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1. Introduction

Tilting theory traces its history back to the fundamental work in [1], and later, was
generalized by Brenner and Butler in [2]. The notion of tilting modules over finite dimen-
sional algebras and the beginning of the extensive study of tilting theory and tilted algebras
are principally due to Happel and Ringel [3], Bongartz [4], and others. After that, some
results of tilting theory in module categories were obtained by many authors, see [5–18].

As a higher dimensional generalization of tilting modules of a projective dimension
over arbitrary rings, Bazzoni gave in [8] a characterization of n-tilting (resp. n-cotilting)
modules in module categories over arbitrary rings, which provided an equivalent condition
for a module to be tilting. Then, Wei in [17] characterized n-tilting modules in arbitrary
module categories. Angeleri Hügel and Coelho characterized the classes X induced by
generalized tilting modules in terms of the existence of X -preenvelopes in [5].

Let C be a skeletally small preadditive category. By (C op, Ab) (resp. (C , Ab)) we
denote the functor category whose objects are additive contravariant (resp. covariant)
functors from C to the category Ab of abelian groups and morphisms as the natural
transformations between two such functors. If T, U ∈ (C op, Ab), we write Nat[T, U]
(or [T, U] for short) for the class of natural transformations from T to U. The induced
cohomological group will be denoted by Exti[T, U]. Functor categories are of interest in
category theory, especially in representation theory of algebra and homological algebra
(e.g., [19–26]). The reasons are as follows: on the one hand, many common categories are in
fact functor categories, most results coming from functor categories are widely applicable;
on the other hand, by applying the well-known Yoneda Lemma, every category can be
embeded in a functor category, so that we often obtain our desired properties in the original
category by studying the associated functor categories.

Based on the references above, some natural questions arise:
Question A. How can we define the tilting and cotilting objects in the functor

categories felicitously?
Question B. Are the characterizations in the functor categories as good as those of the

tilting objects in classical tilting theory?
The aim of this paper is to solve these questions for which we introduce the notions

of n-tilting (resp. n-cotilting) objects and n-tilting (resp. n-cotilting) classes in the functor
category (C op, Ab) and then provide some of their characterizations.
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The paper is organized as follows. In Section 2, we give provide some preliminaries
and terminology. Based on the result of Mitchell [27], we introduce the notions of n-tilting
(resp. n-cotilting) objects and n-tilting (resp. n-cotilting) classes in the functor category
(C op, Ab) and then study some of their basic properties. In Section 3, we give our main
results, namely some characterizations of tilting objects and tilting classes in the functor
category (C op, Ab). The following are Theorems 1 and 2, respectively.

Theorem 1. Let T, U ∈ (C op, Ab). Then,
(1) T is n-tilting if and only if T⊥ = Genn T;
(2) U is n-cotilting if and only if ⊥U = Cogenn T.

Theorem 2. LetM⊆ (C op, Ab) be a class of objects. Then, the following assertions are equivalent.
(1)M is n-tilting.
(2)M is coresolving, special preenveloping, and closed under direct sums and direct summands

and ⊥M⊆ Pn.

2. Preliminaries

In this section, A is an abelian category. For a subcategory of A , we always mean a
full and additive subcategory closed under isomorphisms and direct summands.

Definition 1 ([11], Definition 2.2.8, see also [28], Definition 16). Let A be an abelian category
with enough projective and injective objects. A subcategory T of A is resolving if it is closed
under extensions, kernels of epimorphisms and contains the projective objects in A . Dually, T
is coresolving if it is closed under extensions and cokernels of monomorphisms and contains the
injective objects in A .

Assume that A has enough projective and injective objects. For every subcategory T
of A , we set

T ⊥ := {X ∈ A | Exti
A (C, X) = 0 for all C ∈ T , i ≥ 1},

⊥T := {X ∈ A | Exti
A (X, C) = 0 for all C ∈ T , i ≥ 1},

and
T ⊥1 := {X ∈ A | Ext1

A (C, X) = 0 for all C ∈ T },
⊥1T := {X ∈ A | Ext1

A (X, C) = 0 for all C ∈ T }.

