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Abstract: This paper mainly studies the distributed optimization problems in a class of undirected
networks. The objective function of the problem consists of a smooth convex function and a non-
smooth convex function. Each agent in the network needs to optimize the sum of the two objective
functions. For this kind of problem, based on the operator splitting method, this paper uses the
proximal operator to deal with the non-smooth term and further designs a distributed algorithm
that allows the use of uncoordinated step-sizes. At the same time, by introducing the random-block
coordinate mechanism, this paper develops an asynchronous iterative version of the synchronous
algorithm. Finally, the convergence of the algorithms is proven, and the effectiveness is verified
through numerical simulations.
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1. Introduction

In this paper, we study a class of distributed multi-agent problems on networks. Each
agent in the network system has the following private objective function to be solved

Fi(x̄) = fi(x̄) + gi(x̄), (1)

where x̄ ∈ Rn is the decision variable, fi is a Lipschitz-differentiable convex function,
and gi is a non-smooth convex function. Examples of fi include quadratic functions and
logistic functions [1], and applications of function gi include the elastic-net norm, L1-norm,
and indicator functions [2].

For the network system, we consider that each agent in the system is only allowed
to interact with neighbor agents, and there is no central agent to process data; then we
can obtain

min
x1,··· ,xm

m

∑
i=1

Fi(xi)

s. t. xi = xi, (i, j) ∈ E
(2)

where xi ∈ Rn is the local estimation for x̄ and E represents a collection of edges in
the network. This distributed computing architecture captures various areas containing
distributed information processing and decision making, networked multi-vehicle coordi-
nation, distributed estimation, etc. Typical applications include power systems control [3],
model predictive control [4], statistical inference and learning [5], and distributed average
consensus [6].
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In recent years, most of the literature has mainly focused on the case that the optimiza-
tion objective function contains only one smooth convex function. At the same time, many
centralized algorithms with excellent performance, such as proximal gradient descent,
sub-gradient algorithm, Newton method, and so on, solve these problems by extending
to a distributed form. The sub-gradient algorithm is the most commonly used method.
In [7], Nedić and Ozdaglar apply this method to the distributed optimization problem
on time-varying networks and creatively propose the distributed sub-gradient method
(DGD). Shi et al. [8] propose an exact first-order algorithm (EXTRA) and prove the linear
convergence of the algorithm. The algorithm makes use of the error between adjacent
iterations of the DGD algorithm. Then, [9] designs a distributed first-order algorithm
by combining DGD and the gradient tracking method. In order to further accelerate the
convergence of the algorithm, researchers successively propose the distributed ADMM
algorithm in [10–13]. However, these algorithms can only solve the optimization problem
of a single function.

For (2) this composite distributed optimization problem with a non-smooth term,
many research results have emerged. The authors of [14] design a proximal gradient
method by combining Nesterov acceleration mechanisms. However, each iteration will
lead to the consumption of more computing resources because more internal iteration steps
are required. In undirected networks, Shi et al. design a proximal gradient exact first-
order algorithm (PG-EXTRA) for composite optimization problems based on the classical
first-order distributed optimization algorithm (EXTRA) [8] in [15]. The algorithm can
accurately converge to the optimal solution of the problem by using a fixed step-size,
so it is different from most algorithms that must use attenuation step-size. The authors
of [16] propose a communication-efficient random walk named Walkman by using a
Markov chain. By analyzing the relationship between optimization accuracy and network
connectivity, this method obtains the explicit expression of communication complexity and
the communication efficiency of the system. Further, considering that the complex situation
of the real scene causes most agents in the network to transmit data in a directed way,
ref. [17] uses the push sum mechanism to eliminate the information imbalance caused by
the directed network and proposes the PG-ExtraPush algorithm on the basis of [8] and
maintains the same convergence property.

Recently developed, the operator splitting technology has become the mainstream
method to deal with this kind of complex optimization problem. Operator splitting tech-
nology is applied for the first time to composite optimization since Combettes and Pesquet
designed a fully splitting algorithm, refs. [18–21] and others successively propose various
algorithms for composite optimization. However, operator splitting technology is rarely
applied to distributed composite optimization. Based on this, this paper aims to design a
distributed algorithm with excellent performance by using the operator splitting method
and based on the theory of operator monotonicity.

Contributions: Compared with most existing distributed optimization algorithms,
the main contributions of this paper are summarized as follows:

1. To solve problem (2), this paper develops a novel, fully distributed algorithm based
on the operator splitting method, which has superiorities in flexibility and efficiency
compared with relatively centralized counterparts [18–21].

2. Based on a class of randomized block-coordinate methods, an asynchronous iterative
version of the proposed algorithm is also derived, wherein only a subset of agents that
are independently activated participate in the updates. Note that such an activation
scheme is more flexible compared with the single coordinate activation [22].

3. Both proposed algorithms allow not only local information interaction among neigh-
boring agents but also the use of uncoordinated step-sizes, without any requirement
of coordinated or dynamic ones considered in [7–9,14,23]. Additionally, the conver-
gence of both algorithms is ensured under the same mild assumptions. In particular,
the consideration of the local Lipschitz assumption avoids the conservative selections
of step-sizes, unlike the global one assumed in [8,14,15,17].
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Organization: The contents of the remaining sections of the paper are as follows.
Section 2 provides the symbols, lemmas, definitions, and assumptions that will be used in
the paper. We give the specific process of algorithm derivation in Section 3. In Section 4,
we show the convergence analysis of the proposed algorithms. Section 5 presents the
simulation experiment to verify the algorithms. Finally, Section 6 gives the conclusion of
the paper.

