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Abstract: In this paper, we propose a novel image denoising method by coupling with L0, L1 and
L2 gradient minimization. Our proposed method smoothes the gradient difference between image
pixels and noise pixels and sharpens the edges by increasing the steepness of transition. We focus on
global noise processing rather than local features and adaptively process noise signals with different
characteristics. Based on the half-quadratic splitting method, we perform a smoothing step realized
by a Poisson approach and two edge-preserving steps through an optimization formulation. This
iterative method is fast, simple, and easy to implement. The proposed numerical scheme can be
performed to a discrete cosine transform implementation, which can be applied with parallel GPUs
computing in a straightforward manner. Various tests are presented, including both qualitative and
quantitative tests, to demonstrate that the proposed method is efficient and robust for producing
image processing results with good quality.

Keywords: image restoration method; gradient minimization; soft threshold method; hard threshold
method

MSC: 68U10; 68U01; 65M22; 65M55; 65M20; 65M06

1. Introduction

Image restoration is the process of estimating the clean image from the corrupt/noisy
image. Up to now, a great number of models have been proposed to console the image
restoration problem. Bilateral filtering with the explicit kernel is widely used for its
effectiveness in removing noise-like structures [1]. The output of this method is a weighted
average of the nearby pixels at the specific pixel, where the weight combinators depend
on the intensity similarities based on the guidance image. The median filter [2] is a well-
known edge-aware operator, which is a special case of local histogram filters [3]. He
et al. proposed a novel explicit image filter called guided filter, which computes the
filtering output by considering the content of a guidance image [4]. Edge-preserving
smoothing can be achieved by other local filtering, for example, targeted image denoising
filtering (TID) [5], transform-domain collaborative filtering(BM3D) [6], transform-domain
collaborative filtering with shape-adaptive principal component analysis(BM3D-PCA) [7]
and principal component analysis with local pixel grouping(LPG-PCA) [8]. Chambolle
and Pock [9] proposed a first-order primal-dual algorithm for the non-smooth convex
optimization problems with a convergence rate of O(1/N). He and Yuan [10] focused on
the convergence analysis and proposed a modified primal-dual algorithm for solving a
saddle-point problem. Chen and Xu [11] proposed an iterative algorithm for sparse view
X-ray tomography to avoid solving the large scale. They provided the rigorous proofs of
the convergence for the aforementioned problems.

Another type of image regularization is total variation, which has achieved great
success in image restoration and sharpening edges [12]. Chan and Shen [13] repaired
the images by minimizing the image gradient based on the curvature-driven diffusions.
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To solve image inpainting and image reduces problems, Esedoḡlu and Shen introduced
the Mumford–Shah–Euler model [14] based on the Mumford–Shah image segmentation
model [15], Li et al. concerned with fast domain decomposition methods for solving
the total variation minimization problems in image processing [16]. In [17], the authors
proposed the group sparsity-based algorithm for nuclear radiation-contaminated video
restoration. Liu presented a novel nonconvex extension model that closely incorporates the
advantages of total generalized variation and edge-enhancing nonconvex penalties [18].
Bertozzi et al. [19,20] introduced a well-known inpainting method with the modified Cahn–
Hilliard equation [21]. By using the Allen–Cahn equation [22], which describes the motion
of mean curvature flow [23,24], Li et al. extended Chan and Shen’s model [12] and proposed
the fast image inpainting method with the efficient hybrid numerical solver [25,26].