A pair (A,B) of subcategories in A is called a cotorsion pair if A = ⊥1B and B = A⊥1

([11], Definition 2.2.1). For every subcategory T , ⊥T is resolving and T ⊥ is coresolving.
Note that if T is resolving, then T ⊥ = T ⊥1 ; if T is coresolving, then ⊥T = ⊥1T . A

pair (A,B) is called a hereditary cotorsion pair if A = ⊥B and B = A⊥. A cotorsion pair (A,B)
is hereditary if and only if A is resolving if and only if B is coresolving ([11], Lemma 2.2.10).

A concept very useful when dealing with cotorsion pairs is the notion of approxi-
mations via precovers and preenvelopes defined by Enochs in [29] as a generalization of
the notion of right and left approximations introduced by Auslander and Smalø [30] in
representation theory of finite dimensional algebras. We recall now these definitions.

Let T be a class of objects in A . Following [29,30], we say that a morphism φ : C → A
in A is a T -precover of A if C ∈ T , and, for any morphism f : C′ → A with C′ ∈ T ,
there is a morphism g : C′ → C such that φg = f . A T -precover φ : C → A is said to be
a T -cover of A if every endomorphism g : C → C such that φg = φ is an isomorphism.
A T -precover φ : C → A is said to be special if it is an epimorphism and Ker φ ∈ T ⊥1 .
Dually, we have the definitions of a T -preenvelope, a T -envelope, and a special T -preenvelope.
T -covers (T -envelopes) may not exist in general, but if they exist, they are unique up
to isomorphisms.

A class T is said to be precovering, covering, special precovering (preenveloping, enveloping,
special preenveloping), respectively, if every object in A admits a T -precover, a T -cover,
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a special T -precover (a T -preenvelope, a T -envelope, a special T -preenvelope) respec-
tively.

A cotorsion pair (A,B) is said to be complete if every object in A admits a special
A-precover and a special B-preenvelope. In fact, by ([11], Proposition 1.1), a cotorsion
pair (A,B) in A is complete if and only if A is special precovering and if and only if B is
special preenveloping.

In this sequel, we mainly work on the functor category (C op, Ab), where C is a
skeletally small preadditive category. Note that the category (C op, Ab) admits arbitrary
coproducts; products and the direct products are exact, and it satisfies Grothendieck’s AB5
condition, that is, it has exact filtered limits.

LetM⊆ (C op, Ab) be a class of additive contravariant functors from C op to Ab. We
denote by AddM (resp. ProdM) the subcategory consisting of all additive contravariant
functors isomorphic to direct summands of direct sums (resp. direct products) of elements
of M. If M = {M} with M ∈ (C op, Ab), then we shall denote these subcategories by
Add M and Prod M, respectively.

Given an object M ∈ (C op, Ab), we write Gen M for the subcategory of all M-
generated objects in (C op, Ab), that is, those objects X admitting an epimorphism M1 → X
with M1 ∈ Add M. The subcategory of M-cogenerated objects, that is, those objects X
admitting a monomorphism X → M1 with M1 ∈ Prod M, is denoted by Cogen M.

The following lemma is useful in this paper, it is cited from ([5], Proposition 1.1), see
also [31]. Here, we talk about a similar version in functor categories, and give the proof for
the reader’s convenience.

Lemma 1. Let M ∈ (C op, Ab). Then, Add M is precovering, and Prod M is preenveloping.

Proof. For any T ∈ (C op, Ab), let I = [M, T]; then, the codiagonal map M(I) → T induced
by all homomorphisms is an Add M-precover. Dually, for J = [T, M] the diagonal map
T → MJ is a Prod M-preenvelope.

Following Mitchell [27], one has that (C op, Ab) is an abelian category with a projective
generator and an injective cogenerator. Using it, we give the following definitions.

