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Abstract: We establish several new functional bounds and uniform bounds (with respect to the
variable) for the lower incomplete generalized Fox–Wright functions by means of the representation
formulae for the McKay Iν Bessel probability distribution’s cumulative distribution function. New
cumulative distribution functions are generated and expressed in terms of lower incomplete Fox–
Wright functions and/or generalized hypergeometric functions, whilst in the closing part of the
article, related bounding inequalities are obtained for them.
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1. Introduction and Motivation

The incomplete special functions having integral expressions with nonnegative inte-
grands are obviously bounded above with their complete variants, when the incomplete
variants integration domain is contained in the complete variant’s integration domain,
provided the considered integrals converge, as it happens, for instance, in the case of lower
and upper incomplete gamma functions (p. 174, Equations (8).2.1-2, [1])

γ(p, x) =
∫ x

0
tp−1 e−t dt, Γ(p, x) =

∫ ∞

x
tp−1 e−t dt , x, <(p) > 0, (1)

respectively, whose sum gives the Euler function of the second kind called also (complete)
gamma function (p. 136, Equation (5).2.1, [1]):

γ(p, x) + Γ(p, x) = Γ(p) =
∫ ∞

0
tp−1 e−t dt , <(p) > 0 . (2)

The straightforward consequence of these relations is

max
(
γ(x, p), Γ(p, x)

)
≤ Γ(p) .

However, the question of the existence of more precise upper and/or lower bounds
for the incomplete versions of special functions is frequent in applications.

In this note, we derive upper bounds for a set of special functions coming from the
hypergeometric family of functions, the class of lower incomplete confluent Fox–Wright
generalized hypergeometric functions, which nowadays have numerous appearances in
the mathematical literature, see, e.g., [2–5] and the relevant titles therein.

We start with the definition of the incomplete Fox–Wright function. The Fox–Wright
generalized hypergeometric function consisting of p numerator parameter couples (a1, A1),
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· · · , (ap, Ap) and q denominator parameter pairs (b1, B1), · · · , (bq, Bq), possesses the series
form (pp. 286–287, [6])

pΨq

[ (a1, A1), · · · , (ap, Ap)
(b1, B1), · · · , (bq, Bq)

∣∣∣ z
]
= pΨq

[ (ap, Ap)
(bq, Bq)

∣∣∣ z
]
= ∑

n≥0

p
∏
j=1

Γ(aj + nAj)

q
∏
j=1

Γ(bj + nBj)

zn

n!
, (3)

where Aj, Bk ≥ 0, j = 1, . . . , p, k = 1, . . . , q. The series (3) converges for all z ∈ C when

∆ := 1 +
q

∑
j=1

Bj −
p

∑
k=1

Ak > 0.

When ∆ = 0, the series in (3) converges for |z| < ∇ and |z| = ∇ under the condition
<(µ) > 1/2, where

∇ :=

(
p

∏
i=1

A−Ai
i

)(
q

∏
j=1

B
Bj
j

)
, µ =

q

∑
j=1

bj −
p

∑
i=1

ai +
p− q

2
.

Taking A1 = · · · = Ap = B1 = · · · = Bq = 1 in (3), the Fox–Wright function reduces
to the generalized hypergeometric function pFq, up to the multiplicative constant in the
following way:

pFq

[ ap
bq

∣∣∣ z
]
=

Γ(b1) · · · Γ(bq)

Γ(a1) · · · Γ(ap)
pΨq

[ (ap, 1)
(bq, 1)

∣∣∣ z
]

. (4)

Now, we denote by pΨ(γ)
q [·] the lower incomplete Fox–Wright function by replacing

one gamma function out of p in the product in the numerator of (3) with a lower incomplete
gamma function γ(µ + · M, x), in which the new parameters µ, M, x take place. So, by this
change, the defining power series (3) becomes (p. 196, Equation (6), [4]) (also see (p. 982, [5]))

pΨ(γ)
q

[ (µ, M, x), (ap−1, Ap−1)
(bq, Bq)

