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Abstract: The general variable coefficient cylindrical/spherical KdV equation has been investigated
by using the simplified homogeneous balance method. It has been proven that if its coefficients
satisfy certain constraint conditions, then the cylindrical/spherical KdV equation has a nonlinear
transformation that converts the solution of the quadratic form equation into the solution of the
cylindrical/spherical KdV equation. The quadratic form equation admits a series of solutions
expressed by the exponential functions, therefore one soliton-like solution and multi soliton-like
solutions of the cylindrical/spherical KdV equation can be obtained exactly.
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1. Introduction

In the present paper we investigate general variable coefficient cylindrical/spherical
KdV equation [1–3] in the form

ut + α(t)uux + β(t)uxxx +
m
2t

u = 0, (1)

where α(t) is the nonlinear coefficient and β(t) is the dispersion coefficient. The last term
containing an arbitrary and positive integer “m” represents the geometry effects: when
m = 1, it represents the cylindrical geometry effect, and Equation (1) is called the cylindrical
KdV equation; when m = 2, it represents the spherical geometry effect, and Equation (1) is
called the spherical KdV equation.

In Ref. [4], by using the conventional reductive perturbation method, the authors
derived the cylindrical (spherical) KdV and mKdV equations and obtained the progressive
wave solutions. Through the use of the reductive perturbation method, an approximate
analytical method for the progressive wave solution is presented for the cylindrical (spheri-
cal) KdV and the modified KdV equations in the sense of the weighted residual method
in Ref. [5]. Although several researchers derived these evolution equations for various
type of plasma structures, there is no analytical progressive soliton-like solution available,
especially for the general variable coefficient cylindrical/spherical KdV equation.

The question considered in the paper is to find out what constraint condition exists for
α(t) and β(t), such that Equation (1) admits an exact soliton-like solution, as well as exact
multi soliton-like solutions. We shall apply the simplified homogeneous balance method
(SHB) [6–10], different from the homogeneous balance method (HB) [11–13], to investigate
Equation (1), thereby to answer this question. By this method, a nonlinear transformation
from the solution for a quadratic form equation to the solution for the general variable
coefficient cylindrical/spherical KdV equation is derived, and one soliton-like solution and
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multi soliton-like solutions are obtained via the nonlinear transformation successfully. It is
worth noting that these solutions have not been mentioned in the previous literature. The
geometric shapes of some soliton-like solutions are studied by numerical simulation. The
constraint condition of a solution for a variable coefficient is discussed and the comparison
of the influence of parameters on its shape is investigated.

2. Derivation of Constraint Condition and Nonlinear Transformation

Considering the homogeneous balance between uux and uxxx in Equation (1)
(2m + 1 = m + 3⇒ m = 2) according to the simplified homogeneous balance method,
we can suppose that the solution of Equation (1) is of the form

u(x, t) = A(t)(ln ϕ)xx, (2)

where we use A(t) ln ϕ instead of the undetermined functions f (ϕ) appearing in the
homogeneous balance method to simplify the original HB; functions A(t) and ϕ = ϕ(x, t)
are to be determined later. The aim of the simplified HB is to find the variable coefficient
A(t) and the function ϕ = ϕ(x, t), such that the expressions (2) exactly satisfy Equation (1).

From (2) it is easy to obtain that

ut = A′(t)(ln ϕ)xx + A(t)
(

ϕxt

ϕ
− ϕx ϕt

ϕ2

)
, (3)

uux = A
∂

∂x

[
A
2

(
ϕ2

xx
ϕ2 −

2ϕ2
x ϕxx

ϕ3 +
ϕ4

x
ϕ4

)]
, (4)

uxxx = A
∂

∂x

(
ϕxxxx

ϕ
− 3ϕ2

xx + 4ϕx ϕxxx

ϕ2 +
12ϕ2

x ϕxx

ϕ3 − 6ϕ4
x

ϕ4

)
. (5)

Substituting (2)–(5) into the left hand side of Equation (1) and collecting all terms with
ϕ−i(i = 1, 2, 3, 4) together, yields

ut + α(t)uux + β(t)uxxx +
m
2t u = (A′ + m

2t A)(ln φ)xx

+A ∂
∂x

[
ϕxt+βϕxxxx

ϕ +
−ϕx ϕt+( Aα

2 −3β)ϕ2
xx−4βϕx ϕxxx

ϕ2

+ (−Aα+12β)ϕ2
x ϕxx

ϕ3 + ( Aα
2 − 6β) ϕ4

x
ϕ4

]
.