Definition 2. An object T ∈ (C op, Ab) is said to be n-tilting provided that:
(T1) pd T ≤ n;
(T2) Exti[T, T(λ)] = 0 for each i > 0 and for every cardinal λ;
(T3) there exists a long exact sequence

0→ P→ T0 → T1 → · · · → Tr → 0,

where P is a projective generator in (C op, Ab), and Ti ∈ Add T for every 0 ≤ i ≤ r.
In this case, the associated class T⊥ := {M | Exti[T, M] = 0 for any i > 0} is called the

n-tilting class induced by T. Clearly, (⊥1(T⊥), T⊥) is a hereditary cotorsion pair in (C op, Ab),
called the n-tilting cotorsion pair induced by T.

Dually, we have the following definition.

Definition 3. An object U ∈ (C op, Ab) is said to be n-cotilting provided that:
(C1) id U ≤ n;
(C2) Exti[Uλ, U] = 0 for each i > 0 and for every cardinal λ;
(C3) there exists a long exact sequence

0→ Ur → · · · → U1 → U0 → Q→ 0,

where Q is an injective cogenerator in (C op, Ab), and Ui ∈ Prod U for every 0 ≤ i ≤ r.
In this case, the class ⊥U is called the n-cotilting class induced by U. Clearly, (⊥U, (⊥U)⊥1 )

is a hereditary cotorsion pair in (C op, Ab), called the n-cotilting cotorsion pair induced by U.
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Definition 4. (1) Let T ∈ (C op, Ab). We write

Gen∞ T ={H ∈ (C op, Ab) | there exists an exact sequence

· · · → T(λn) → · · · → T(λ2) → T(λ1) → H → 0 for some cardinals λi};
Genn T ={H ∈ (C op, Ab) | there exists an exact sequence

T(λn) → · · · → T(λ2) → T(λ1) → H → 0 for some cardinals λi}.

In particular, Gen1 T = Gen T.
(2) Let U ∈ (C op, Ab). We write

Cogen∞ U ={G ∈ (C op, Ab) | there exists an exact sequence

0→ G → Uα1 → Uα2 → · · · → Uαn → · · · for some cardinals αi};
Cogenn U ={G ∈ (C op, Ab) | there exists an exact sequence

0→ G → Uα1 → Uα2 → · · · → Uαn for some cardinals αi}.

In particular, Cogen1 U = Cogen U.

Lemma 2. Let T, U ∈ (C op, Ab).
(1) If T satisfies the conditions (T2) and (T3), then T⊥ ⊆ Gen T.
(2) If U satisfies the conditions (C2) and (C3), then ⊥U ⊆ Cogen U.

Proof. (1) Consider the following sequence given by the condition (T3):

0→ P
f0→ T0

f1→ T1 → · · ·
fn→ Tn → 0,

with P a projective generator and Ti ∈ Add T for every 0 ≤ i ≤ n. Clearly, we have that Ti ∈
T⊥ ∩ ⊥1(T⊥) by (T2). Notice that ⊥1(T⊥) is resolving, we infer that Ki = Ker fi ∈ ⊥1(T⊥)
for each 1 ≤ i ≤ n. Let G ∈ T⊥. There exists some cardinal λ, such that g : P(λ) → G is
epic. Consider the pushout diagram:

0 // P(λ)
f (λ)0 //

g

��

T(λ)
0

//

��

K(λ)
2

// 0

0 // G //

��

F //

��

K(λ)
2

// 0.

0 0

Since K(λ)
2 ∈ ⊥1(T⊥), the second row splits, so G is a direct summand of F. Since

F ∈ Gen T0 ⊆ Gen T, and G ∈ Gen T. This implies that T⊥ ⊆ Gen T.
The proof of (2) is the dual.