∣∣∣ z
]
= ∑

n≥0

γ(µ + nM, x)
p−1
∏
j=1

Γ(aj + nAj)

q
∏
j=1

Γ(bj + nBj)

zn

n!
. (5)

The parameters M, Aj, Bk > 0 should satisfy the constraint

∆(γ) = 1 +
q

∑
j=1

Bj −M−
p−1

∑
j=1

Aj ≥ 0,

while the other convergence conditions remain the same as the ones for the complete Fox–
Wright (3), which we have for x = ∞ in (5). We point out that the upper incomplete Fox–
Wright generalized hypergeometric function pΨ(Γ)

q is presented with associated comments
in Section 5 under A.

The probability distributions involving Bessel functions were pioneered by McKay [7]
considering two classes of continuous distributions involving modified Bessel functions
of the first and second kinds Iν and Kν, which we call today Bessel function distribu-
tions. However, we observe here McNolty’s version [8] of McKay’s Iν Bessel distribution.
The random variable (rv) X defined on a probability space (Ω, A ,P) behaves according to
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McNolty’s variant of McKay’s distribution when the probability distribution function (pdf)
is of the form (p. 496, Equation (13), [8])

f I(x; a, b; ν) =

√
π(b2 − a2)ν+1/2

(2a)νΓ
(

ν + 1
2

) e−bxxν Iν(ax), x ≥ 0, (6)

defined for all ν > −1/2 and b > a > 0. The related cumulative distribution function
(cdf) reads

FI(x; a, b; ν) =

√
π(b2 − a2)ν+1/2

(2a)νΓ
(

ν + 1
2

) ∫ x

0
e−bttν Iν(at)dt, x ≥ 0, (7)

where the power series form of the modified Bessel function of the first kind is (p. 13, [9])

Iν(x) = ∑
n≥0

1
Γ(ν + n + 1) n!

( x
2

)2n+ν
.

We write this correspondence as X∼McKayI(a, b, ν). We consider McNolty’s pdf (6)
and cdf (7) in our calculations.

New expressions for cdf of rv X∼McKayI(a, b, ν) were given recently in [2]. In turn,
these results imply several by-products. For instance, we can deduce several functional
and uniform bounds for the incomplete generalized Fox–Wright functions and other
hypergeometric-type functions which are the building blocks of cdfs; we discuss these
elsewhere. We derive the bounds by simple methods applying certain known and less
known properties of cdfs.

2. The First Set of Results

Here, we report on a uniform and a functional bound for the incomplete confluent Fox–
Wright function 1Ψ(γ)

1 and for the generalized hypergeometric function 1F2[·], consult (4).

Theorem 1. For all b > a > 0 and ν > −1/2, we have

1Ψ(γ)
1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
≤

4ν( 1
2 )νb2ν+1

(b2 − a2)ν+ 1
2

.

Moreover , for ν ≥ 0 and a ≥ 1, the following holds:

1Ψ(γ)
1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
≤ b2νx2ν(1− e−bx)

(2ν + 1) Γ(ν + 1) 1F2

[ ν + 1
2

ν + 1, ν + 3
2

∣∣∣ a2x2

4

]
. (8)

Proof. According to the result of Theorem 1 in [2], for the rv X∼McKayI(a, b, ν), the related
cdf reads

FI(x; a, b; ν) =

√
π(b2 − a2)ν+1/2

22ν b2ν+1Γ
(

ν + 1
2

) 1Ψ(γ)
1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
, x ≥ 0. (9)

From FI(x; a, b; ν) ≤ 1, the assertion of the theorem immediately follows. As to the func-
tional upper bound (8), we apply the estimate (Equation 8.10.2, [1])

γ(a, t) ≤ ta−1

a
(
1− e−t) , a ≥ 1, t > 0 . (10)
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This bound, taken in (9) for a = 2ν + 1 + 2n and t = bx, increases the sum and implies

1Ψ(γ)
1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
≤ ∑

n≥0

(bx)2(ν+n) (1− e−bx)
4n(2ν + 1 + 2n)Γ(ν + 1 + n) n!

(
a2

b2

)n

=
(bx)2ν

(
1− e−bx)

2 Γ(ν + 1) ∑
n≥0

Γ(ν + 1
2 + n) (ax)2n

4n (ν + 1)n Γ(ν + 3
2 + n) n!

=
(bx)2ν

(
1− e−bx)

(2ν + 1)Γ(ν + 1) ∑
n≥0

(ν + 1
2 )n

( ax
2

)2n

(ν + 1)n(ν + 3
2 )n n!

,

which is equivalent to the stated inequality (8). Finally, the constraint 1 ≤ a = 2ν+ 1+ 2n in
(10), which holds for all n ∈ N0, shows that ν ≥ 0 is indeed the parameter range. The proof
is complete.

In the next part of this section, we establish a bilateral functional bound upon the
lower incomplete confluent Fox–Wright function. In turn, the upper bound contains the
same incomplete confluent Fox–Wright function whose argument is reciprocal.

Theorem 2. Let b > a > 0 and 2ν + 1 > 0. Then, for all x ≥ 1, the two-sided functional
inequality holds:

1Ψ(γ)
1

[ b
x

]
≤ 1Ψ(γ)

1
[
bx
]
≤ 1Ψ(γ)

1

[ b
x

]
+

2Γ(2ν) b2ν+1

Γ(ν) (b2 − a2)ν+ 1
2

, (11)

where

1Ψ(γ)
1 [z] := 1Ψ(γ)

1

[ (2ν + 1, 2, z)
(ν + 1, 1)

∣∣∣ a2

4b2

]
.

Proof. Let X∼F(x) be a continuous nonnegative random variable with F(0) = 0. Consider
the rv max

(
X, X−1). For the related cdf, the following holds:

P
{

max
(
X, X−1) < x

}
= P

{
x−1 < X < x

}
= F(x)− F(x−1) ,

which implies that (p. 45, 2.1.8, [10])

G(x) =

{
F(x)− F(x−1), x ≥ 1
0, x < 1

is also a cdf. Replacing the general rv with X∼McKayI(a, b, ν) and keeping our standard
parameter space b > a > 0, 2ν + 1 > 0, we obtain that

0 ≤ GI(x) = FI(x; a, b; ν)− FI(x−1; a, b; ν) ≤ 1 , x ≥ 1 . (12)

Hence,

1Ψ(γ)
1
[
bx
]
− 1Ψ(γ)

1

[ b
x

]
≥ 0 ,

which implies the left-hand-side inequality in (11). Next, from GI(x) ≤ 1, we conclude

1Ψ(γ)
1
[
bx
]
≤ 1Ψ(γ)

1

[ b
x

]
+

22νb2ν+1Γ(ν + 1
2 )√

π (b2 − a2)ν+ 1
2

= 1Ψ(γ)
1

[ b
x

]
+

22νb2ν+1Γ(ν + 1
2 )Γ(ν + 1)

√
π Γ(ν + 1) (b2 − a2)ν+ 1

2
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= 1Ψ(γ)
1

[ b
x

]
+

b2ν+1Γ(2ν + 1)

Γ(ν + 1) (b2 − a2)ν+ 1
2

(13)

= 1Ψ(γ)
1

[ b
x

]
+

2 b2ν+1Γ(2ν)

Γ(ν)(b2 − a2)ν+ 1
2

, (14)

where (13) is obtained by the Legendre duplication formula for the gamma function
(Equation 5.5.5, [1])

Γ(2ν) =
22ν−1
√

π
Γ(ν) Γ

(
ν + 1

2
)
, −2ν 6∈ N0 .

This explains at the same time that the quotient of gamma functions is well defined
for the nonpositive values of ν ∈ (− 1

2 , 0] in (14). The rest is obvious.

3. The Second Set of Results

The rv X∼McKayI(a, b, ν) possesses a counterpart result to the representation Formula (9)
for the related cdf, also in terms of the lower incomplete confluent Fox–Wright generalized
hypergeometric function 1Ψ(γ)

1 , the exponential function and the modified Bessel function
of the first kind Iν.

We establish bounding inequalities and monotonicity results applying the simple
properties of the cdfs used in the previous section. Therefore, according to Theorem 1 of [2],
we have

FI(x; a, b; ν) =

√
π(b2 − a2)ν+1/2

22ν−1 b2ν+1Γ
(

ν + 1
2

) {1Ψ(γ)
1

[ (2ν, 2, bx)
(ν, 1)

∣∣∣ a2

4b2

]
− 2ν−1b2ν xν

aν
e−bx Iν(ax)

}
. (15)

for all x ≥ 0.

Theorem 3. For all b > a > 0, ν > −1/2 and for all x ≥ 0, it holds true that

1
2

(
2b2x

a

)ν

e−bx Iν(ax) ≤ 1Ψ(γ)
1

[ (2ν, 2, bx)
(ν, 1)

∣∣∣ a2

4b2

]
≤ 1

2

(
2b2x

a

)ν

e−bx Iν(ax) +
22ν−1b2ν+1 ( 1

2 )ν

(b2 − a2)ν+ 1
2

.

Moreover, when x ≥ 1, we have the bilateral functional inequality

H(x) ≤ 1Ψ(γ)
1
[
bx
]
− 1Ψ(γ)

1

[ b
x

]
≤ H(x) +

Γ(2ν) b2ν+1

Γ(ν) (b2 − a2)ν+ 1
2

, (16)

where

H(x) :=
1
2

(2b2

a

)ν{
xνe−bx Iν(ax)− x−νe−

b
x Iν

( a
x

)}
,

and 1Ψ(γ)
1 [z] denotes the same function as in Theorem 2.

Proof. Applying 0 ≤ FI(x; a, b; ν) ≤ 1 to the representation Formula (15), the first statement
of theorem immediately follows.

As to the bilateral inequality (16), we take into account the same property, now for the
cdf GI(x), defined in (12). After some routine calculations, following the steps of the proof
of Theorem 2, we arrive at the assertion (16).
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4. The Third Set of Results

Let us treat FI(x; a, b; ν) by virtue of the property which holds for any continuous
baseline cdf F(x) and states that (p. 45, Equation (2).1.7, [10])

F1(x) =
1
h

∫ x+h

x
F(t)dt , h > 0 ,

is also a cdf. Consequently, we can consider the newly generated cdf

F(1)
I,1 (x; h) =

1
h

∫ x+h

x
FI(t; a, b; ν)dt , h > 0 . (17)

The main result in this part of the article is the special function representation formula
for the generated cdf FI,1(x; h).

Theorem 4. Let the rv X∼McKayI(a, b, ν), and the cdf F(1)
I,1 (x; h) defined by (17) be. Then, for

all b > a > 0, ν > − 1
2 and x, h ≥ 0 we have

F(1)
I,1 (x; h) =

Cν

h

{
(x + h) 2Ψ(γ)

2

[ (2ν + 2, 2, b(x + h)), (ν + 1
2 , 1)

(ν + 1, 1), (ν + 3
2 , 1)

∣∣∣ a2

4b2

]
− 2

b 1Ψ(γ)
1

[ (2ν + 2, 2, b(x + h))
(ν + 1, 1)

∣∣∣ a2

4b2

]
+

2[b(x + h)]2ν+2e−b(x+h)

b (2ν + 1)Γ(ν + 1) 1F2

[ ν + 1
2

ν + 1, ν + 3
2

∣∣∣ a2

4
(x + h)2

]
− x 2Ψ(γ)

2

[ (2ν + 2, 2, bx), (ν + 1
2 , 1)

(ν + 1, 1), (ν + 3
2 , 1)

∣∣∣ a2

4b2

]
+

2
b 1Ψ(γ)

1

[ (2ν + 2, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
− 2(bx)2ν+2e−bx

b (2ν + 1)Γ(ν + 1) 1F2

[ ν + 1
2

ν + 1, ν + 3
2

∣∣∣ a2

4
x2
]}

,

where

Cν =

√
π (b2 − a2)ν+ 1

2

4νb2ν+1 Γ(ν + 1
2 )

.

Proof. Because the baseline cdf FI(x; a, b; ν) contains the incomplete confluent Fox–Wright
term 1Ψ(γ)

1 , which is built by γ(·, bx), we should know the integral of this function, see (5).
As (Equation 8.5.1, [1])

γ(α, z) =
zα

α 1F1

[ α
α + 1

∣∣∣− z
]

, −α 6∈ N0 ,

we conclude

∫ x

0
γ(α, z)dz =

1
α ∑

k≥0

(−1)k (α)k
(α + 1)k k!

xα+k+1

α + k + 1
=

xα+1

α(α + 1) ∑
k≥0

(α)k (−x)k

(α + 2)k k!
=

xα+1

α(α + 1) 1F1

[ α
α + 2

∣∣∣− x
]

,

that is ∫ x

0
γ(α, z)dz =

x− α

α
γ(α + 1, x) +

1
α

xα+1 e−x . (18)

The final formula follows by (p. 583, Equation (7).11.3.2, [11]).
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By virtue of relations (9), (17) and (18), we infer:

F(1)
I,1 (x; h) =

(b2 − a2)ν+ 1
2

b2ν+2 Γ(2ν + 1) h ∑
n≥0

a2n
b(x+h)∫

bx
γ(2ν + 1 + 2n, t)dt

(2b)2n (ν + 1)n n!

=
(b2 − a2)ν+ 1

2

b2ν+2 Γ(2ν + 1) h ∑
n≥0

(
a2/b2)n

4n (ν + 1)n n!

{( b(x + h)
2ν + 1 + 2n

− 1
)

· γ
(
2ν + 2 + 2n, b(x + h)

)
+

(b(x + h))2ν+2+2n

2ν + 1 + 2n
e−b(x+h)

−
( bx

2ν + 1 + 2n
− 1
)

γ
(
2ν + 2 + 2n, bx

)
− (bx)2ν+2+2n

2ν + 1 + 2n
e−bx

}
=: I1(x + h)− I2(x + h) + I3(x + h)− I1(x) + I2(x)− I3(x) .

This linear combination of six series we separate and sum up. Thus, not changing the
order of the outcoming series the first (fourth) series can be expressed in terms of the lower
incomplete Fox–Wright function 2Ψ(γ)

2 . Indeed, comparing with (5), this results in

I1(t) =

(
1− a2

b2

)ν+ 1
2

t

Γ(2ν + 1) h ∑
n≥0

1
(ν + 1)n n!

γ
(
2ν + 2 + 2n, b t

)
2ν + 1 + 2n

(
a2

4b2

)n

=

(
1− a2

b2

)ν+ 1
2

Γ(ν + 1) t

2 Γ(2ν + 1) h ∑
n≥0

γ
(
2ν + 2 + 2n, b t

)
Γ(ν + 1

2 + n)

Γ(ν + 1 + n) Γ(ν + 3
2 + n) n!

(
a2

4b2

)n

=

(
1− a2

b2

)ν+ 1
2

Γ(ν + 1) t

2 Γ(2ν + 1) h 2Ψ(γ)
2

[ (2ν + 2, 2, b t), (ν + 1
2 , 1)

(ν + 1, 1), (ν + 3
2 , 1)

∣∣∣ a2

4b2

]
,

where t ∈ {x + h, x}. Now, with the lower incomplete confluent Fox–Wright function 1Ψ(γ)
1

we get

I2(t) =
(
b2 − a2)ν+ 1

2

b2ν+2Γ(2ν + 1) h ∑
n≥0

γ
(
2ν + 2 + 2n, b t

)
(ν + 1)n n!

(
a2

4b2

)n

=

(
1− a2

b2

)ν+ 1
2

Γ(ν + 1)

Γ(2ν + 1) bh ∑
n≥0

γ
(
2ν + 2 + 2n, b t

)
Γ(ν + 1 + n) n!

(
a2

4b2

)n

=

(
1− a2

b2

)ν+ 1
2

Γ(ν + 1)

Γ(2ν + 1) bh 1Ψ(γ)
1

[ (2ν + 2, 2, b t)
(ν + 1, 1)

∣∣∣ a2

4b2

]
,

where t ∈ {x + h, x} covers two integrals as well.
Finally, the third (sixth) series becomes

I3(t) =
(b2 − a2)ν+ 1

2 t2ν+2e−bt

Γ(2ν + 2) h 1F2

[ ν + 1
2

ν + 1, ν + 3
2

∣∣∣ a2

4
t2
]
, t ∈ {x + h, x} .

Collecting these integrals, the expression for FI,1(x; h) is confirmed.
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Remark 1. The constant Cν, whose form we owe to McNolty’s pdf (6) and which appears for
the first time in the proof of Theorem 1 (9), is introduced in Theorem 4. This constant remains
unchanged throughout, in all further results to the end of the exposition.

The same questions occur for the cdf which is reported as (p. 45, 2.1.7, [10])

F2(x) =
1

2h

∫ x+h

x−h
F(t)dt , h > 0 ,

when we take the baseline cdf FI(x; a, b; ν). This gives

F(2)
I,1 (x; h) =

1
2h

∫ x+h

x−h
FI(t; a, b; ν)dt . (19)

As a consequence of Theorem 4, we deduce the following specified result.

Corollary 1. Let the rv X∼McKayI(a, b, ν), and the cdf F(2)
I,1 (x; h) defined by (19) be. Then, for

all b > a > 0, ν > − 1
2 and x ≥ 0; h > 0 the following holds true:

F(2)
I,1 (x; h) =

Cν

h

{
x + h

2 2Ψ(γ)
2

[ (2ν + 2, 2, b(x + h)), (ν + 1
2 , 1)

(ν + 1, 1), (ν + 3
2 , 1)

∣∣∣ a2

4b2

]
− 1

b 1Ψ(γ)
1

[ (2ν + 2, 2, b(x + h))
(ν + 1, 1)

∣∣∣ a2

4b2

]
+

[b(x + h)]2ν+2e−b(x+h)

b (2ν + 1)Γ(ν + 1) 1F2

[ ν + 1
2

ν + 1, ν + 3
2

∣∣∣ a2

4
(x + h)2

]
− x− h

2 2Ψ(γ)
2

[ (2ν + 2, 2, b(x− h)), (ν + 1
2 , 1)

(ν + 1, 1), (ν + 3
2 , 1)

∣∣∣ a2

4b2

]
+

1
b 1Ψ(γ)

1

[ (2ν + 2, 2, b(x− h))
(ν + 1, 1)

∣∣∣ a2

4b2

]
− (b(x− h))2ν+2e−b(x−h)

b (2ν + 1)Γ(ν + 1) 1F2

[ ν + 1
2

ν + 1, ν + 3
2

∣∣∣ a2

4
(x− h)2

]}
.

Remark 2. The first kind of two-sided inequalities which we can obtain are the straightforward
consequences of 0 ≤ F(j)

I,1 (x; h) ≤ 1; j = 1, 2 for the same parameter space b > a > 0; 2ν + 1 > 0,
h > 0 as in Theorem 4 and Corollary 4.1, respectively.

On the other hand, generating with the baseline cdfs F(j)
I,1 (x; h)—mimicking (12)—another

associated cdfs G(j)
I,1(x; h); j = 1, 2, a new set of bilateral inequalities follow for supp(G(j)

I,1) =
[1, ∞); j = 1, 2 for positive h > 0. These results can also be understood as a kind of monotonicity
with respect to the argument x since the cdfs are monotone nondecreasing per definitionem.

Finally, we introduce a generalization of (17). Let r ∈ N. We are looking for the cdf
F(1)

I,r (x; h), which we build by r-tuple successive application of the integral operator F(1)
I,r to

the baseline cdf FI defined by (17). This gives

F(1)
I,r = F(1)

I,1 ◦ · · · ◦ F(1)
I,1︸ ︷︷ ︸

r

(
FI
)

, (20)

where under u ◦ v, we mean the composition of functions u, v. Obviously, F(1)
I,r (x; h) is a cdf

as well.
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Theorem 5. For all b > a > 0; 2ν + 1 > 0; r ∈ N and x ≥ 0, h > 0, we have

F(1)
I,r (x; h) =

Cν

r!

( x
h

)r r

∑
k=0

(
r
k

)
(−1)k+1

(b x)k

{
1Ψ(γ)

1

[ (2ν + 1 + k, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
−
(

1 +
h
x

)r−k
1Ψ(γ)

1

[ (2ν + 1 + k, 2, b(x + h))
(ν + 1, 1)

∣∣∣ a2

4b2

]}
.

Proof. Introducing the shorthand dxr−1 := dx1 dx2 · · ·dxr−1 , we rewrite the operator F(1)
I,r

in (20), as the r-tuple integral

F(1)
I,r (x; h) =

Cν

hr ∑
n≥0

1
Γ(ν + 1 + n) n!

(
a2

4b2

)n ∫
r−1
∏
j=1

[xj ,xj+h]×[x,x+h]
γ(2ν+ 1+ 2n, bt)dt dxr−1 .

The use of the special form of the formula ((p. 23, Equation 1.2.1.1), [12]) for min(α, β) > 0,
λ ≥ 0, implies

∫ x

0
xλγ(α, βx)dx =

xλ+1

λ + 1
γ(α, βx)− γ(λ + 1 + α, βx)

(λ + 1) βλ+1 ,

which provides the expression

I(α, β; x) =
∫

r−1
∏
j=1

[0,xj ]×[0,x]
γ(α, βt)dt dxr−1 =

xr

r!

r

∑
k=0

(
r
k

)
(−1)k

(βx)k γ(α + k, βx) . (21)

Indeed, the first few iterations read∫ x

0
γ(α, βt) dt = x γ(α, βx)− 1

β
γ(α + 1, βx),∫ x

0

∫ x1

0
γ(α, βt) dt dx1 =

1
2!

[
x2 γ(α, βx)− 2

β
x γ(α + 1, βx)

+
1
β2 γ(α + 2, βx)

]
,∫ x

0

∫ x2

0

∫ x1

0
γ(α, βt) dt dx1 dx2 =

1
3!

[
x3 γ(α, βx)− 3

β
x2 γ(α + 1, βx)

+
3
β2 x γ(α + 2, βx)− 1

β3 γ(α + 3, βx)
]

, · · ·

accordingly, we obtain (21) by induction. Consequently,

F(1)
I,r (x; h) =

Cν

hr ∑
n≥0

1
Γ(ν + 1 + n) n!

(
a2

4b2

)n

·
[
I(2ν + 1 + 2n, b; x + h)− I(2ν + 1 + 2n, b; x)

]
=

Cν xr

r! hr

r

∑
k=0

(
r
k

)
(−1)k+1

(b x)k

{
∑
n≥0

γ(2ν + 1 + k + 2n, bx)
Γ(ν + 1 + n) n!

( a2

4b2

)n

−
(

1 +
h
x

)r−k
∑
n≥0

γ(2ν + 1 + k + 2n, b(x + h))
Γ(ν + 1 + n) n!

( a2

4b2

)n}
=

Cν

r!

( x
h

)r r

∑
k=0

(
r
k

)
(−1)k+1

(b x)k

{
1Ψ(γ)

1

[ (2ν + 1 + k, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
−
(

1 +
h
x

)r−k
1Ψ(γ)

1

[ (2ν + 1 + k, 2, b(x + h))
(ν + 1, 1)

∣∣∣ a2

4b2

]}
.
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In turn, this provides the statement of the theorem.

Corollary 2. Let the situation be the same as in Theorem 5. Denote

Ar
(

1Ψ(γ)
1 ; t

)
:=

r

∑
k=0

(−r)k

bkk!
tr−k

1Ψ(γ)
1

[ (2ν + 1 + k, 2, bt)
(ν + 1, 1)

∣∣∣ a2

4b2

]
.

Then, for all x > 0, we have

Ar
(

1Ψ(γ)
1 ; x

)
≤ Ar

(
1Ψ(γ)

1 ; x + h
)
≤ Ar

(
1Ψ(γ)

1 ; x
)
+ Cν r! hr .

Proof. The statement follows, since F(1)
I,r (x; h) is a cdf having a unit interval codomain for

the supp
(

F(1)
I,r
)
= R+ and any positive h.

5. Concluding Remarks

A. Inserting the lower and upper incomplete gamma functions (1) from relation (2) into
(5) we deduce the upper incomplete Fox–Wright function’s power series definition:

pΨ(Γ)
q

[ (µ, M, x), (ap−1, Ap−1)
(bq, Bq)

∣∣∣ z
]
= ∑

n≥0

Γ(µ + nM, x)
p−1
∏
j=1

Γ(aj + nAj)

q
∏
j=1

Γ(bj + nBj)

zn

n!
.

Consequently, it follows that

pΨ(γ)
q

[ (µ, M, x), (ap−1, Ap−1)
(bq, Bq)

∣∣∣ z
]
+ pΨ(Γ)

q

[ (µ, M, x), (ap−1, Ap−1)
(bq, Bq)

∣∣∣ z
]

= pΨq

[ (µ, M), (ap−1, Ap−1)
(bq, Bq)

∣∣∣ z
]

,

consult (pp. 196–197 , Equations (6)–(7), [4]). Obviously, the parameter space remains
unchanged. The reduction to the confluent function, which builds (9), results in

1Ψ(γ)
1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
+ 1Ψ(Γ)

1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
= 1Ψ1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
.

Now, let X∼McKayI(a, b, ν), where b > a > 0, 2ν + 1 > 0. The associated reliability
(or survival) function and the hazard function, which also characterize the probability
distributions, are

RI(x; a, b; ν) = 1− FI(x; a, b; ν) , hI(x; a, b; ν) =
f I(x; a, b, ν)

RI(x; a, b; ν)
.

Hence, in conjunction with the pdf (6) and cdf (9), we perform for all x ≥ 0 the
following formulae

RI(x; a, b; ν) =

√
π (b2 − a2)ν+ 1

2

22νb2ν+1(ν + 1
2 )

1Ψ(Γ)
1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

]
,

hI(x; a, b; ν) =
(2b2

a

)ν e−bx I0(ax)

1Ψ(Γ)
1

[ (2ν + 1, 2, bx)
(ν + 1, 1)

∣∣∣ a2

4b2

] .

These expressions show that in fact, no novel quality can be achieved by applying
the upper incomplete gamma and upper Fox–Wright functions instead of the lower
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ones. In turn, the obtained inequality bounds become reversed, bearing in mind the
reliability function terminology. The problem of how to achieve these bounds, we
leave to the interested reader.

B. The probabilistic research methodology is in fact unique with respect to the confluent

Fox–Wright function 1Ψ(γ)
1 , since McNolty’s pdf (6) and cdf (9) are expressible by this

special case of (5). On the other hand, this strategy of considerations can lead to other
useful bounds for special functions appearing in the formulae of the pdf and cdf for
“classical” and/or newly introduced random variables.

C. New research directions can be formulated for other special functions which partici-
pate in representing either the rv X∼McKayI(a, b, ν), or its counterpart variable with
the so-called McKayK(a, b, ν) distribution, see [2,7,8]. However, these goals will be
addressed and presented in future work.
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