The existing diffusion methods used the L1-norm or L2-norm in their proposed energy
term and obtained the clean images by minimizing it to convergence. However, these
methods suffer from a tendency of over-smooth on the processed image data due to the
property of soft-thresholding. In order to sharpen the edges during the noise reduction,
a novel fast and accurate method based on the L0 gradient minimization [27] has been
proposed to measure the sparsity of the solution with sharper edges. Some methods treat
the image noises as signal type noise [28], such as speckle noise, pepper noise, and Gaussian
noise. True image noise is much different to single noise, but is a mixture type noise. In this
paper, we will propose a new image restoration method by coupling with L0, L1, and L2
gradient minimization. The proposed method can be solved by the half-quadratic splitting
method. We decoupled the iterations over the smoothing step and performed a Poisson
approach after the alternating reformulation. Two edge-preserving steps have been used
through the optimizing process to sharpen the edge of the target. The proposed iterative
method is efficient and easy to implement. The main advantage of the proposed method
can be summarized as follows: (i) This method transforms the problem of denoising to the
optimization problem in which the clear image can be obtained by the iterative methods.
(ii) The processing of noise reduction computation is based on the pixel information of the
single image, which does not require a lot of training cost for the same type of images to
obtain the desired accuracy. (iii) To the best of our knowledge, this is the first investigation
on the combination of the hard- and soft-thresholding, which can balance the competitive
advantage with proper parameter combinators. Several numerical tests will be presented
to demonstrate the robustness and efficiency of our method.

The outline of this paper is as follows. The governing equations for the image restora-
tion method are illustrated in Section 2. The proposed operator splitting algorithm is
described in Section 3. The computational examples have been presented in Section 4 to
demonstrate the efficiency and robustness of our proposed method. In Section 5, we drew
the conclusions.

2. Proposed Image Restoration Method

For a 2D image representation, we combine the following L0, L1, and L2 norm with
gradient regularization version:

min
φ

∫
Ω

(
α||∇φ(x)||0 + β||∇φ(x)||1 + (1− α− β)||∇φ(x)||22 + λ(φ(x)− I(x))2

)
dx (1)

where x = (x, y), f (x) is a given image in a domain Ω ⊂ R2. The fidelity term λ(φ(x)− I(x))2

is used for the detection of similarity between the processed image φ and the given image I
in Ω. In Equation (1), || · ||0 , || · ||1 , and || · ||2 are the L0, L1, and L2 norms, respectively.
Let us briefly review the definition of L0-norm: if φ = 0, then ||φ||0 = 0. Otherwise,
||φ||0 = 1. Therefore the term ||∇φ(x)||0 can reduce the noises and make edges sharpen.
The minimization problem (1) is difficult to optimize directly due to the combinatorial
nature of L0, L1, and L2 minimization. Recently, a scalable algorithm was proposed for
image processing [27,29] and surface smoothing [30,31] by considering the L0 norm gra-
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dient optimization. Our work extends the L0, L1, and L2 minimizations concept to image
restoration. Let us provide the following Theorem:

Theorem 1. By introducing a set of auxiliary variables ψ = (ψx, ψy) and ϕ = (ϕx, ϕy), the
minimization problem (1) is equivalent minimize the following equation:

min
φ,ψ,ϕ

∫
Ω

(
α||ψ(x)||0 + β||ϕ(x)||1 + (1− α− β)||∇φ(x)||22 + λ(φ(x)− I(x))2

+ γ||∇φ(x)− ψ(x)||22 + ζ||∇φ(x)− ϕ(x)||22
)

dx.
(2)

Here, γ and ζ are two weight parameters directly controlling the similarity between ψ, ϕ, and
the gradient of φ.

Proof. The minimization problem (2) generally can be minimized by an alternating mini-
mization method in the following manner:

(1) for φ and ϕ fixed,

min
ψ

∫
Ω

(
α||ψ||0 + γ||∇φ− ψ||22

)
dx. (3)

(2) for φ and ψ fixed,

min
ϕ

∫
Ω

(
β||ϕ||1 + ζ||∇φ− ϕ||22

)
dx. (4)

(3) for ϕ and ψ fixed,

min
φ

∫
Ω

(
γ||∇φ− ψ||22 + ζ||∇φ− ϕ||22 + (1− α− β)||∇φ(x)||22 + λ(φ(x)− I(x))2

)
dx (5)

In order to eventually force∇φ to match ψ and ϕ , both of these optimizations alternate
until convergence by increasing γ and ζ at each iteration. The idea is summarized as:

Step 1. By considering the independence of x, we can rewrite Equation (3) as∫
Ω

min
ψ

(
α||ψ||0 + γ||∇φ− ψ||22

)
dx. (6)

Considering every point x ∈ Ω, we need to minimize

G1(ψ) = α||ψ||0 + γ||∇φ− ψ||22. (7)

Let us consider Equation (7): if γ = 0, the minimum of G1 can be obtained by setting
ψ = ∇φ; otherwise the relationship between ||∇φ(x)||22 and γ/α should be analyzed. Let
us summarized the relations as: When ||∇φ(x)||22 ≥ α/γ, we start splitting in the following
two situations.

(1) By considering ψ 6= 0, the minimal value G∗1 can be obtained by setting ∇φ(x) = ψ
which can be shown as

G∗1 (ψ 6= 0) = min
ψ

G1(ψ 6= 0) = α||ψ||0 + γ||∇φ− ψ||22 = α. (8)

(2) By considering that ψ = 0, we can obtain

G∗1 (ψ = 0) = min
ψ

G1(ψ = 0)

= α||ψ||0 + γ||∇φ− ψ||22 = γ||∇φ||22 ≥ α = min
ψ

G1(ψ 6= 0).
(9)
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Therefore, we should only let ∇φ = ψ to obtain the minimum G∗1 . Therefore, by
combining Equations (8) and (9), the minimum energy (6) is produced when ∇φ = ψ.
Hence, we can obtain the following condition:

ψ =

{
∇φ if ||∇φ||22 ≥ α/γ,
0 otherwise.

(10)

Step 2. Let us rewrite Equation (4) by considering the independence of x as:∫
Ω

min
ψ

(
β||ϕ||1 + ζ||∇φ− ϕ||22

)
dx. (11)

For every individual point x, we need to minimize

G2(ϕ) = α||ϕ||1 + γ||∇φ− ϕ||22 = Gx
2 (ϕx) + Gy

2(ϕy). (12)

Here, ∇φ = (φx, φy) and Gx
2 (ϕx) = α|ϕx| + γ(φx − ϕx)2 and Gy

2(ϕy) = α|ϕy| +
γ(φy − ϕy)2. It is obvious that ϕx = φx − αsign(ϕx)/(2γ) and ϕy = φy − αsign(ϕy)/(2γ)

are the minima points of Gx
2 (ϕx) and Gy

2(ϕy), respectively. Here, sign() is the sign function,
which is defined as 1 for positive argument and -1 for negative argument. If φx > α/(2γ),
then Gx

2 (ϕx = φx − α/(2γ)) < α(φx)2 = Gx
2 (ϕx = 0). Therefore, ϕx = φx − α/(2γ)

is the minimization of Gx
2 (ϕx). In the similar fashion, if φx < −α/(2γ), we should set

ϕx = φx + α/(2γ) to minimize the Gx
2 (ϕx). It is obvious that if |φx| < α/(2γ), then ϕx = 0

is the minimization of Gx
2 (ϕx). In summary, we can obtain the following condition:

ϕx =


φx + α/(2γ) if φx < −α/(2γ),
0 if |φx| < α/(2γ),
φx − α/(2γ) if φx > α/(2γ),

andϕy =


φy + α/(2γ) if φy < −α/(2γ),
0 if |φy| < α/(2γ),
φy − α/(2γ) if φy > α/(2γ).

(13)

Step 3. The expression (5) is quadratic in φ and trivial to minimize. Following the
Euler–Lagrange formulation, φ minimizes Equation (5) as

γ∇ · (∇φ− ψ) + ζ∇ · (∇φ− ϕ) + (1− α− β)∆φ− λ(φ− I) = 0. (14)

Therefore, in order to get the solution of the minimization problem (2), three optimiza-
tions (Equations (10), (13), and (14)) alternate until convergence by increasing γ and ζ at
each iteration.

