
Citation: Wichert, A. Quantum Tree

Search with Qiskit. Mathematics 2022,

10, 3103. https://doi.org/10.3390/

math10173103

Academic Editor: Ignazio Licata

Received: 11 July 2022

Accepted: 26 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Quantum Tree Search with Qiskit
Andreas Wichert

Department of Computer Science and Engineering, INESC-ID & Instituto Superior Técnico, University of Lisbon,
2740-122 Porto Salvo, Portugal; andreas.wichert@tecnico.ulisboa.pt

Abstract: We indicate the quantum tree search qiskit implementation by popular examples from
symbolical artificial intelligence, the 3-puzzle, 8-puzzle and the ABC blocks world. Qiskit is an open-
source software development kit (SDK) for working with quantum computers at the level of circuits
and algorithms from IBM. The objects are represented by symbols and adjectives. Two principles
are presented. Either the position description (adjective) is fixed and the class descriptors moves
(is changed) or, in the reverse interpretation, the class descriptor is fixed and the position descriptor
(adjective) moves (is changed). We indicate how to decompose the permutation operator that executes
the rules by the two principles. We demonstrate that the the branching factor is reduced by Grover’s
amplification to the square root of the average branching factor and not to the maximal branching
factor as previously assumed.

Keywords: quantum tree search; 8-puzzle; ABC blocks; production systems; qiskit

MSC: 68Q12; 81P68

1. Introduction

The problems in AI are often described by the representation of a problem space
and a search procedure [1]. Problem solving can be modeled by a production system
that implements a search algorithm. The search defines a problem space and can be
represented as a tree. The production system in the context of classical Artificial Intelligence
and Cognitive Psychology is one of the most successful computer models of human problem
solving. The production system theory describes how to form a sequence of actions, which
lead to a goal, and offers a computational theory of how humans solve problems [2].

Production systems are composed of if–then rules that are also called productions.
A production system is composed of [3,4]:

• The long-term memory is modeled by a set of productions.
• The short-term memory or working memory that represents the states. This memory

contains a description of the state in a problem-solving process. The state is described
by logically structured representation and is simply called a pattern. Whenever
a premise is true, the conclusions of the productions change the contents of the
working memory.

• The recognize–act cycle is usually based on heuristic search. If several productions
can be applied to the working memory, a heuristic function estimates for each pro-
duction that can be applied the cheapest cost to the goal. The production with the
cheapest costs is chosen. Generally, the invention of heuristic functions is difficult,
such as functions that describe chemical structures or mathematical expressions. In a
quantum production system based on a quantum tree, search heuristics are removed
and replaced by all possible translations.

The computation is performed in the following steps [5]. The working memory is
initialized with the initial state description. The patterns in working memory are matched
against the premise of the production. The premise of the productions that match the
patterns in working memory produces a set, which is called the conflict set. One of the

Mathematics 2022, 10, 3103. https://doi.org/10.3390/math10173103 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173103
https://doi.org/10.3390/math10173103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2179-4378
https://doi.org/10.3390/math10173103
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173103?type=check_update&version=2

Mathematics 2022, 10, 3103 2 of 28

productions of this set is chosen, and the conclusion of the production changes the content
of the working memory. This process is denoted as firing of the production. This cycle is
repeated on the modified working memory until a goal state is reached or no productions
can be fired. An example of a production system is the 8-puzzle.

The 8-puzzle is composed of eight numbered movable tiles in a 3× 3 frame. One cell
of the frame is empty; as a result, tiles can be moved around to form different patterns.
The goal is to find a series of moves of tiles into the blank space that changes the board
from the initial configuration to a goal configuration.

The long-term memory is specified by four productions [4]:

• If the empty cell is not on the top edge, then move the empty cell up;
• If the empty cell is not on the left edge, then move the empty cell left;
• If the empty cell is not on the right edge, then move the empty cell right;
• If the empty cell is not on the bottom edge, then move the empty cell down.

The control strategy for the search would be:

• Halt when the goal is in the working memory.
• Chose a random production.
• Do not allow loops.

In Figure 1, we see an example representing a sequence of states that leads from the
initial configuration to the goal configuration.