Lemma 3. Let T, U ∈ (C op, Ab).
(1) If T satisfies the condition (T2) and T⊥ ⊆ Gen T, then

(i) for each W ∈ T⊥, there exists a short exact sequence

0→ F → T1 →W → 0,

with T1 ∈ Add T and F ∈ T⊥;
(ii) every map V →W with V ∈ ⊥(T⊥) and W ∈ T⊥ factors through Add T. In particular,

we have Add T = T⊥ ∩ ⊥(T⊥).
(2) If U satisfies the condition (C2), and ⊥U ⊆ Cogen U, then
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(i) for each W ∈ ⊥U, there exists a short exact sequence

0→W → U1 → G → 0,

with U1 ∈ Prod U and G ∈ ⊥U;
(ii) every map W → J with J ∈ (⊥U)⊥ and W ∈ ⊥U factors through Prod U. In particular,

we have Prod U = ⊥U ∩ (⊥U)⊥.

Proof. We only prove (1), and (2) is dual.
(i) Let W ∈ T⊥. By Lemma 1, there exists an Add T-precover g : T1 → W with

T1 ∈ Add T. Clearly, g is an epimorphism, since W ∈ T⊥ ⊆ Gen T. We claim that
F = Ker g belongs to T⊥. Indeed, we observe that Ext1[T, F] = 0 because [T, g] is an
epimorphism, and Ext1[T, T1] = 0 (by (T2)). For i ≥ 1, consider the sequence

Exti[T, W]→ Exti+1[T, F]→ Exti+1[T, T1] = 0.

Since W ∈ T⊥, we obtain Exti+1[T, F] = 0 for i ≥ 1. So F ∈ T⊥.
(ii) Let f : V →W be a map with V ∈ ⊥(T⊥) and W ∈ T⊥. By (i), there exists a short

exact sequence

0→ F → T1
g→W → 0

with T1 ∈ Add T, we obtain f factors through g as required, since Ext1[V, F] = 0. For Add T =
T⊥ ∩ ⊥(T⊥), we observe that for H ∈ T⊥ ∩ ⊥(T⊥), its identity map idH factors through
Add T, and so H ∈ Add T. The other inclusion follows directly from the condition (T2).

Proposition 1. (1) Let T ∈ (C op, Ab). If T is n-tilting, then T⊥ = Genn T. In particular, T⊥ is
closed under direct sums. Moroever, Genn T = Genn+k T = Gen∞ T, for every k ≥ 0.

(2) Let U ∈ (C op, Ab). If U is n-cotilting, then ⊥U = Cogenn T. In particular, ⊥U is closed
under direct products. Moroever, Cogenn T = Cogenn+k T = Cogen∞ T, for every k ≥ 0.

Proof. We only prove (1), and (2) is dual.
Let T be an n-tilting object in (C op, Ab). We first claim that T⊥ = Gen∞ T. In fact,

for any W ∈ T⊥, by Lemma 3(1), there exists an exact infinite sequence of the form

· · · → Tn → · · · → T2 → T1 →W → 0

with Ti ∈ Add T. So, by adding suitable direct sums of copies of T to Ti, we obtain the
following sequence of the form

· · · → T(αn) → · · · → T(α2) → T(α1) →W → 0

for some cardinals αi, that is, W ∈ Gen∞ T. The other inclusion follows directly from
dimension shifting. Clearly, T⊥ is closed under direct sums by the claim. Next we prove the
“MOROEVER”, and then we complete the proof. Note that Gen∞ T ⊆ Genn+k T ⊆ Genn T
for every k ≥ 0. Conversely, suppose H ∈ Genn T; that is, there exists an exact sequence

T(αn)
fn→ · · · → T(α2)

f2→ T(α1)
f1→ H → 0

for some cardinals αi. Let Ki = Ker fi for each 1 ≤ i ≤ n. By dimension shifting,
Exti[T, H] ∼= Exti+n[T, Kn], for each i ≥ 1, and we obtain H ∈ T⊥, since pd T ≤ n. Hence,
H ∈ Gen∞ T by the claim.

The following lemma is important for the main results in Section 3, it is cited from ([11],
Theorem 3.2.1). Here, we give a similar version in functor categories. We leave the details
of the proof for the reader.
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Lemma 4. Let S be a set of objects in (C op, Ab). Then, S⊥1 is special preenveloping.

Recall from [7] that for a subcategory X ⊆ A , we denote by X̂ the subcategory of A
whose objects are the C for which there is some nonnegative integer n and an exact sequence

0→ Xn → · · · → X0 → C → 0

with Xi in X . Dually, we denote by X̃ the subcategory of A whose objects are the C for
which there are some nonnegative integer n and an exact sequence

0→ C → X0 → · · · → Xn → 0

with Xi in X .
For a fixed nonnegative integer n, we use Pn (resp. In) to denote the subcategory

consisting of all objects in (C op, Ab) with projective (resp. injective) dimensions at most n.

Proposition 2. Let M ∈ (C op, Ab) and n be a nonnegative integer.
(1) If pd M ≤ n, then M̃⊥ = Mod C , and ⊥(M⊥) ⊆ Pn.
(2) If id M ≤ n, then ⊥̂M = Mod C , and (⊥M)⊥ ⊆ In.

Proof. We only prove (2), and (1) is the dual.
Let X ∈ (C op, Ab). Consider the long exact sequence

0→ Kn → Pn−1 → · · · → P0 → X → 0

with Pi projective. Since id M ≤ n, we have that Exti[Kn, M] ∼= Exti+n[X, M] = 0 for all
i > 0; that is, Kn ∈ ⊥M, and so X ∈ ⊥̂M. Let Y ∈ (⊥M)⊥. We obtain Exti+n[X, Y] ∼=
Exti[Kn, Y] = 0 for each i > 0, since Kn ∈ ⊥M ⊆ ⊥Y. By the former argument, X is
arbitrary, and we infer that id Y ≤ n.

Lemma 5 ([32], Theorem 1.1). Let B ⊆ A be closed under extensions, and ω ⊆ B. Suppose
there exists, for each B ∈ B, a short exact sequence

0→ B→W → L→ 0

with W ∈ ω and L ∈ B. Then, for each C ∈ B̂, there exists short exact sequences

0→Wc → Bc → C → 0, and

0→ C →Wc → Bc → 0

with Bc, Bc ∈ B and Wc, Wc ∈ ω̂.

Lemma 6. Let U ∈ (C op, Ab) be an n-cotilting object. Then, ⊥U is special precovering.

Proof. Put A = (C op, Ab), B = ⊥U, and ω = Prod U = ⊥U ∩ (⊥U)⊥ (by Lemma 3(2)). It
follows from Lemma 3(2) that, for each B ∈ B, there exists a short exact sequence

0→ B→W → L→ 0

with W ∈ ω and L ∈ B. By Lemma 5, for each H ∈ B̂ = (C op, Ab) (by Proposition 2(2)),
we obtain a short exact sequence

0→ F → G
f→ H → 0

with G ∈ ⊥U and F ∈ ω̂. Notice that ω ⊆ B⊥; we infer that F ∈ ω̂ ⊆ B⊥ = (⊥U)⊥. So, f
is a special ⊥U-precover, as required.



Mathematics 2022, 10, 3163 7 of 11

3. Main Results

In this section, we will give some characterizations of tilting objects and tilting classes
in the functor category (C op, Ab). The dual versions for cotilting are also true. We first
show that the converse of Proposition 1 holds. Here, we need the following lemma.

Lemma 7. Let T, U ∈ (C op, Ab).
(1) Assume that T⊥ = Genn T. Then, T satisfies (T1) and (T2).
(2) Assume that ⊥U = Cogenn T. Then, U satisfies (C1) and (C2).

Proof. We only prove (1), and (2) is dual.
Let T⊥ = Genn T (⊆ Gen T). Clearly, (T2) holds, since T(λ) ∈ Genn T = T⊥ for every

cardinal λ. We prove that pd T ≤ n. For any H ∈ (C op, Ab), we consider an injective
resolution of H:

0→ H
f0→ I0

f1→ I1 → · · · → Ij−1
f j→ Ij.

Let Km = Coker fm−1 for 1 ≤ m ≤ j. By Lemma 3(1), there exists a cardinal αi and an
exact sequence

0→Wi → T(αi) → Ii → 0

with Wi ∈ T⊥ for every Ii. We claim that Km ∈ Genm T for every m ≤ n.
We proceed with the proof by induction on m. If m = 1, notice that I0 ∈ Gen T, and

we have K1 ∈ Gen T. We assume that the claim is true for Km (m < n). Then, we have two
exact sequences

0→ Km → Im → Km+1 → 0, and

0→Wm → T(αm) → Im → 0.

Consider the following pullback diagram:

0

��

0

��
Wm

��

Wm

��
0 // X //

��

T(αm) //

��

Km+1 // 0

0 // Km //

��

Im //

��

Km+1 // 0

0 0.

To prove Km+1 ∈ Genm+1 T, it suffices to check X ∈ Genm T. Consider the second column

0→Wm → X → Km → 0

with Wm ∈ T⊥ = Genn T ⊆ Genm T and Km ∈ Genm T. By Lemma 3(1) and the Horseshoe
Lemma, it is not hard to prove that X ∈ Genm T.

So, in particular, Kn ∈ Genn T = T⊥. By dimension shifting, we obtain Extn+1[T, H] ∼=
Ext1[T, Kn] = 0; that is, pd T ≤ n, since H is arbitrary.

Now we give the main results in this paper.

Theorem 1. Let T, U ∈ (C op, Ab). Then,
(1) T is n-tilting if and only if T⊥ = Genn T;
(2) U is n-cotilting if and only if ⊥U = Cogenn T.
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Proof. We only prove (1), and (2) is dual.
The necessity is trivial by Proposition 1(1). For the sufficiency, let T⊥ = Genn T

(⊆ Gen T). Then, (T1) and (T2) follow from Lemma 7(1).
Next, we show that T satisfies (T3). Since pd T ≤ n (by (T1)), there exists a projective

resolution of T
0→ Pn → Pn−1 → · · · → P0 → T → 0

with the syzygies S0 = T, · · · , Sn = Pn. Take S =
⊕

i≤n Si; then, T⊥ = S⊥1 . So, by Lemma 4,
there exists a T⊥-preenvelope f : V →W for every V ∈ ⊥(T⊥). By Lemma 3(1), f factors
through a map g : V → W ′ with W ′ ∈ Add T; hence, g is an Add T-preenvelope for
every V ∈ ⊥(T⊥) since Add T ⊆ T⊥ (by (T2)). From (ii) of Lemma 3(1), we infer that
all homomorphisms V → H with V ∈ ⊥(T⊥) and H ∈ T⊥ factor through Add T and
therefore factor through g. In particular, this applies to any monomorphism V → I with I
injective, showing that g is a monomorphism. We claim that K = Coker g ∈ ⊥(T⊥). In fact,
for any X ∈ T⊥ we have that [g, X] is an epimorphism, and Ext1[W ′, X] = 0, which implies
Ext1[K, X] = 0; that is, K ∈ ⊥1(T⊥). Notice that T⊥ is coresolving, we obtain K ∈ ⊥(T⊥).
Let us now take V = P, where P is a projective generator in (C op, Ab). Iterating the above
construction, we obtain an exact sequence

0→ P→ T0 → T1 → · · · → Tn−1 → Kn → 0

with Ti ∈ Add T, and all cokernels in ⊥(T⊥). So, we infer that Exti[T, Kn] ∼= Exti+n[T, P] =
0 for all i > 0; hence, Kn ∈ T⊥ ∩ ⊥(T⊥) = Add T by Lemma 3(1), and the above sequence
gives the one required in condition (T3).

Proposition 3. Let T be an n-tilting C -module and U an n-cotilting C -module. Then,
(1) the n-tilting cotorsion pair (⊥1(T⊥), T⊥) is complete, and ⊥1(T⊥) ⊆ Pn;
(2) the n-cotilting cotorsion pair (⊥U, (⊥U)⊥1 ) is complete, and (⊥U)⊥1 ⊆ In.

Proof. (1) Let
0→ Pn → Pn−1 → · · · → P0 → T → 0

be a projective resolution of T with the syzygies K0 = T, · · · , Kn = Pn. Take S =
⊕

i≤n Ki;
then, T⊥ = S⊥1 . Clearly, the cotorsion pair (⊥1(T⊥), T⊥) is complete by Lemma 4. Notice
that ⊥1(T⊥) = ⊥(T⊥), and the second part follows from Proposition 2(1).

(2) The first part follows from Lemma 6 and the second part follows from
Proposition 2(2).

The following result, due to Angeleri Hügel and Coelho [5], is proved for module cat-
egories over rings, see also Trlifaj [11]. Here, we give the counterpart in functor categories.

Theorem 2. LetM⊆ (C op, Ab) be a class of objects. Then, the following assertions are equiva-
lent.

(1)M is n-tilting.
(2)M is coresolving, special preenveloping, closed under direct sums and direct summands,

and ⊥M⊆ Pn.

Proof. (1)⇒(2) LetM be an n-tilting class, that is, there exists an n-tilting object T such
thatM = T⊥. This follows from Proposition 3(1) and Proposition 1(1).

(2)⇒(1) First, ⊥M = ⊥1M, sinceM is coresolving.
Let P be a projective generator in (C op, Ab). Because M is special preenveloping,

there exists a short exact sequence

0→ P→ M0 → K1 → 0,
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with M0 ∈ M and K1 ∈ ⊥M⊆ Pn. We have M0 ∈ M∩⊥M, since P ∈ ⊥M. By induction,
we obtain short exact sequences

0→ Ki → Mi → Ki+1 → 0,

with Mi ∈ M ∩ ⊥M and Ki+1 ∈ ⊥M ⊆ Pn for any i. Since Kn+1 ∈ Pn, we have
Ext1[Kn+1, Kn] ∼= Extn+1[Kn+1, P] = 0; then, the sequence

0→ Kn → Mn → Kn+1 → 0

splits. So, we can assume that Kn+1 = 0 and form the long exact sequence

0→ P→ M0 → M1 → · · · → Mn−1 → Mn → 0

with Mi ∈ M∩ ⊥M for all i ≤ n. Put T =
⊕

i≤n Mi. We will prove that T is n-tilting.
Clearly, (T1) holds since T ∈ M∩ ⊥M⊆ Pn, and the long exact sequence above gives (T3).
SinceM is closed under direct sums, T(λ) ∈ M for each cardinal λ, and (T2) holds.

Next, we show that M = T⊥. First, we observe that M ⊆ T⊥ since T ∈ ⊥M.
Conversely, suppose H ∈ T⊥. SinceM is special preenveloping, repeatedly, it follows from
the former argument that there exists an exact sequence of finite length

0→ H
f0→ V0

f1→ V1 → · · · → Vn−1
fn→ Vn → 0

with Vi ∈ M ⊆ T⊥ for all i < n, and Vn ∈ M∩ ⊥M ⊆ Pn. Since H ∈ T⊥, and T⊥ is
coresolving, we infer that Li = Coker fi−1 ∈ T⊥ for all 1 ≤ i ≤ n − 1. We claim that
M∩ ⊥M ⊆ ⊥1(T⊥). So fn splits, and by induction, f0 splits; that is, H ∈ M sinceM is
closed under direct summands.

Proof of the claim: suppose W ∈ M∩ ⊥M. We observe that W ∈ T⊥ ∩ Pn. Notice that
T is n-tilting, by Lemma 3(1), it is easy to show that there exists a long exact sequence

0→ Tn → · · · → T1 → T0
ϕ0→W → 0

with Ti ∈ Add T for all i ≤ n. SinceM is closed under direct sums and direct summands,
Ti ∈ Add T ⊆M, and we infer that Ker ϕ0 ∈ M sinceM is coresolving; then, the sequence

0→ Ker ϕ0 → T0 →W → 0

splits. So W ∈ Add T ⊆ ⊥1(T⊥).

Corollary 1. Let C = (A,B) be a cotorsion pair in (C op, Ab). Then, the following assertions
are equivalent.

(1) C is an n-tilting cotorsion pair.
(2) C is complete and hereditary, A ⊆ Pn and B is closed under direct sums.

Proof. Easy.

Using Lemma 3(2), Propositions 1(2) and 3(2), we can obtain the dual versions of
Theorem 2 and Corollary 1. We leave the details of the proof for the reader.

Theorem 3. LetM⊆ (C op, Ab) be a class of objects. Then, the following assertions are equiva-
lent.

(1)M is n-cotilting.
(2)M is resolving, special precovering, closed under direct products and direct summands,

andM⊥ ⊆ In.
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Corollary 2. Let C = (A,B) be a cotorsion pair in (C op, Ab). Then, the following assertions
are equivalent.

(1) C is an n-cotilting cotorsion pair.
(2) C is complete and hereditary, B ⊆ In and A is closed under direct products.
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15. Št’ovíček, J. All n-cotilting modules are pure-injective. Proc. Am. Math. Soc. 2006, 134, 1891–1897.
16. Wei, J. Equivalences and the tilting theory. J. Algebra 2005, 283, 584–595.
17. Wei, J. n-star modules and n-tilting modules. J. Algebra 2005, 283, 711–722.
18. Wei, J.; Huang, Z.; Tong, W.; Huang, J. Tilting modules of finite projective dimension and a generalization of ∗-modules. J. Algebra

2003, 268, 404–418.
19. Asadollahi, J.; Hafezi, R.; Vahed, R. On the recollements of functor categories. Appl. Categor. Struct. 2016, 24, 331–371.
20. Asadollahi, J.; Hafezi, R.; Vahed, R. Derived equivalences of functor categories. J. Pure Appl. Algebra 2019, 223, 1073–1096.
21. Mao, L. On covers and envelopes in some functor categories. Commun. Algebra 2013, 41, 1655–1684.
22. Mao, L. On strongly flat and Ω-Mittag-Leffler objects in the category ((R−mod)op, Ab). Mediterr. J. Math. 2013, 10, 655–676.
23. Mao, L.; Ding, N. On covers and envelopes under Hom and tensor functors. Commun. Algebra 2015, 43, 4334–4349.
24. Martínez-Villa, R.; Ortiz-Morales, M. Tilting theory and functor categories I: Classical tilting. Appl. Categor. Struct. 2014, 22,

595–646.
25. Martínez-Villa, R.; Ortiz-Morales, M. Tilting theory and functor categories II: Generalized tilting. Appl. Categor. Struct. 2013, 21,

311–348.
26. Martínez-Villa, R.; Ortiz-Morales, M. Tilting theory and functor categories III: The maps category. Int. J. Algebra 2011, 5, 529–561.
27. Mitchell, B. Rings with several objects. Adv. Math. 1972, 8, 1–161.
28. Tan, L.; Liu, L. Resolution dimension relative to resolving subcategories in extriangulated categories. Mathematics 2021, 9, 980.
29. Enochs, E.E. Injective and flat covers, envelopes and resolvents. Israel J. Math. 1981, 39, 33–38.
30. Auslander, M.; Smalø, S. Preprojective modules over artin algebras. J. Algebra 1980, 66, 61–122.

http://doi.org/10.1023/A:1011485800557


Mathematics 2022, 10, 3163 11 of 11

31. Rada, J.; Saorín, M. Rings characterized by (pre)envelopes and (pre)covers of their modules. Commun. Algebra 1998, 26, 899–912.
32. Auslander, M.; Buchweitz, R. The homological theory of maximal Cohen-Macaulay approximations. Mem. Soc. Math. Fr. Suppl.

Nouv. Ser. 1989, 38, 5–37. [CrossRef]

http://dx.doi.org/10.24033/msmf.339

	Introduction
	Preliminaries
	Main Results
	References