2. Preliminaries

In this section, we give the notations and display the definitions and lemmas that will
be used in the paper. Then, we give two important assumptions.

Above all, we introduce some knowledge about graph theory. Let G = (V , E) represent
an undirected network composed of n agents, where V denotes the set of agents and E de-
notes the set of edges. The neighborhood of the i-th agent is recorded as
Ni = {j|(i, j) ∈ E }. Specifically, when there is at least one path in any two agents in
an undirected network G, the network is connected.

Let Rn denote the n-dimensional Euclidean space and ‖·‖ denote the Euclidean norm
of a vector x ∈ Rn. The notation ρmax(·) is the spectral radius of a matrix, and N represents
the set of positive integers. Then let X0(Rn) denote the collection of all proper lower
semi-continuous convex functions from Rn to (−∞, +∞]. When Wi denotes a positive
definite matrix, using Wi as the diagonal element can form a positive definite diagonal
matrix blkdiag{Wi}i∈V . Let ri(·) denote the interior of a convex subset and dom f denote
the effective domain of f . The subdifferential of function fi is expressed as ∂ f (x1) =

{v ∈ Rn|(x2 − x1)
Tv ≤ f (x2)− f (x1), ∀x2 ∈ Rn}. The proximity operator of a function

f ∈ X0(Rn) related to ‖ · ‖P is defined by proxP−1 f (x) = arg miny∈Rn{ f (y) + (1/2)||x −
y||2P}. The convex conjugate function of f is written as f⊗.

At the same time, we give the following lemmas and assumptions.

Lemma 1 ([24]). Let f ∈ X0(Rn), then for vectors x1, x2 ∈ Rn, the following relation holds:

x2 ∈ ∂ f (x1)⇔ x1 = prox f (x1 + x2)

⇔ x2 =
(

I − prox f

)
(x1 + x2). (3)

Lemma 2 ([25]). Let f ∈ X0(Rn), then both prox f and I − prox f satisfy a firmly nonexpansive
relationship.

Lemma 3 ([19]). For a fixed point iteration uk+1 = T(uk), {uk} will converge to the fixed point
of T when it satisfies the following conditions:

1. T is continuous,
2.

{
||uk − u∗||2

}
is non-increasing,

3. lim
k→∞
‖uk+1 − uk‖2 = 0.

Definition 1. For all x1, x2 ∈ Rn, if an operator T satisfies ‖Tx1 − Tx2‖ ≤ ‖x1 − x2‖, then T is
a nonexpansive operator. Further, if T satisfies ‖Tx1 − Tx2‖2 ≤ (Tx1 − Tx2)

T(x1 − x2), then T
is firmly a nonexpansive operator.

Definition 2. When (Tx1 − Tx2)
T(x1 − x2) ≥ σT‖x1 − x2‖2, x1, x2 ∈ Rn exist for a constant

σT > 0 and operator T, then operator T satisfies σT-strongly monotone.

The following assumptions will also be used.

Assumption 1. Graph G satisfies undirected and connected operators.

Assumption 2. The following three points are satisfied:
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1. fi : Rn → R is a smooth convex function, let 1/βi be Lipschitz constant, then fi satisfies

βi‖∇ fi(x1)−∇ fi(x2)‖ ≤ ‖x1 − x2‖, ∀x1, x2 ∈ Rn,

2. gi : Rn → R is a convex non-smooth function,
3. Problem (2) has at least one solution.

3. Algorithm Development

In this section, we design and derive the synchronous algorithm and asynchronous
algorithm.

We next carry on the equivalent transformation to problem (2) to facilitate the subse-
quent algorithm design. The constraint, xi = xj in (2) can be written as the edge-based form

Eijxi + Ejixj = 0, (4)

where Eij = I ∈ Rn×n for i < j, and Eij = −I ∈ Rn×n otherwise. Then, define the following
linear operator:

M(i,j) : x → (Eijxi, Ejixj) ∈ R2n×mn, (5)

with the compact variable x = [xT
1 , · · · , xT

m]
T ∈ Rmn. We stack all M(i,j) to get the follow-

ing operator:

M : x →
(

M(i,j)x
)
(i,j)∈E

, (6)

with the dimension 2n|E | × mn, where |E | is the number of edges of the network E .
Considering the set

C(i,j) = {(e1, e2) ∈ Rn ×Rn|e1 + e2 = 0}.

Then, constraint (4) can be further reformulated in the following form:

M(i,j)x ∈ C(i,j). (7)

Based on the above analysis, problem (2) can be transformed into

min
xi∈Rn

m
∑

i=1
fi(xi) + gi(xi)+

m
∑

i=1
∑

(i,j)∈E
δC(i,j)

(
M(i,j)x

)
, (8)

where δC represents the indicator function, i.e.,

δC(i,j)

(
M(i,j)x

)
=

{
0, M(i,j)x ∈ C(i,j),
+∞, M(i,j)x /∈ C(i,j).

Then, let

f (x) =
m

∑
i=1

fi(xi),

g(x) =
m

∑
i=1

gi(xi),

δC(Mx) =
m

∑
i=1

∑
j∈Ni

δC(i,j)

(
M(i,j)x

)
,



Mathematics 2022, 10, 3135 5 of 17

and C = ∏(i,j)∈E C(i,j) (∏ denotes the Cartesian product). Hence, the compact form of
problem (8) can be expressed by

min
x∈Rmn

f (x) + g(x) + δC(Mx). (9)

3.1. Synchronous Algorithm 1

According to the fixed point theory, we design the distributed optimization algo-
rithm of problem (2) from (9). We define the step-size matrices Γ = blkdiag{γi In}i∈V ,

Λ̃ = blkdiag
{

λ̃(i,j)γ̃
−1
(i,j)

}
(i,j)∈E

, and H̃ = blkdiag
{

λ(i,j) I2n

}
(i,j)∈E

, where we let γ̃(i,j) =

blkdiag
{

γi In, γj In
}

, and then introduce the following operators:

T0(s∗, x∗) = proxΓg
(

x∗ − Γ∇ f (x∗)− (H̃M)Ts∗
)
, (10)

T̃1(s∗, x∗) =
(

I − proxΛ̃−1δC

)
(MT0(s∗, x∗) + s∗), (11)

T2(s∗, x∗) = proxΓg

(
x∗ − Γ∇ f (x∗)− (H̃M)TT̃1(s∗, x∗)

)
, (12)

T(s∗, x∗) =
(
T̃1(s∗, x∗), T2(s∗, x∗)

)
, (13)

where x∗ = col
{

x∗i
}m

i=1 and s∗ = col{s∗(i,j)}(i,j)∈E with s∗(i,j) = col{s∗(i,j),i, s∗(i,j),i} are the
fixed points of T. In particular, s∗(i,j),i and s∗(i,j),j are maintained by i and j, respectively.

Considering the update variables yk+1 = col{yk+1
i }m

i=1, xk+1 = col{xk+1
i }m

i=1, and sk+1 =

col{sk+1
(i,j)}(i,j)∈E with the edge-based variable sk+1

(i,j) = col{sk+1
(i,j),i, sk+1

(i,j),j}, we give the Picard
sequence of T and obtain the following update rules:

yk+1 = proxΓg

(
xk − Γ∇ f (xk)−

(
H̃M

)Tsk

)
sk+1 =

(
I − proxΛ̃−1δC

)
(Myk+1 + sk)

xk+1 = proxΓg

(
xk − Γ∇ f (xk)−

(
H̃M

)Tsk+1

) (14)

Let w̄k+1 = col{w̄k+1
(i,j)}(i,j)∈E = col{λ̃(i,j)γ̃

−1
(i,j) · s

k+1
(i,j)}(i,j)∈E . Using Lemma 2, (14) can

be rewritten as

yk+1 = proxΓg

(
xk − Γ∇ f (xk)− ΓMTw̃k

)
, (15a)

sk+1 =
(

I − proxΛ̃−1δC

)
(Myk+1 + sk), (15b)

xk+1 = proxΓg

(
xk − Γ∇ f (xk)− ΓMTw̃k+1

)
. (15c)

Next, we split (15a)–(15c) in a distributed manner. It follows from (5) and (6) that the
i-th component of MTw̃k+1 is Eijw̃k+1

(i,j),i. Note that (15a) can be decomposed into

 yk+1
1
...

yk+1
m

 =


proxγ1g1

(
xk

1 − γ1∇ f1

(
xk

1

)
− γ1 ∑j∈N1

E1jw̃k
(1,j),1

)
...

proxγmgm

(
xk

m − γm∇ fm

(
xk

m

)
− γm ∑j∈Nm Emjw̃k

(m,j),m

)
. (16)
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For (15b), multiply both sides of the equality by Λ̃. As done in (16), we also split (15b)
and (15c) and use the result proxδC( i,j)

=projC(i,j) to get the semi-distributed form:

yk+1
i = proxγi gi

(
xk

i − γi∇ fi

(
xk

i

)
−γi ∑

j∈Ni

Eijw̃k
(i,j),i

)
, (17a)

w̃k+1
(i,j) = w̃k

(i,j) + λ̃(i,j)γ̃
−1
(i,j)

(
M(i,j)yk+1 − projC(i,j)

(
γ̃(i,j)

λ̃(i,j)
w̃k
(i,j) + M(i,j)yk+1

))
, (17b)

xk+1
i = proxγi gi

(
xk

i − γi∇ fi

(
xk

i

)
−γi ∑

j∈Ni

Eijw̃k+1
(i,j),i

)
. (17c)

Note that (17b) is not fully distributed due to the structure wk+1
(i,j) = col{wk+1

(i,j),i, wk+1
(i,j),j}.

By using (4) and (5), we can derive that the projection of vectors e1, e2 ∈ Rn to C(i,j) is
expressed as

projC(i,j)
(e1, e2) =

1
2
(e1 − e2, e2 − e1),

which contributes to the local update of (17b), i.e.,

w̃k+1
(i,j),i = w̃k

(i,j),i +
λ̃(i,j)

γi

(
yk+1

i − 1
2

((
γi

λ̃(i,j)
w̃k
(i,j),i + yk+1

i

)
−
(

γi
λ̃(i,j)

w̃k
(i,j),j−yk+1

j

)))
,

w̃k+1
(i,j),j = w̃k

(i,j),j +
λ̃(i,j)

γj

(
−yk+1

j − 1
2

((
γj

λ̃(i,j)
w̃k
(i,j),j−yk+1

j

)
−
( γj

λ̃(i,j)
w̃k
(i,j),i + yk+1

i

)))
.

Therefore, according to (17a), (17c), and the update of wk+1
(i,j),i, we can summarize the

synchronous distributed algorithm as follows:

Remark 1. Notice that Algorithm 1 is completely distributed without involving any global pa-
rameters. For example, each agent individually maintains the private primal variable xk

i , aux-
iliary variable yk

i , and edge-based variables w̃k+1
(i,j),i. For each edge (i, j) ∈ E in the network,

w̃k
(i,j) = col{w̃k

(i,j),i, w̃k
(i,j),i} as an auxiliary profile contains two components, i.e., w̃k

(i,j),i and w̃k
(i,j),i,

which are respectively kept by i and j. Meanwhile, the information exchange is locally conducted;
that is, agent i shares its updated data yk+1

i and w̃k+1
(i,j),i with its all neighbors j ∈ Ni. On the

other hand, the proposed algorithm takes uncoordinated constant positive step-sizes, γi, essentially
distinguished from the global and dynamic ones in [7–9,14,23]. It is also worth noting that the
edge-based step-size λ̃(i,j), held by agents i and j linked by the edge (i, j) ∈ E , can be seen as inherent
parameters of the communication network, revealing the quality of the communication.

Algorithm 1 Distributed algorithm based on proximal operators

Input: For all agents i ∈ V , x0
i ∈ Rn, and w̃0

(i,j),i ∈ Rn, where j ∈ Ni. And select proper

positive step-sizes or parameters, γi and λ̃(i,j).
For k = 0, 1, . . . , do:

1. yk+1
i = proxγi gi

(
xk

i − γi∇ fi

(
xk

i

)
−γi ∑j∈Ni

Eijw̃k
(i,j),i

)
,

2. w̃k+1
(i,j),i =

1
2

λ̃(i,j)
γi

(
yk+1

i −yk+1
j

)
+ 1

2

(
w̃k
(i,j),i + w̃k

(i,j),j

)
, ∀j ∈ Ni,

3. xk+1
i = proxγi gi

(
xk

i − γi∇ fi

(
xk

i

)
−γi ∑j∈Ni

Eijw̃k+1
(i,j),i

)
,

4. Send yk+1
i , w̃k+1

(i,j),i to j for j ∈ Ni,

5. Until the
∥∥∥xk+1

i − xk
i

∥∥∥ approaches zero.

End
Output: The primal variable xk+1

i as the optimal solution x∗i .
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3.2. Asynchronous Algorithm 2

Here, we extend the synchronous Algorithm 1 to the asynchronous iterative version
based on the random-block coordinate mechanism in [2]. Combining with the principle
of this mechanism, we define the diagonal matrix Pi ∈ R(2|E |+m)n ×R(2|E |+m)n (where |E |
denotes the number of edges of the graph E ) diagonal elements of 0 or 1 to represent the
coordinate matrix, and then divide the vector (s, x) into m blocks. At the same time, we
define the activation vector ξk ∈ Rm of φ-valued, where φ = 0, 1 is a binary string with
length m. When ξk

i = 1, it means that the agent i is activated at the k-th iteration; otherwise
it is not activated.

In order to describe the activation state of different coordinate blocks and ensure
random activation, we give the following assumption.

Assumption 3. The following two points are satisfied:

1. The sum of Pi satisfies ∑m
i Pi = I,

2.
(

ξk
)

k≥0
is a φ-valued vector satisfying identical independent distributionsand its probability

is pi = P
(

ξk
i = 1

)
> 0, k ≥ 0.

Then, based on the given assumption, we can develop the asynchronous algorithm
as follows:

It can be seen that Algorithm 2 allows each agent to awaken with an independent
probability, which means that a subset of randomly activated agents will participate in the
updates while inactivated ones stay in previous states. Such a scheme is more flexible than
the single waking-up scheme [22] or other activated block coordinates that are uniformly
selected [26]. In addition, the probability is completely independent of the others, which
does not meet some strict conditions, such as ∑m

i=1 pi = 1.

Algorithm 2 Asynchronous distributed version

Input: For all agents i ∈ V , x0
i ∈ Rni , and w̃0

(i,j),i ∈ Rn, where j ∈ Ni. And select proper

positive step-sizes or parameters, γi and λ̃(i,j).
For k = 0, 1, . . . , do :

For j ∈ Ni, each agent i is activated independently with probability pi, and further
performs the update steps 1-5 in Algorithm 1. While agents that are not activated,
the last values keep unchanged.

End
Output: The primal variable xk+1

i as the optimal solution x∗i .

In order to facilitate the subsequent derivation of convergence, we need to give a
compact form of Algorithm 2. By making u = (s, x), we get

uk+1 = uk + Ek+1(Tuk − uk), (18)

where Ek+1 = ∑m
i=1 ξk+1

i Pi and operator T can be seen in Equation (11).

4. Convergence Analysis

The convergence proof of the algorithms is provided in this section. The following
assumption is the condition to be met for the convergence of the algorithms.

Assumption 4. Recall the local Lipschitz constant βi in Assumption 2. It is assumed that the
step-sizes satisfy the following conditions:

0 < γi < 2βi, 0 < λ̃(i,j) < 1.
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Lemma 4. Let x∗ be a solution to (9), then there are

s∗ = T̃1(s∗, x∗),

x∗ = T2(s∗, x∗),

which means u∗ = (s∗, x∗) is a fixed point of T. On the contrary, x∗ is the solution to (9) when u∗

is the fixed point of T.

Proof. Use the first-order optimal condition of (9) to obtain 0 ∈ Γ∇ f (x∗) + Γ∂g(x∗) +
ΓMT∂δC(Mx∗), where x∗ is the optimal solution. According to the definition of matrix
step-sizes, we further obtain

0 ∈Γ∇ f (x∗) + Γ∂g(x∗) + (H̃M)TΛ̃−1∂δC(Mx∗).

Use Lemma 1 and let s∗ ∈ Λ̃−1∂δC(Mx∗) to get

s∗ =
(

I − proxΛ̃−1δC

)
(Mx∗ + s∗), (19)

x∗ = proxΓg

(
x∗ − Γ∇ f (x∗)− (H̃M)

Ts∗
)

. (20)

Then according to (19) and (20), we can get

s∗ =
(

I − proxΛ̃−1δC

)(
MproxΓg

(
x∗ − Γ∇ f (x∗)− (H̃M)Ts∗

)
+ s∗

)
.

Therefore, we have x∗ = T2(s∗, x∗) and s∗ = T̃1(s∗, x∗). Meanwhile, u∗ = Tu∗, where
u∗ = (s∗, x∗). Accordingly, if there is u∗ = Tu∗, it can also be deduced that x∗ satisfies
the first-order optimality condition of problem (9). Thus x∗ is an optimal solution of
problem (9).

Lemma 5. Let Assumptions 1 and 2 hold, then there are

‖sk+1 − s∗‖2
Λ̃ ≤ ‖sk − s∗‖2

Λ̃ − ‖sk+1 − sk‖2
Λ̃ + 2(sk+1 − s∗)TΛ̃M(yk+1 − x∗), (21)

‖xk+1 − x∗‖2
Γ−1

≤ ‖xk − x∗‖2
Γ−1 − ‖xk+1 − yk+1‖2

Γ−1 − ‖xk − yk+1‖2
Γ−1

+ 2
(

Γ−1xk+1 − Γ−1yk+1

)T(
Γ∇ f (xk) +

(
H̃M

)Tsk

)
+ 2
(

Γ−1x∗ − Γ−1xk+1

)T(
Γ∇ f (xk) +

(
H̃M

)Tsk+1

)
+ 2
(
(g ◦ Γ)

(
Γ−1x∗

)
− (g ◦ Γ)

(
Γ−1yk+1

))
. (22)

Proof. Combining (14), (19), and Lemma 2, we get

‖sk+1 − s∗‖2
Λ̃

=
∥∥∥(I − proxΛ̃−1δC

)
(Myk+1 + sk)−

(
I − proxΛ̃−1δC

)
(Mx∗ + s∗)

∥∥∥2

Λ̃

≤ (sk+1 − s∗)TΛ̃((Myk+1 + sk)− (Mx∗ + s∗)).
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It is further concluded that

(sk+1 − s∗)TΛ̃(sk+1 − sk + sk − s∗)

≤ (sk+1 − s∗)TΛ̃M(yk+1 − x∗) + (sk+1 − s∗)TΛ̃(sk − s∗).

Here we introduce an equality. For a positive definite matrix K and x1, x2, x3 ∈ Rn,
we have

2(x1 − x2)
TK(x3 − x2) = ‖x3 − x2‖2

K + ‖x1 − x2‖2
K − ‖x1 − x3‖2

K. (23)

Combining the above two results, we derive

‖sk+1 − s∗‖2
Λ̃ =‖sk − s∗‖2

Λ̃ − ‖sk+1 − sk‖2
Λ̃ + 2(sk+1 − s∗)TΛ̃(sk+1 − sk)

≤‖sk − s∗‖2
Λ̃ − ‖sk+1 − sk‖2

H̃ + 2(sk+1 − s∗)TΛ̃M(yk+1 − x∗). (24)

In order to prove the validity of (22), (3) is used for (14)

Γ−1
(

xk − Γ∇ f (xk)− (H̃M)Tsk+1 − xk+1

)
∈ ∂g(xk+1).

Using subdifferential properties to obtain

(x∗ − xk+1)
TΓ−1

(
xk − Γ∇ f (xk)− (H̃M)Tsk+1 − xk+1

)
≤ g(x∗)− g(xk+1)

and equivalent (
Γ−1xk+1 − Γ−1x∗

)T
(xk+1 − xk)

≤ −
(

Γ−1xk+1 − Γ−1x∗
)T

Γ−1(Γ∇ f (xk) + (H̃M)Tsk+1
)

+ (g ◦ Γ)
(

Γ−1x∗
)
− (g ◦ Γ)

(
Γ−1xk+1

)
. (25)

Moreover, there is

‖xk+1 − x∗‖2
Γ−1 =‖xk − x∗‖2

Γ−1 − ‖xk+1 − xk‖2
Γ−1 + 2(xk+1 − x∗)TΓ−1(xk+1 − xk). (26)

A derivation similar to (25) is obtained for (14)(
Γ−1xk+1 − Γ−1yk+1

)T(
xk − Γ∇ f (xk)− (H̃M)Tsk − yk+1

)
≤ (g ◦ Γ)

(
Γ−1xk+1

)
− (g ◦ Γ)

(
Γ−1yk+1

)
⇔
(

Γ−1xk+1 − Γ−1yk+1

)T
(xk − yk+1)

≤
(

Γ−1xk+1 − Γ−1yk+1

)T(
Γ∇ f (xk) +

(
H̃M

)Tsk

)
+ (g ◦ Γ)

(
Γ−1xk+1

)
− (g ◦ Γ)

(
Γ−1yk+1

)
.

Therefore, we deduce

− ‖xk+1 − xk‖2
Γ−1

= −‖xk − yk+1‖2
Γ−1 − ‖xk+1 − yk+1‖2

Γ−1 + 2(xk − yk+1)
TΓ−1(xk+1 − yk+1)
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≤ −‖xk − yk+1‖2
Γ−1 − ‖xk+1 − yk+1‖2

Γ−1

+ 2
(

Γ−1xk+1 − Γ−1yk+1

)T(
Γ∇ f (xk) +

(
H̃M

)Tsk

)
+ 2
(
(g ◦ Γ)

(
Γ−1xk+1

)
− (g ◦ Γ)

(
Γ−1yk+1

))
.

Combining the above two equalities and (26), we can get (22).

Lemma 6. Let Assumptions 1 and 2 hold. Set β= blkdiag{βiIn}i∈V . For matrix P = blkdiag{Λ̃, Γ−1}
and u = (s, x), there is

‖uk+1 − u∗‖2
P

≤ ‖uk+1 − u∗‖2
P − ‖sk+1 − sk‖2

Λ̃(I−MΓMTΛ̃)

−
∥∥∥yk+1 − xk+1 +

(
H̃M

)T
(sk+1 − sk)

∥∥∥2

Γ−1

− ‖xk − yk+1 − (Γ∇ f (xk)− Γ∇ f (x∗))‖2
Γ−1

− ‖∇ f (xk)−∇ f (x∗)‖2
2β−Γ. (27)

Proof. Adding (21) and (22), then rearranging to get

‖xk+1 − x∗‖2
Γ−1 + ‖sk+1 − s∗‖2

Λ̃

≤ ‖xk − x∗‖2
Γ−1 + ‖sk − s∗‖2

Λ̃ − ‖xk − yk+1‖2
Γ−1

− ‖sk+1 − sk‖2
Λ̃ − ‖xk+1 − yk+1‖2

Γ−1

+ 2
((

H̃M
)T
(sk+1 − sk)

)T
Γ−1(yk+1 − xk+1)

+ 2(Γ∇ f (xk)− Γ∇ f (x∗))TΓ−1(xk − yk+1)

− 2(Γ∇ f (xk)− Γ∇ f (x∗))TΓ−1(xk − x∗)

+ 2

((
−Γ∇ f (x∗)−

(
H̃M

)Ts∗
)T

Γ−1(yk+1 − x∗)
+(g ◦ Γ)

(
Γ−1x∗

)
− (g ◦ Γ)

(
Γ−1yk+1

)
)

.

Further, we have

‖xk+1 − x∗‖2
Γ−1 + ‖sk+1 − s∗‖2

Λ̃

≤ ‖xk − x∗‖2
Γ−1 + ‖sk − s∗‖2

Λ̃ − ‖xk − yk+1‖2
Γ−1

− ‖sk+1 − sk‖2
Λ̃(I−MΓMTΛ̃) − ‖xk+1 − yk+1‖2

Γ−1

+
∥∥∥(H̃M

)T
(sk+1 − sk)

∥∥∥2

Γ−1
+ ‖yk+1 − xk+1‖2

Γ−1

−
∥∥∥yk+1 − xk+1 +

(
H̃M

)T
(sk+1 − sk)

∥∥∥2

Γ−1

+ ‖Γ∇ f (xk)− Γ∇ f (x∗)‖2
Γ−1 + ‖xk − yk+1‖2

Γ−1

− ‖xk − yk+1 − (Γ∇ f (xk)− Γ∇ f (x∗))‖2
Γ−1

+ 2

((
−Γ∇ f (x∗)−

(
H̃M

)Ts∗
)T

(yk+1 − x∗)
+(g ◦ Γ)

(
Γ−1x∗

)
− (g ◦ Γ)

(
Γ−1yk+1

)
)

. (28)

Then we deal with some terms in the above inequality. For (20) combined with
Lemma 1 can deduce

− Γ∇ f (x∗)−
(
H̃M

)Ts∗ ∈ Γ∂g(x∗) = ∂(g ◦ Γ)
(

Γ−1x∗
)

.
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Further using subdifferential properties, we have(
Γ−1yk+1 − Γ−1x∗

)T
(
−Γ∇ f (x∗)−

(
H̃M

)Ts∗
)

+(g ◦ Γ)
(
Γ−1x∗

)
− (g ◦ Γ)

(
Γ−1yk+1

)
≤ 0.

Meanwhile, because ∇ fi is 1/βi-strongly monotone, there is

−(∇ f (xk)−∇ f (x∗))T(xk − x∗) ≤ −‖∇ f (xk)−∇ f (x∗)‖2
β. (29)

Bring the above results back to (28) and get (27).

Lemma 7. Under Assumptions 1–4,
{
||uk − u∗||2P

}
is non-increasing and limk→∞‖uk+1 − uk‖2

P =
0.

Proof. If Assumption 4 holds, we can deduce that
{
||uk − u∗||2P

}
satisfies non-increasing

operators.
Sum (27) over k from 0 to N to obtain

‖uN+1 − u∗‖2
P

≤ ‖u0 − u∗‖2
P −

n

∑
k=0
‖sk+1 − sk‖2

Λ̃(I−MΓMTΛ̃)

−
n

∑
k=0

∥∥(xk+1 − yk+1)+(H̃MΓ)T(sk+1 − sk)
∥∥2

Γ−1

−
n

∑
k=0
‖xk − yk+1 − (Γ∇ f (xk)− Γ∇ f (x∗))‖2

Γ−1

−
n

∑
k=0
‖∇ f (xk)−∇ f (x∗)‖2

2β−Γ.

When N tends to infinity, we can get

∞
∑

k=0
‖sk+1 − sk‖Λ̃(I−MΓMTΛ̃) < ∞,

∞
∑

k=0

∥∥∥(xk+1 − yk+1)+(H̃MΓ)T
(sk+1 − sk)

∥∥∥ < ∞,
∞
∑

k=0
‖xk − yk+1 − (Γ∇ f (xk)− Γ∇ f (x∗))‖ < ∞,

∞
∑

k=0
‖∇ f (xk)−∇ f (x∗)‖ < ∞.

This means

lim
k→∞
‖sk+1 − sk‖Λ̃(I−MΓMTΛ̃) = 0, (30)

lim
k→∞

∥∥(xk+1 − yk+1)+(H̃MΓ)T(sk+1 − sk)
∥∥ = 0, (31)

lim
k→∞
‖xk − yk+1 − (Γ∇ f (xk)− Γ∇ f (x∗))‖ = 0, (32)

lim
k→∞
‖∇ f (x∗)−∇ f (xk)‖ = 0. (33)

Next, according to (32) and (33), we obtain

lim
k→∞
‖xk − yk+1‖=0. (34)
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Meanwhile, if Assumption 4 holds, I −MΓMTΛ̃ is a symmetric positive definite.
Therefore, we can get

lim
k→∞
‖sk+1 − sk‖ = 0. (35)

According to (31) and (35) we obtain limk→∞‖xk+1 − yk+1‖ = 0. Combining with (34),
we get

lim
k→∞
‖xk+1 − xk‖2 = 0. (36)

Then according to (35) and (36), we get limk→∞‖uk+1 − uk‖2 = 0.

Next, we give the following theorem to prove the convergence of Algorithm 1.

Theorem 1. Under Assumptions 1–4, {xk} and {uk} converge to the optimal solution of (2) and
the fixed points of T, respectively.

Proof. Because prox f and I − prox f are firmly nonexpansive, T is continuous. Then,
limk→∞‖uk+1 − uk‖2

P = 0 and the sequence
{
||uk − u∗||2P

}
satisfies non-increasing are

obtained from Lemma 7. Based on Lemma 3, the sequence {uk} converges to a fixed
point of T. According to Lemma 4, it can be concluded that {xk} converges to a solution
to (2).

At the same time, we also give the following theorem to prove the convergence of
Algorithm 2.

Theorem 2. Under Assumptions 1–4, relative to the solution set S , the sequence {uk}k≥k0
, k0 ∈ N

satisfies Π−1P stochastic Fejér monotonicity [27]:

E
[
‖uk+1 − u∗‖2

Π−1P

]
≤ ‖uk − u∗‖2

Π−1P − ‖sk+1 − sk‖2
Λ̃(I−MΓMTΛ̃) − ‖∇ f (xk)−∇ f (x∗)‖2

2β−Γ. (37)

Further, the sequence {uk}k≥k0
converges almost surely to some u∗ ∈ S .

Proof. Before proving, we give some definitions. Here Π = ∑m
i=1 piPi denotes the proba-

bility matrix, and E[·|Fk ] is ca onditional expectation, and its abbreviation is Ek [·], where

Fk represents the filtration generated by
(

ξ1, . . . , ξk
)

. We use Ek = ∑m
i=1 ξk

i Pi to map the

components of
(
R(2|E |+m)n,Fk−1

)
to
(
R(2|E |+m)n,Fk

)
.

Based on the definition of ξk, we have E ◦ (Ek+1) = Π.
Using the idempotent property of Ek, we have

E
[
‖uk+1 − u∗‖2

Π−1P

]
= E

[
‖uk + Ek+1(Tuk − uk)− u∗‖2

Π−1P

]
= E

[
‖uk − u∗‖2

Π−1P + ‖Ek+1(Tuk − uk)‖2
Π−1P

+2(uk − u∗)TΠ−1P(Ek+1(Tuk − uk))

]
= ‖uk − u∗‖2

Π−1P+‖Tuk − uk‖2
P+2(uk − u∗)TP(Tuk − uk).
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Then according to Lemma 6 and (23), we get

E
[
‖uk+1 − u∗‖2

Π−1P

]
= ‖uk − u∗‖2

Π−1P + ‖Tuk − u∗‖2
P − ‖uk − u∗‖2

P

≤ ‖uk − u∗‖2
Π−1P − ‖sk+1 − sk‖2

Λ̃(I−MΓMTΛ̃) − ‖∇ f (xk)−∇ f (x∗)‖2
2β−Γ.

Therefore, if Assumption 4 holds, we can obtain the convergence of (37) according
to [28] Th. 3, [27] Prop. 2.3, and the Robbins–Siegmund lemma in [29].

5. Numerical Experiments
5.1. Case Study I: Performance Examination

We present the effectiveness of the algorithms in this section by solving a class of
quadratic programming problems on undirected networks. The network topology is shown
in Figure 1.

Figure 1. Graph topology.

The quadratic programming problem model is as follows:

min
x1,··· ,xm

m

∑
i=1

fi(xi) = xT
i Vixi + bT

i xi

s. t. xmin
i ≤ xi ≤ xmax

i , i = 1, · · · , m,

xi = xj, i = 1, · · · , m, (i, j) ∈ E ,

(38)

where xi is the decision variable of each agent. Matrix Vi in the objective function is a
diagonal matrix, and its elements are randomly selected in [−8, 8], and the elements of
vector bi are randomly selected in [−10, −5]. For the box constraint of xi, the range of xmin

i
is [−10, −5], and the range of xmax

i is [5, 10].
To solve problem (38), we need to convert the problem into the form of problem (8).

Defining the set Xi =
{

e ∈ R2
∣∣xm

i ≤ e ≤ xM
i
}

and defining the indicator function δXi (xi),
then we can get the following problem:

min
xi∈R2

m

∑
i=1

fi(xi) + δXi (xi) +
m

∑
i=1

∑
(i,j)∈E

δC(i,j)

(
M(i,j)x

)
.

Figure 2a shows that the agent finally converges to a consistent state through syn-
chronous Algorithm 1. In Figure 2b, we use asynchronous Algorithm 2 with activation
probability pi = 0.2 to describe the state of the agent under the same parameter conditions.
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Figure 2. Convergence results of the two algorithms. (a) Algorithm 1. (b) Algorithm 2.

In Figure 3, the performance of both proposed algorithms is depicted through a
comparison with existing algorithms, i.e., an ADMM-based method [30], TriPD-Dist, and
its asynchronous version [2]. It can be shown that Algorithm 1 outperforms the ADMM-
based method and TriPD-Dist, and the proposed asynchronous algorithm (Algorithm 2)
also has a faster convergence speed than asynchronous TriPD-Dist, mainly by estimating
the logarithmic values of 1/m ·∑m

i=1 ‖xk
i − x̃∗‖.
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Figure 3. Performance comparison.

5.2. Case Study II: First-Order Dynamics System

In this subsection, we apply the proposed synchronous algorithm to solve a first-
order dynamics system problem in a 2-D space [31], where each agent has its own cost
function fi( p̃) = ‖ p̃− p̃x,i‖2 +

∥∥ p̃− p̃y,i
∥∥2, with the action response p̃ = [ p̃x, p̃y]T, and the

private reference positions p̄x,i = [i− 3.5, 0]T and p̄y,i = [0, i− 3.5]T. The goal of the
considered problem is that all agents cooperatively find the optimal position p̃ under the
local constraints Ωi =

{
p̃ ∈ R2

∣∣∥∥ p̃− p̄0
i

∥∥2 ≤ 64
}

, where p̄0
i is the initial position of agent

i ∈ {1, 2, 3, 4, 5, 6, 7}. Let p̄0
1 = [−4, 5.5]T, p̄0

2 = [0, 7]T, p̄0
3 = [6, 5]T, p̄0

4 = [5,−3.5]T, p̄0
5 =

[0,−7]T, p̄0
6 = [−5,−5]T, p̄0

7 = [7, 7]T, then the distributed problem can be formulated as

min
p1,...,pm

m

∑
i=1
‖pi − p̄x,i‖2 +

∥∥pi − p̄y,i
∥∥2

+ δΩi (pi),

s.t. pi = pj, (i, j) ∈ E ,
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where pi ∈ R2 is the local estimation action for p̃. In light of (1), we can set gi(pi) = δΩi (pi).
The selections of step-sizes are the same as that of Case Study I.

The results are described in Figures 4 and 5. To be specific, Figure 4a,b reflect the
trajectories of pi = [px,i, py,i]

T. Figure 5 depicts the motions of the entire system over
iterations, where the optimal position p̃∗ = [0.6743, 0.2711]T is marked by a cross at the
intersection of two star lines, the circles with a dotted line are the corresponding motion
areas of agents, and the solid ones are the initial positions.
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Figure 4. Evaluations of positions. (a) Evaluations of pk
x,i. (b) Evaluations of pk

y,i.
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Figure 5. Motions of all agents in the 2-D space.

6. Conclusions

This paper mainly studies a class of distributed composite optimization problems
with non-smooth convex functions. To solve this kind of problem, this paper proposes two
completely distributed algorithms. At the same time, the algorithms are verified in theory
and simulation. However, there are still some aspects worthy of improvement in this paper.
For example, in the network structure, we can consider expanding from an undirected
graph to a directed graph, and we can also combine it with more practical application
scenarios, such as resource allocation.
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