8

8

2

8

12

8

32

8

1 321

7 8

65465

7

32

8

1

464

3

8

7 5

4

57

6

1

6 34

7 5

21

4

7 5

6 3

21

7 5

6 34

4 1 2

7 5

6 37

5 8

6 3

214

Figure 1. The first pattern (upper left) represents the initial configuration and the last (low right) the
goal configuration. The series of moves describe the solution to the problem.

Another example consists of the task of building a tower from a collection of blocks [1].
A robot arm can stack, unstack and move the blocks at a table. The production system
implements a search algorithm that defines a problem space and can be represented as a
tree search.

1.1. Tree Search and the Path Descriptors

Nodes and edges represent a search tree. Each node represents a state, and each edge
represents a transition from one state to the following state. The initial state defines the
root of the tree. From each state, either B ∈ N states can be reached, or the state is a leaf.
From a leaf, no other state can be reached. B represents the branching factor of the node,
the number of possible choices. A leaf represents either the goal of the computation or an
impasse when there is no valid transition to a succeeding state. Every node besides the root
has a unique node from which it was reached, which is called the parent. Each node and
its parent are connected by an edge. Each parent has B children. If B = 2, each of the m
questions has a reply of either “yes” or “no” and can be represented by a bit (see Figure 2).
The m answers are represented by a binary number of length m.

Mathematics 2022, 10, 3103 3 of 28

Figure 2. Search tree for B = 2 and m = 2. Each question can be represented by a bit. Each binary
number (11, 10, 01, 00) represents a path from the root to the leaf.

There are n = 2m = Bm possible binary numbers of length m. Each binary number
represents a path from the root to a leaf. For each goal, a certain binary number indicates
the solution. For a constant branching factor B > 2, each question has B possible answers.
The m answers can be represented by m digits. For example, with B = 8, the number is
represented by 23 bits. These numbers represent all paths from the root to the leaves.

1.2. Quantum Tree Search

In a quantum computation, we can simultaneously represent all possible path de-
scriptors. There is one path descriptor for each leaf of the tree. Using Grover’s algorithm,
we search through all possible paths and verify whether each path leads to the goal state.
This type of procedure is called a quantum tree search [5,6]. For n = Bm possible paths,
the costs are (approximately)

√
n = B

m
2 (see Figure 3).

Figure 3. For branching, factor B from 2 to 4 and the depth of the tree search m from 1 to 10. The costs
on a conventional computer are n = Bm, upper plane. On a quantum computer, we need only√

n = B
m
2 steps, plane below.

A constraint of this approach is that we must know the depth m of the search tree in
advance. The constraint can be overcome by iterative deepening. In an iterative deepening
search. During the iterative deepening search, the states are generated multiple times [7,8].
The time complexity of the iterative deepening search is of the same order of magnitude
as a search to the maximum depth [7], as explained by Richard E. Korf: “Since the number of
nodes on a given level of the tree grows exponentially with depth, almost all time is spent in the deep-
est level, even though shallower levels are generated an arithmetically increasing number of times.”

Mathematics 2022, 10, 3103 4 of 28

The paradox can be explained using the arithmetic–geometric sequence. A quantum itera-
tive deepening search is equivalent to the iterative deepening search [9]. For each limit max,
a quantum tree search is performed from the root, where max is the maximum depth of
the search tree. The possible solutions are determined using a measurement. We gradually
increase the limit of the search from one, to two, three and four and continue to search
until the goal is found. For each limit m, a quantum tree search is performed from the
root, with m being the maximum depth of the search tree. The possible solutions are
determined by a measurement. The time complexity of an iterative deepening search has
the same order of magnitude as the quantum tree search. The total costs of m iterations
with m measurements are

O(1) + O(B
1
2) + O(B

2
2) + O(B

3
2) + · · ·+ O(B

m
2) = O(B

m
2), (1)

the equation is based on the geometric series [9].
A second constraint is represented by the constant branching factor. If the branching

factor is not constant, the maximal branching factor Bmax must be used for the quantum
tree search [6].

1.3. Contribution

We present the quantum tree search qiskit implementation by examples from symbol-
ical artificial intelligence, the 3-puzzle, 8-puzzle and the ABC blocks world. Alternative
approaches were presented for how to solve the n-puzzle problem by quantum anneal-
ing [10–12]. Quantum annealing solves optimization problems by finding the global mini-
mum of a function [13–15] described by the problem Hamiltonian and the initial Hamilto-
nian (disordering Hamiltonian). The Hamiltonian describes the configuration of the system
by a hilly “surface” [16]. The Hamiltonian always decreases (or remains constant) as the
system evolves to its dynamical rule. Attractors are the local minima of the Hamiltonian
(energy function). Our implementation is based on the theoretical models of the quantum
tree search [6,9]. In these models, the operators are described by permutation matrices of
high dimension.

We indicate how the permutation matrices can be efficiently decomposed by quantum
gates. The decomposition leads to two principles of symbolical representation. Either
the position description (adjective) is fixed and the object descriptor moves (is changed)
or, in the reverse interpretation, the object descriptor is fixed and the position descriptor
(adjective) moves (is changed). We indicate how to decompose the permutation operator
that executes the rules by the two principles.

By simulating the quantum tree search, it becomes clear that the branching factor
is reduced by Grover’s amplification to the square root of the average branching factor
and not to the maximal branching factor as previously assumed [6].

2. Quantum Tree Search with Qiskit

We explain the principles of quantum tree search by a qiskit quantum production
system representing the 3-puzzle. In the next step, we generalize the qiskit description to
the 8-puzzle and to block world production systems. Qiskit is an open-source software
development kit (SDK) for working with quantum computers at the level of circuits and al-
gorithms. It provides tools for creating and manipulating quantum programs and running
them on prototype quantum devices on the IBM Quantum Experience or on simulators on
a local computer. It follows the quantum circuit model for universal quantum computation
and can be used for any quantum hardware that follows this model.

Qiskt provides different backend simulator functions, in our experiment we use
tow simulators.

• The qasm simulator promises to behave like an actual device of today, which is prone
to noise resulting from decoherence. It returns counts, which are a sampling of the

Mathematics 2022, 10, 3103 5 of 28

measured qubits that have to be defined in the circuit, which is much smaller in size
and will not increase in size exponentially as the number of qubits increases.

• The statevector simulator performs an ideal execution of qiskit circuits and returns
the final state vector off the simulator after application (all qubits). The state vector of
the circuit can represent the probability values that correspond to the multiplication
of the state vector by the unitary matrix that represents the circuit. The statevector
simulator will take longer than other simulation methods and requires more computer
memory since the state vector dimension grows exponentially with the number of
qubits with n = 2m (with m number of qubits).

2.1. 3-Puzzle

The 3-puzzle is composed of three numbered movable tiles in a 2× 2 frame (see Figure 4).

Figure 4. The desired configuration of the 3-puzzle.

One cell of the frame is empty, and because of this tiles can be moved around to form
different patterns [5]. The goal is to find a series of moves of tiles into the blank space
that changes the board from the initial configuration to a desired configuration. There
are twelve possible configurations (see Figure 5). For any of these configurations, only
two movements are possible. The movement of the empty cell is either a clockwise or
counter-clockwise movement.

Figure 5. There are twelve possible configurations. For any of these configurations, only two movements
are possible. The movement of the empty cell is either a clockwise or counter-clockwise movement.

The 3-puzzle is tractable and requires fewer qubits to encode.
There are four different objects: three cells and one empty cell. Each object can be

coded by two qubits (22) and a configuration of the four objects can be represented by a
register of eight qubits |x〉. In this representation, position description (adjective) is fixed
and the class descriptors moves. The control function of the quantum production system
needs to fulfill two requirements [17]:

• For a given board, configuration and a production rule determine the new board con-
figuration.

• To determine if the configuration is the goal configuration.

The new board configuration is determined by productions that are represented by
the function p. There are four possible positions of the empty cell. The input of the function
p is the current board configuration and a bit m that indicates whether the blank cell
should perform a clockwise (m = 1) or counter-clockwise movement (m = 0). Together,
there are 8 possible mappings, which are represented by 8 productions. There are four
possible positions of the empty cell times two possible moves. For simplicity, we represent
the mappings of the function p by a unitary permutation matrix L(1). For each mapping,
the empty tile can have three different neighbors. It follows that, in total, there are 24 = 8× 3
instantiated rules. They correspond to permutations in the unitary permutation matrix
L(1). The matrix acts on the 8 + 1 qubits with m ∈ B1 and x ∈ B8

L(1) · |m〉|x〉 = |m〉|γ〉. (2)

Mathematics 2022, 10, 3103 6 of 28

The L(1) matrix represents the long-term memory of our production system.
The function o(x), called oracle, determines if the configuration is the goal configuration.

o(x) = o(x0, x1, x2, x3, x4, x5, x6, x7︸ ︷︷ ︸
board con f iguration

) =

{
1 if goal
0 otherwise.

(3)

Function o(x) oracle is represented by a unitary operator T (for target). T acts on the
8 + 1 qubits, with x ∈ B8 and c ∈ B1 being the auxiliary qubit

T · |x〉|c〉 = |x〉|o(x)⊕ c〉. (4)

2.1.1. Decomposition of Unitary Operators

An important open question is whether the permutation matrix L(1) of dimension
512 = 29 can be decomposed. It is possible to determine if a permutation is tensor decom-
posable and to chose an efficient tensor decomposition if present [5,18]. An alternative less
costly representation of the long-term memory can be realized by a uniformly polynomial
circuit that describes the function p.

2.1.2. Representation

There are four different objects: three cells and one empty cell. Each object can be
coded by two qubits (22), and a configuration of the four objects can be represented by
a register of eight qubits |x〉. The object 1 is represented by 00, 2 is represented by 01, 3
is represented by 10 and empty space x is represented by 11. The state is represented by
8 qubits x0, x1, x2, x3, x4, x5, x6, x7, and the state of the Figure 4 is represented by the qubits
10 11 00 01, see Figure 6.

Figure 6. 3-puzzle coding representing the state of the Figure 4. The four objects are by a register of
eight qubits. We indicate the state, its representation and below the position of the 8 qubits. In this
representation, position description (adjective) is fixed and the class descriptors moves.

In this representation, position description (adjective) is fixed and the class descriptors
moves. In the qiskit circuit, all qubits before the computation are in the state 0, so the state
of the Figure 6 is prepared with the NOT gate with the following commands of the qubits 0 to 7:

qc.x(0)
qc.x(4)
qc.x(5)
qc.x(7)

In the 3-puzzle task, we have four different rules defined by the position of the empty
space. Each of the rules has two instantiations, either moving the empty space clockwise or
a counter-clockwise movement. We recognize the four rules and indicate the presence of
a rule by a qubit. We use four qubits that indicate the presence of the four rules and call
them the trace. We need the trace represented by the four qubits, since we cannot delete
the information and we cannot un-compute the output back. By un-computing, we would
redo the rules. Additionally, we require a flag represented by a qubit that indicates to us
if the rule with the corresponding instantiation can be executed or not. Finally, we need

Mathematics 2022, 10, 3103 7 of 28

a qubit that represents the path descriptor that will be present by superposition using a
Hadamard gate. Altogether, we need fourteen qubits, and we define the following circuit:

qc = QuantumCircuit(14,8)
#State Preparation 0-7
qc.x(0)
qc.x(4)
qc.x(5)
qc.x(7)
#Flag represented by qubit 8
#1St Trace represented by qubits 9-12
#1St Path descriptor in superposition
qc.h(13)
qc.barrier()

QuantumCircuit(14, 8) defines a quantum circuit with the name qc that uses 14 qubits
and measures 8 qubits.

2.1.3. Rules and Trace
The if part of the rules is implemented by the Toffoli gate, also called the ccX gate

(CCNOT gate, controlled controlled not gate), it recognizes the position of the empty space
and indicates it by setting one qubit of the four qubits 9 to 11 to one.

#If part of rules marked in trace
qc.ccx(0,1,9)
qc.ccx(2,3,10)
qc.ccx(4,5,11)
qc.ccx(6,7,12)

The execution of the rules uses the Fredkin gate, also called controlled swap (CSWAP)
gate, using the trace information and the path descriptor setting the flag qubit (qubit 8)
to indicate if the rule is going to be executed. The reset is performed by un-computing,
by repeating the operation to set the flag again in the state zero. We change the path
descriptor by the NOT gate and execute the second instantiation of the rule depending
on the trace value; the qc.barrier() will separate the representation in the circuit (see the
Appendix A.1.1 3-Puzzle Rules), resulting in the quantum circuit indicated in the Figure 7.

Figure 7. Quantum circuit representing the generation of two instantiations of rules in the 3-puzzle
task of one depth search.

Mathematics 2022, 10, 3103 8 of 28

By performing the simulation

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

we obtain the following representation of the two generated new states represented by
the histogram in the Figure 8.

Figure 8. Two generated new states represented by eight qubits using the qasm simulator.

2.2. Search of Depth Two

Grover’s amplification cannot be applied to fewer than four states. A search of depth
one for the 3-puzzle results in two states and a search of depth two in four states. The
operator L(2) that describes the search of depth two is represented as

L(2) · |m2, m1〉|x〉 = |m2, m1〉|γ〉, (5)

using two qubits, m2, m1, representing the path descriptor. The unitary operator T repre-
sents the oracle function o(x) that determines if the configuration is the goal configuration

T · |x〉|c〉 = |x〉|o(x)⊕ c〉.

For the function o(x), the solution is encoded by (−1)o(x), the sign of the amplitude.
If the path descriptor is represented by m qubits, it can represent n = 2m states. To see why
the the solution is encoded by (−1)o(x), we indicate the derivative. The auxiliary qubit c is
set to one, and the path descriptor is represented by m qubits |0⊗m〉. First, we set the path
descriptor and the auxiliary qubit in superposition by the Hadamard gate for m + 1 qubits
Hm+1, and then we execute the unitary operator T

T · Hm+1 · |0⊗m〉|1〉 =

= 1√
2m+1
· ∑

x∈Bm
T · |x〉|0〉 − 1√

2m+1
· ∑

x∈Bm
T · |x〉|1〉

= 1√
2m+1
· ∑

x∈Bm
|x〉|o(x)⊕ 0〉 − 1√

2m+1
· ∑

x∈Bm
|x〉|o(x)⊕ 1〉

= 1√
2m+1
·
(

∑
x∈Bm

|x〉|o(x)⊕ 0〉 − ∑
x∈Bm

|x〉|o(x)⊕ 1〉
)

.

(6)

There are four possible cases with the path descriptor |ξ〉 being the solution:

T · |x〉|0〉 = |x〉|o(x)⊕ 0〉 = |x〉|0〉,

T · |x〉|1〉 = |x〉|o(x)⊕ 1〉 = |x〉|1〉,

T · |ξ〉|0〉 = |ξ〉| f (ξ)⊕ 0〉 = |ξ〉|1〉,

T · |ξ〉|1〉 = |ξ〉| f (ξ)⊕ 1〉 = |ξ〉|0〉.

Mathematics 2022, 10, 3103 9 of 28

It follows that

= 1√
2m+1
·
(

∑
x 6=ξ
|x〉|0〉+ |ξ〉|1〉 − ∑

x 6=ξ
|x〉|1〉 − |ξ〉|0〉

)

1√
2m+1
·
(

∑
x 6=ξ
|x〉(|0〉 − |1〉) + |ξ〉(|1〉 − |0〉)

)

= 1√
n ∑

x∈Bm
(−1)o(x) · |x〉 ⊗

(
|0〉−|1〉√

2

)
.

(7)

The value of the function o(x) is encoded by (−1)o(x). We can set the auxiliary qubit
c =

(
|0〉−|1〉√

2

)
to zero by the Hadamard gate. For simplicity, we ignore the trace and the

flag qubit and we obtain

(I2 ⊗ T) · (L(2)⊗ I1) · (L(2)⊗ I1) · |m2, m1, x0, x1, x2, x3, x4, x5, x6, x7, c〉

(I2 ⊗ T) · (L(2)⊗ I1)
2 · |m2, m1, x1, x2, x3, x4, x5, x6, x7, x8, c〉.

(8)

The operator that describes the application of the production rules for the 3-puzzle for
the depth search t, and a test condition in order to determine if the final board is a target
configuration board, is represented with

L(t) · |mt, · · · , m1〉|x〉 = |mt, · · · , m1〉|γ〉

and
|κt〉 = |mt, · · · , m1〉

as
(It ⊗ T) · (L(t)⊗ I1)

t · |κt, x1, x2, x3, x4, x5, x6, x7, x8, c〉. (9)

With depth search t = 2, an additional four qubits are needed to represent the new
trace, one additional qubit for the path descriptor of the depth two and one auxiliary qubit
for the oracle operation. The quantum circuit is represented by 20 qubits. We measure
the path descriptor represented by two qubits 13 and 18.

qc = QuantumCircuit(20,2)
#State Preparation 0-7
Flag bit 8
#1St Trace 9-12
#1St Path Descriptor in superposition
qc.h(13)
#1St Trace 14-17
#2th Path Descriptor in superposition
qc.h(18)
#Aux Bit c indicating the solution is negated
and put in superposition
qc.x(19)
qc.h(19)

In the following, we use the qiskit de f function to define the oracle using the MCXGate
command. The MCXGate is a multi-controlled X (Toffoli) gate. A multi-controlled X gate
is composed of a simple (Toffoli) gate and temporary work registers. It is represented in
the qiskit circuit library.

def oracle():
qc = QuantumCircuit(20)
gate = MCXGate(4)
#Goal Configurations
qc.append(gate,[2, 3, 4, 7, 19])
#Alternative Goal Configurations

Mathematics 2022, 10, 3103 10 of 28

#qc.append(gate,[0, 2, 3, 5, 19])
#Grover in depth two cannot resolve this since
two solutions out of four are marked.
#qc.append(gate,[0, 4, 5, 7, 19])
qc.name="O"
return qc

In quantum computation, it is not possible to reset the information to the pattern
representing the initial state. Instead, we un-compute the output back to the input before
applying the amplification step of the Grover’s algorithm. Because of the unitary evolution,
it follows that

((L(t)⊗ I1)
∗)t · (It ⊗ T) · (L(t)⊗ I1)

t · |κt, x, c〉 (10)

the computation can be undone and the corresponding path is marked by a negative sign
using the auxiliary qubit c.

We use the qiskit inverse command inverse() to perform the inverse operation

def rules1_inv():
qc=rules1()
qc_inv=qc.inverse()
qc_inv.name="R1†"
return qc_inv

The Grover’s amplification is applied to the two qubits, 13 and 16, representing
the path descriptor

def Grover():
qc = QuantumCircuit(19)
#Diffusor
qc.h([13,18])
qc.z([13,18])
qc.cz(13,18)
qc.h([13,18])
qc.name="G"
return qc

The quantum circuit using the defined functions is represented in Appendix A.1.2
3-Puzzle Task and indicated in the Figure 9.

Figure 9. The quantum circuit of 3-puzzle task of the depth search 2. The circuits depth in the number
of quantum gates is 12. The path descriptor has four possible states represented by two qubits. One
marked state results in a certain solution 01 off the path descriptor by the qasm simulator after one
iteration, since for one marked qubit one requires only one rotation.

Mathematics 2022, 10, 3103 11 of 28

2.2.1. Search Depth Three
A search of depth three is described by a path descriptor of three qubits. The Grover

amplification acts on the qubits 13, 18 and 23 that describe the path descriptor resulting
in eight states.

def Grover():
qc = QuantumCircuit(24)
#Diffusor
qc.h([13,18,23])
qc.x([13,18,23])
qc.h(13)
qc.ccx(18,23,13)
qc.h(13)
qc.x([13,18,23])
qc.h([13,18,23])
qc.name="G"
return qc

The circuit is indicated in Figure 10.

Figure 10. The quantum circuit for the 3-puzzle task of the depth search 3. Since we are using the
statevector simulator, we do not need any measurement since the simulator determines the exact
probabilities of each qubit. The circuits depth in the number of quantum gates is 13. The depth of a
circuit is a metric that calculates the longest path between the data input and the output. The path
descriptor has eight possible states represented by three qubits. One marked state results in a solution
after one iteration indicated in the histogram of Figure 11.

The statevector simulator without any measurements represents all probabilities of all
qubits.

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

The circuit’s depth in the number of quantum gates is 13. The depth of a circuit is a
metric that calculates the longest path between the input data and the output data. The path
descriptor has eight possible states represented by three qubits. One marked state results
after one iteration is indicated in the histogram of Figure 11. One marked state resulted
after one iteration is indicated with a probability value 0.781 and the path descriptor 001.
The path descriptor can be verified by measurement using the qasm simulator as well.

Mathematics 2022, 10, 3103 12 of 28

Figure 11. One marked state results after one iteration is indicated with a probability value 0.781
and the path descriptor 001 represented by the qubits 13, 18 and 23 by the statevector simulator. All
other states are zero due to un-computation. The path descriptor can be verified by measurement
using the qasm simulator of the qubits representing the path descriptor as well.

2.2.2. