland diffusion approximation φ Spin gradient viscosity
Re Reynold number χ Nano-solid volume fraction
T Temperature of the fluid ψ Stream transformation
T∞ Ambient temperature
m x- component of velocity Subscript
ue(x) free-stream velocity f Host liquid
M Magnetic parameter nf Nanoliquid

s Nanosolid
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