(6)

In (6), setting the coefficient of φ4
x

φ4 and the coefficient of (ln φ)xx to zero, yields

Aα

2
− 6β = 0, A′ +

m
2t

A = 0. (7)

Solving the first equation in (7) yields

A(t) =
12β

α
. (8)

Substituting (8) into the second equation in (7), we obtain

d
dt

[ln(
α

β
)] =

m
2t

, (9)

which is the constraint condition for α(t) and β(t).
Substituting (8) into (2) yields

u(x, t) =
12β

α
(ln ϕ)xx. (10)
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Using (7) and (8), the expression (6) can be simplified as

ut + αuux + βuxxx +
m
2t u

= 12β
α

∂
∂x

[
ϕ(ϕt+βϕxxx)x−ϕx(ϕt+βϕxxx)+3β(ϕ2

xx−ϕx ϕxxx)

ϕ2

]
= 0,

(11)

provided that ϕ = ϕ(x, t) satisfies the quadratic form equation

ϕ(ϕt + βϕxxx)x − ϕx(ϕt + βϕxxx) + 3β(ϕ2
xx − ϕx ϕxxx) = 0. (12)

Using (9)–(12), we come to the conclusion that is the theorem in the following.

Theorem 1. If α(t) andβ(t) in Equation (1) satisfy the constraint condition (9), ϕ = ϕ(x, t) is the
solution of the quadratic form Equation (12), then the expression (10) satisfies Equation (1) exactly.

Theorem 1 shows that the expression (10) and the quadratic form Equation (12) to-
gether have comprised the nonlinear transformation for Equation (1)

u(x, t) =
12β

α
((ln ϕ)xx, (13)

ϕ(ϕt + βϕxxx)x − ϕx(ϕt + βϕxxx) + 3β(ϕ2
xx − ϕx ϕxxx) = 0, (14)

provided that α(t) and β(t) satisfy the constraint condition (9).
By the nonlinear transformation, the problem to solve Equation (1) becomes the one

to solve the quadratic form Equation (14). In the next section, a series of solutions of
Equation (14) will be given, then a soliton-like solution and multi soliton-like solutions of
Equation (1) can be obtained.

3. Soliton-Like Solutions of Equation (1)

Using the ε-expansion method [14], or Hirota’s method [15], a series of solutions of
Equation (14) can be obtained as follows:

ϕ1 = 1 + eξ , ξ = kx− k3
∫ t

β(τ)dτ

ϕ2 = 1 + eξ1 + eξ2 + eξ1+ξ2+A12 , eA12 =
(k1 − k2)

2

(k1 + k2)
2 , ξi = kix− k3

∫ t
β(τ)dτ, i = 1, 2,

ϕ3 = 1 + eξ1 + eξ2 + eξ3 + eξ1+ξ2+A12 + eξ1+ξ3+A13 + eξ2+ξ3+A23 + eξ1+ξ2+ξ3+A12+A13+A23 ,

. . . . . .

eAij =
(ki − k j)

2

(ki + k j)
2 , i < j, ξi = kix− k3

i

∫ t
β(τ)dτ, i = 1, 2, 3,

ϕN = ∑
µ=0,1

exp

(
N

∑
i=1

µiξi + ∑
1≤i<j≤N

µiµj Aij

)
,

where ∑
µ=0,1

indicates the summation over all possible combinations of µ1 = 0, 1, µ2 = 0, 1,

. . . , µN = 0, 1., while ∑
1≤i<j≤N

indicates the summation over all possible combinations of i

and j from 1 to N subject to i < j.
Substituting the solution ϕ1 of Equation (14) into the expression (13), we have one

soliton-like solution of Equation (1) as follows:

u1(x, t) =
3k2β(t)

α(t)
sec h2(

1
2

ξ), ξ = kx− k3
∫ t

β(τ)dτ.
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The amplitude of u1(x, t) is 3k2β(t)
α(t) , and the velocity of u1(x, t) is dx

dt = k2β(t). Both
amplitude and velocity are all changed with the variable t.

Substituting the solution ϕ2 of Equation (14) into the expression (13), we have two
soliton-like solutions of Equation (1) as follows:

u2(x, t) =
12β(t)

α(t)
k2

1eξ1 + k2
2eξ2 + 2(k1 + k2)

2eξ1+ξ2+A12 + (k2
2e2ξ1+ξ2+A12 + k2

1eξ1+2ξ2+A12)

(1 + eξ1 + eξ2 + eξ1+ξ2+A12)
2 .

.....
Substituting ϕN into (13), we have N soliton-like solutions as:

uN(x, t) =
12β(t)

α(t)
(ln ϕN)xx,

where α(t) and β(t) satisfy expression (9), which is the following relationship:

α(t)
β(t)

= t
m
2 .

4. An Example

Consider the cylindrical/spherical KdV equation in the form [16]:

ut + t
m
2 f (t)uux + f (t)uxxx +

m
2t

u = 0, (15)

where f (t) is an arbitrary analytical function, in view of

d
dt

[
ln

(
t

m
2 f (t)
f (t)

)]
=

m
2t

Thus, based on the theorem in Section 2, Equation (15) has a nonlinear transformation
expressed as (16) and (17):

u(x, t) =
12

t
m
2
(ln ϕ)xx, (16)

ϕ(ϕt + f (t)ϕxxx)x − ϕx(ϕt + f (t)ϕxxx) + 3 f (t)(ϕ2
xx − ϕx ϕxxx) = 0. (17)

Equation (17) admits a series of solutions as follows:

ϕ1 = 1 + eξ , ξ = kx− k3
∫ t

f (τ)dτ,

ϕ2 = 1 + eξ1 + eξ2 + eξ1+ξ2+A12 , eA12 =
(k1 − k2)

2

(k1 + k2)
2 , ξi = kix− k3

∫ t
f (τ)dτ, i = 1, 2,

ϕ3 = 1 + eξ1 + eξ2 + eξ3 + eξ1+ξ2+A12 + eξ1+ξ3+A13 + eξ2+ξ3+A23 + eξ1+ξ2+ξ3+A12+A13+A23 ,

eAij =
(ki − k j)

2

(ki + k j)
2 , i < j, ξi = kix− k3

i

∫ t
f (τ)dτ, i = 1, 2, 3.

. . . . . .
Substituting ϕ1, ϕ2, ϕ3, . . . into expression (16), respectively, then one soliton-like

solution (Figure 1), two soliton-like solutions (Figures 2 and 3), and three soliton-like
solutions (Figures 4 and 5) can be obtained, respectively, as follows:

u1(x, t) =
3k2

t
m
2

sech(
1
2

ξ), ξ = kx− k3
∫ t

f (τ)dτ,
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u2(x, t) =
12

t
m
2

k2
1eξ1 + k2

2eξ2 + 2(k1 + k2)
2eξ1+ξ2+A12 + (k2

2e2ξ1+ξ2+A12 + k2
1eξ1+2ξ2+A12)

(1 + eξ1 + eξ2 + eξ1+ξ2+A12)
2 ,

u3(x, t) =
12

t
m
2
(ln ϕ3)xx
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Figure 1. For the one soliton-like solution 1( , )u x t , when ( ) , 1f t t k= = , the corresponding 

graphs of 1, 2m m= =  and 4m =  are given as above. ( ) ( ) , 1, 1= = =a f t t k m ; 
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Figure 2. For the two soliton-like solution 2 ( , )u x t , when ( ) , 1f t t m= = , the corresponding 

figures of 1 22, 3k k= =  and 1 23, 1k k= =  are given as above. 

1 2( ) ( ) , 1, 2, 3= = = =a f t t m k k ; 1 2( ) ( ) , 1, 3, 1= = = =b f t t m k k . 
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Figure 3. For the two soliton-like solution 2 ( , )u x t , when ( ) , 2f t t m= = , the corresponding 

figures of 1 22, 3k k= =  and 1 23, 1k k= =  are given as above. 

1 2( ) ( ) , 2, 2, 3= = = =a f t t m k k ; 1 2( ) ( ) , 2, 3, 1= = = =b f t t m k k . 