Some notations should be summarized as follows: (i) α and β are the convex com-
binators for controlling the similarity between ψ and ϕ with ∇φ. Since the L0-norm and
L1-norm regularized optimization problem is know as computationally intractable, we
use the equivalent problem of the original optimization problem to perform the compu-
tation. (ii) The choice of α and β determines the smoothing effect for the gradient of φ.
The L1 norm focuses on the equilibrium of noise pixels, while the L0 norm focuses on
the presence of noise pixels. Thus the iterated soft-thresholding algorithm for L1 norms
homogenizes the noise in the image, while the L0 norm can enhance the contrast of image
and suppress low-amplitude details. (iii) The proposed model is the convex combination of
three norms with different emphases. The advantages of the proposed optimization model
Equation (2) can be activated by selecting appropriate combination parameters according
to the characteristics of different noisy images.

3. Numerical Solution

In this section, we consider the fast scheme with the Fourier-spectral method. Let us
assume that there are Nx × Ny pixels on a 2D image, where Nx and Ny are even integers.
Let xm = (2m− 1)/2, yn = (2n− 1)/2, for 1 ≤ m ≤ Nx, 1 ≤ n ≤ Ny. Furthermore, let
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φs
mn be an approximation of φ(xm, yn, s), where s is the iterative step. The discrete cosine

transform F is defined as

F(φs
mn) = φ̂s

pq = αpβq

Nx

∑
m=1

Ny

∑
n=1

φs
mn cos(xmπξp) cos(ynπηq),

where

αp =

{√
1/Nx, p = 1,√
2/Nx, 2 ≤ p ≤ Nx,

and βq =

{√
1/Ny, q = 1,√
2/Ny, 2 ≤ q ≤ Ny.

The variables ξp and ηq are defined as ξp = (p− 1)/Nx and ηq = (q− 1)/Ny, respec-
tively. The inverse discrete cosine transform F−1 is

F−1(φ̂s
pq) = φs

mn =
Nx

∑
p=1

Ny

∑
q=1

αpβqφ̂s
pqr cos(ξpπxm) cos(ηqπyn). (15)

At the beginning of each time step, given φs, ψs, ϕs, λs, and ζs, we want to find φs+1, ψs+1,
ϕs+1, λs+1, and ζs+1, by solving the descretized equations of three optimizations ((10)–(14))
in time. The outline of our proposed method can be summarized as:

Step 1. Update γs = ηγs−1 and ζs+1 = ηζs−1, where η is not smaller than 1 to make γ
and ζ increase with each iteration. γ0 and ζ0 are two initial parameters.

Step 2. Solve ψs+1 from φs and γs by using Equation (10) as:

ψs+1 =

{
∇φs if ||∇φs||22 ≥ α/γs,
0 otherwise.

(16)

Here, ∇φs = (φs
x, φs

y) at the (m, n) node is define as

(φs
x)mn = (φs

m+1,n − φs
m−1,n)/2 and (ψs

y)mn = (φs
m,n+1 − φs

m,n−1)/2.

Here, ϕx,s+1
x and ϕ

y,s+1
y are defined in the similar fashion.

Step 3. Solve ϕs+1 from φs and ζs by using Equation (13) as:

ϕx,s+1 =


φs

x + α/(2γ) if φs
x < −α/(2γ),

0 if |φx| < α/(2γ),
φx − α/(2γ) if φs

x > α/(2γ),

and

ϕy,s+1 =


φs

y + α/(2γ) if φs
y < −α/(2γ),

0 if |φs
y| < α/(2γ),

φs
y − α/(2γ) if φs

y > α/(2γ).

(17)

Step 4. Solve φs+1 from ψs+1 and ϕs+1 by using Equation (14):

γs∇ · (∇φs+1 − ψs+1) + ζs∇ · (∇φs+1 − ϕs+1)

+ (1− α− β)∆φs+1 − λ(φs+1 − I) = 0.
(18)

Equation (18) can be transformed into the discrete cosine space as follows:

−
(

λ + (γs + ζs + (1− α− β))
(
(ξpπ)2 + (ηqπ)2))F(φs+1)

= −F(λI) + γsF(ψx,s+1
x ) + γsF(ψ

y,s+1
y ) + ζsF(ϕx,s+1

x ) + ζsF(ϕ
y,s+1
y ).
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Here, i =
√
−1 is a complex number. We employ the discrete cosine transform for the

Laplacian operator, which is defined as

F(∆φ) = −
(
(ξpπ)2 + (ηqπ)2)F(φ). (19)

Therefore, we obtain the following corresponding function φs+1:

φs+1 = F−1(F(φ))

= F−1
(F(λI)− γsF(ψx,s+1

x )− γsF(ψ
y,s+1
y )− ζsF(ϕx,s+1

x )− ζsF(ϕ
y,s+1
y )

λ + (γs + ζs + (1− α− β))
(
(ξpπ)2 + (ηqπ)2

) )
.

(20)

The above iterations have completed in one time step. Our alternating minimization
algorithm will stop if γ and ζ are larger than the given values γmax and ζmax, respectively.
We should note that the proposed method, i.e., Equations (16) and (17), consists of two
explicit evaluations of closed-form solutions, which makes fast convergence possible.
The computational complexities are O(N), where N is the size of the mesh grid. The
implicit Poisson type equation can be solved by fast discrete cosine transform method
(Equation (20)) with a computational complexity of O(NlogN) [32].

4. Numerical Tests

Various numerical results are presented in this section on several representative images.
We show that some good results can be obtained through our algorithm. In the following
part of numerical experiments, we compare and explore the results from both qualitative
and quantitative levels, which comprehensively evaluate the proposed noise reduction
method. Unless otherwise stated, we will use the following parameters: α = 0.2, β = 0.2,
ζ = 1, γ = 0.4, λ = 1× 105.

4.1. Noise Reduction for Gaussian Noise Processing

In this subsection, we use four kinds of images, i.e., electronic composite image, JEPG
compressed image, photo taken by camera, and scanning image, to demonstrate the effect
of our method on the images with 10% Gaussian noise as shown in Figure 1. The top row is
the initial images with Gaussian noise and the bottom row is the smoothing results obtained
by our method. From Figure 1a–d, the computational domains are with the 256× 256,
512× 512, 260× 250, and 200× 300 pixels, respectively. The Non-default parameters are
chosen as α = 0.02, β = 0.1, and γ = 0.04, respectively. It is obvious that the gaussian noise
can be eliminate well by the proposed method. Furthermore, some notations should be
pointed that: (i) The proposed method can keep a sharp edge while reducing the noise,
which can be seen in Figure 1a. (ii) The textures can be smoothed out due to the influence
of the soft thresholds, which can be seen in Figure 1b. (iii) The defects in the photos, such
as shadows and light spots, are considered as the part of the composition and will not be
handled by our algorithm, which can be seen in Figure 1c. (iv) The small non–noisy pixels
in the images can be removed due to the influence of the hard thresholds, which can be
seen in Figure 1d.

4.2. Noise Reduction for Speckle Noise Processing

Speckle noise is the noise that arises due to the effect of environmental conditions
on the imaging sensor during image acquisition, it is common in active radar, synthetic
aperture radar, medical ultrasound and optical coherence, and reduces the quality of
tomography images [33]. In this subsection, we use the text image, photo taken by camera,
remote sensing image, scanning image, to demonstrate the effect of our method on the
images with speckle noise as shown in Figure 2. The top row is the initial images with
speckle noise and the bottom row is the smoothing results obtained by our method. The
computational meshgrid is 100× 100, 400× 400, 1024× 1024, and 120× 120, respectively.
The non-default parameters are chosen as α = 0.1, β = 0.01, and γ = 0.2, respectively. It
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is obvious that the speckle noise can be removed by our method without destroying any
features of the noisy images such as edges and the structure. We should emphasize that
the speckle noise influence the quality of ultrasound image and it can reduces important
information from image as edge, shape, and intensity value, which is easy to handle with
our method. Since our method is essentially a weighted average combination of soft
threshold and hard threshold, the image edge and shape can be captured well by choosing
the proper weight parameters.

(a) (b) (c) (d)

Figure 1. The first row is the initial image with 10% Gaussian noise and the second row is the obtained
smoothing results. From (a–d), the image types are electronic composite image, JEPG compressed
image, photo taken by camera, and scanning image, respectively.

(a) (b) (c) (d)

Figure 2. The first row is the initial image with 10% speckle noise and the second row is the obtained
smoothing results. From (a–d), the image types are text image, photo taken by camera, remote sensing
image, and scanning image respectively.

4.3. Noise Reduction for Poisson Noise Processing

Poisson noise is a noise model conforming to Poisson distribution, which is suitable
to describe the probability distribution of the number of random events in unit time [34].
In this subsection, we use a cartoon image to demonstrate the effect of our method on
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the images with Poisson noise as shown in Figure 3. From Figure 3a–d, we show the
original images with poission noise, the smoothing images by the proposed method, the
contour line of (a), and the contour line of (b), respectively. The computational meshgrid is
320× 320. We chose the non–default parameters as α = 0.1, β = 0.1, γ = 0.2, ζ = 10, and
λ = 1000, respectively. By comparing Figure 1a,b, it can be seen that our algorithm can
eliminate gaussian noise without affecting the edges and the shape of the noisy image. To
better demonstrate this property, we plot the contour line of the image, which verifies that
the proposed method is efficient for obtaining the clean gradient map and in accordiance
with human perception.

(a) (b) (c) (d)

Figure 3. The results of the our proposed method with poission noise. (a) The original images with
poission noise. (b) The smoothing images by the proposed method. (c) The contour line of (a). (d) The
contour line of (b).

4.4. Comparison between the Existing Method and the Proposed Method

In this subsection, we compare the results obtained by the proposed method and the
existing method, i.e., TID [5], BM3D [6], BM3D-PCA [7], LPG-PCA [8], and NLM [35], to
verify the efficiency of the proposed method. We have re-implemented and modified the in-
ternal method so that the above methods can be fairly compared with the proposed method.
The computational meshgrid is 110× 110 and we choose the non–default parameters as
α = 0.02, ζ = 100, and γ = 0.04, respectively.

To prepare the numerical test, we added randomly excessive noise to the original
image Figure 4a and obtain the test noisy image Figure 4b. We not only perform the
corresponding qualitative numerical experiment as shown in Figure 4, but also implies
the corresponding quantitative numerical experiment as shown in Table 1. It is obvious
that our method provide the cleaner results with the same input image in Figure 4. Fur-
thermore, the proposed method globally sharpen prominent edges and remains the text
pixel while eliminating the noise. Two metrics, namely peak signal–to–noise ratio (PSNR)
and structural similarity index map (SSIM), are quantitative measure used to estimate the
quality of the denoised images, which can be defined as

PSNR = 10 log10
I2
max

1
nx ·ny

∑nx
i=1 ∑

ny
j=1

(
Ii,j − Ki,j

)2 , SSIM =
(2µIµK + c1)(2σIK + c2)

(µ2
I + µ2

K + c1)(σ
2
I + σ2

K + c2)
,

where I is the clean image, K is the denoised image, µI , µK are the average of I and K,
respectively; and σ2

I , σ2
K are the variance of I and K, respectively. Here, σIK is the covariance

of I and K, c1 = (0.01L)2, c2 = (0.03L)2 with L = 1. High PSNR and SSIM values indicate
a good restore of the fingerprint image [36]. By comparing these two indicators as shown
in Table 1, our method shows better utilization of the target image.
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Table 1. Comparison of the average PSNR and SSIM between the proposed method and other existing
methods.

Methods Ours TID BM3D BM3DPCA LPG–PCA NLM

PSNR 23.13 22.91 21.57 21.59 22.01 20.14
SSIM 0.9542 0.8890 0.8507 0.8551 0.7030 0.8278

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The comparison results between the proposed method with the existing method. (a) The
clean text image. (b) The text image with random noise. (c) Our method. (d) TID method. (e) BM3D
method. (f) BM3DPCA method. (g) LPG–PCA method. (h) NLM method.

4.5. Comparison between the Smoothing Results with or without Our Method for the
Existing Method

In this subsection, we compare the results obtain by the existing method with or
without our method. To verify the efficiency of the proposed method, we perform the
numerical test on a real scanning image for ancient ruins as shown in Figure 5, which is
covered with a dense collection of weathered holes and cracks.

Figure 5. The scanning image for ancient ruins covered with holes and cracks.

The computational meshgrid is 1000 × 1000 and the non–default parameters are
α = 0.001, γ = 0.002, and ζ = 10, respectively. The smoothing results have been shown in
Figure 6.
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The top and bottom row shows the results obtained by the existing method without
and with our method, respectively. It is obvious that the results obtained with the addition
of our method will be smoother. Moreover, we compute the PSNR and SSIM indicators
with Equation (21) as shown in Table 2. For the five existing methods, the combination with
our method can significantly improve image quality, which corresponds to our expectation.

(a) (b) (c) (d) (e)

Figure 6. The comparison results between the existing method without and with our method. The
top row is obtained without our method. The bottom row is obtained with our method. (a) TID
method. (b) BM3D method. (c) BM3DPCA method. (d) LPG–PCA method. (e) NLM method.

Table 2. Comparison of the average PSNR and SSIM with or without our method for the existing
methods.

TID BM3D BM3DPCA LPG–PCA NLM

PSNR 19.03 28.64 19.22 19.40 18.76
SSIM 0.5098 0.7827 0.5240 0.5475 0.4849

Our method+ TID BM3D BM3DPCA LPG–PCA NLM

PSNR 26.80 31.52 26.66 26.90 25.81
SSIM 0.7208 0.9491 0.7230 0.7249 0.6691

4.6. Comparison Test between the Smoothing Results with Deep Learning Image Denoising
Schemes and Our Proposed Method

In this subsection, we compare the results obtained by the deep learning image
denoising schemes and our proposed method. The existing method denoises the damage
images using a MATLAB solver denoisingImage in Deep Learning Toolbox based on the
denoising convolutional neural networks(DcNN) [37]. We perform the numerical test on
various images types, which are the scanning image, photo taken by camera, and JPEG
compressed image, respectively. From Figure 7a–d, the images are the ground truth, image
with 10% Gaussian noise, results obtained by our proposed method, respectively.

The computational meshgrid for the top row, middle row, and bottom row is 600× 500,
1000× 500, and 800× 700, respectively. The non–default parameters are α = 0.001, γ = 0.02,
and ζ = 12, respectively. As can be seen from the comparable results, our method maintains
the similarity with the original image and actively reduces the amplitude gradient difference
between the noise points and the surrounding pixels to obtain better results. What we need
to emphasize is that our method adaptively adjusts for specific images, which can better
process different noise information appropriately. Moreover, the PSNR and SSIM indicators
with Equation (21) for Figure 7c,d have been shown in Table 3. We can see that our method
shows better utilization of the target images from the point of perspective view.
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Table 3. Comparison of the average PSNR and SSIM between the proposed method and DcNN based
method in MATLAB.

Ours/DcNN Top Row Middle Row Bottom Row

PSNR 28.37/24.61 24.42/18.47 27.68/22.76
SSIM 0.9214/0.8463 0.7952/0.7264 0.9017/0.8911

(a) (b) (c) (d)

Figure 7. The comparison results between the smoothing results with deep learning image denoising
schemes and our proposed method. From top row to the bottom row, the image types are scan-
ning image, photo taken by camera, and JPEG compressed image, respectively. (a) Ground truth.
(b) Image with 10% Gaussian noise. (c) Results obtained by DcNN. (d) Results obtained by our
proposed method.

We should note that it is unfair for this type comparison in some aspects. The proposed
method works well without the training cost, while the DcNN based method require
expensive training costs to improve the corresponding accuracy.

4.7. Comparison Test between the Smoothing Results with Existing Structure-Texture
Decomposition Method and Our Proposed Method

In this subsection, we compare the results obtained by the existing structure-texture
decomposition method and our proposed method. We perform the numerical test on a
electronic composite image with complex boundaries and complicated geometry as shown
in Figure 8a. Since the boundary is not clear and the covered triangles have different sizes
and shapes, it brings hard challenges for boundary extraction. The computational meshgrid
is 750× 1000 and the non–default parameters are α = 0.0004, γ = 0.002, and ζ = 15,
respectively. We add the 10% Gaussian noise to the ground truth (Figure 8a) and obtain
the damage image Figure 8b. Figure 8c,d are the denoising results obtain by the method
in [38] and our proposed method, respectively. The images in bottom row (Figure 8e,f)
show the edge detection results correspond to Figure 8c,d, respectively. As can be seen
from the comparable results, the structure-texture method in [38] recognized the edges as
the texture of the target images by making the boundary too smooth, while our method
can increase the contrast between the two sides of the edges and prominent the boundary.

Moreover, we compute the PSNR and SSIM indicators with Equation (21). The PSNR
of Figure 8c,d is 18.24 and 22.36, respectively. The SSIM of Figure 8c,d is 0.7634 and 0.9142,
respectively. Based on the quantitative perspective, our method can significantly improve
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image quality, which corresponds to our expectation. From the comparison of Figure 8e,f,
our method is easier to detect the edges with less errors.

(a) (b) (c) (d)

(e) (f)

Figure 8. The comparison results between the smoothing results with existing structure-texture
decomposition method and our proposed method. From left to right, from top to bottom, the
images are (a) ground truth, (b) image with 10% Gaussian noise, (c) result obtained by the existing
method in [38], (d) results obtained by our proposed method, (e) edge detection of the results by [38],
and (f) edge detection of the results by our method, respectively.

4.8. Computational Cost

Finally, we present the performance of all above tests in Table 4 and Figure 9. The CPU
times for each tests above have been presented in Table 4. Then we compute the average
CPU time per iteration. Let us fit the curve with the computational domain size based on
the MATLAB routine polyfit functional. The numerical tests are performed in MATLAB
on a computer with a 3-GHz CPU and 8GB of RAM. It is obvious from Table 4 that the
computational cost of the proposed method is low.

Table 4. Total CPU-time of every numerical test in this work.

Figure Figure 1a Figure 1b Figure 1c Figure 1d Figure 2a
CPU-time (s) 5.91 18.34 4.74 3.49 1.57

Figure Figure 2b Figure 2c Figure 2d Figure 3 Figure 4c
CPU-time (s) 17.94 57.24 2.34 4.76 1.73

Figure Figure 6 Figure 7 (top) Figure 7 (middle) Figure 7 (bottom) Figure 8
CPU-time (s) 43.36 22.41 34.62 24.84 26.74
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0
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Experimental data

Linear fitting

Figure 9. Experimental data and linear fitting of average CPU time per iteration versus the domain
size. The average CPU time refers to the quotient of the total CPU time and the iterations. The domain
size is the number of pixels within the computational domain.

As can be seen from Figure 9, the computational cost is linear with respect to the
domain size. Various notations should be remarked as follows: (i) The proposed method
does not require the extensive training times to sacrifice an acceptable level of accuracy.
(ii) The proposed scheme is based on the partial differential equation, which makes our
approach independent of the specific dataset and noise type. (iii) The computational
complexity of our approach depends on the fast Fourier transform, which is proved to be
O(NlogN) and is easy to implement from the numerical point of view.

5. Conclusions

In this paper, a novel image restoration method was proposed by coupling with L0, L1
and L2 gradient minimization of weight average combination. The resulting algorithm was
developed by using half-quadratic splitting method. Through the optimization formulation,
the smoothing step has been performed by using a Poisson approach after two edge-
preserving steps. The proposed iterative method is efficient and robust due to the linearity
and parallelism of our algorithm, which is easy to implement. To the best of our knowledge,
the present study is the first attempt to denoise the damaged images using the competitive
combination of hard- and soft-thresholding model. Compared with neural networks based
method, our method is more universal due to the adaptive consideration on the pixel
information of a single image. The proposed numerical scheme can be performed to a
discrete cosine transform (DCT) implementation with the optimal complexity O(NlogN)
per iteration. Several numerical tests were demonstrated to confirm that the proposed
method is efficient and robust for producing image processing results with good quality.
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