Figure 1. For the one soliton-like solution u1(x, t), when f (t) = t, k = 1, the corresponding graphs of
m = 1, m = 2 and m = 4 are given as above. (a) f (t) = t, k = 1, m = 1; (b) f (t) = t, k = 1, m = 2;
(c) f (t) = t, k = 1, m = 4.
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Figure 2. For the two soliton-like solution u2(x, t), when f (t) = t, m = 1, the corresponding figures
of k1 = 2, k2 = 3 and k1 = 3, k2 = 1 are given as above. (a) f (t) = t, m = 1, k1 = 2, k2 = 3;
(b) f (t) = t, m = 1, k1 = 3, k2 = 1.
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Figure 3. For the two soliton-like solution 2 ( , )u x t , when ( ) , 2f t t m= = , the corresponding 
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Figure 3. For the two soliton-like solution u2(x, t), when f (t) = t, m = 2, the corresponding figures
of k1 = 2, k2 = 3 and k1 = 3, k2 = 1 are given as above. (a) f (t) = t, m = 2, k1 = 2, k2 = 3;
(b) f (t) = t, m = 2, k1 = 3, k2 = 1.
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lected, the soliton solution morphology changes little. However, for 3u , when ( )f t  is 
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Figure 4. For the three soliton-like solution u3(x, t), when f (t) = t, k1 = 1, k2 = 3, k3 = 2, the
corresponding graphs of m = 1, m = 2 and m = 4 are given as above. (a) f (t) = t, k1 = 1,
k2 = 3, k3 = 2, m = 1; (b) f (t) = t, k1 = 1, k2 = 3, k3 = 2, m = 2; (c) f (t) = t, k1 = 1, k2 = 3,
k3 = 2, m = 4.
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Figure 5. For the three soliton-like solution u3(x, t), when f (t) = t2, k1 = 1, k2 = 3, k3 = 2, the
corresponding graphs of m = 1, m = 2 and m = 4 are given as above. (a) f (t) = t2, k1 = 1,
k2 = 3, k3 = 2, m = 1; (b) f (t) = t2, k1 = 1, k2 = 3, k3 = 2, m = 2; (c) f (t) = t2, k1 = 1, k2 = 3,
k3 = 2, m = 4.

The comparison of different geometric structures of solitons clearly shows that for u1
and u2, fixed f (t) = t and f (t) = t2, and different parameters k, k1, k2, k3 are selected, the
soliton solution morphology changes little. However, for u3, when f (t) is different, the
soliton solution will fluctuate greatly.

5. Conclusions

The general variable coefficient cylindrical/spherical KdV equation in the form

ut + α(t)uux + β(t)uxxx +
m
2t

u = 0, (18)

has been investigated by using the simplified homogeneous balance method. The results
obtained in this paper are that if α(t) and β(t) satisfy the constraint condition

d
dt

[
ln
(

α(t)
β(t)

)]
=

m
2t

(19)
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i.e., α(t)
β(t) = t

m
2 , then Equation (18) has a nonlinear transformation, as follows

u(x, t) =
12β

α
(ln ϕ)xx, (20)

ϕ(ϕt + βϕxxx)x − ϕx(ϕt + βϕxxx) + 3β(ϕ2
xx − ϕx ϕxxx) = 0. (21)

The quadratic form Equation (21) admits a series of solutions, as follows

ϕ1 = 1 + eξ , ξ = kx− k3
∫ t

β(τ)dτ,

ϕ2 = 1 + eξ1 + eξ2 + eξ1+ξ2+A12 , eA12 =
(k1 − k2)

2

(k1 + k2)
2 , ξi = kix− k3

∫ t
β(τ)dτ, i = 1, 2,

ϕ3 = 1 + eξ1 + eξ2 + eξ3 + eξ1+ξ2+A12 + eξ1+ξ3+A13 + eξ2+ξ3+A23 + eξ1+ξ2+ξ3+A12+A13+A23 ,

eAij =
(ki − k j)

2

(ki + k j)
2 , i < j, ξi = kix− k3

i

∫ t
β(τ)dτ, i = 1, 2, 3.

. . . . . .
Thus, substituting ϕi (i = 1,2,3, . . . ) into expression (20), respectively, one soliton-like

solution and multi soliton-like solutions of Equation (18) can be obtained.
In particular, when m = 1 and m = 2, soliton-like solutions of the general variable

coefficient cylindrical/spherical KdV equation, that is the particular case of Equation (18),
are also successfully obtained. The results obtained in this paper are different from those
reported earlier. The simplified homogeneous balance method is also applicable to other
nonlinear differential equations.
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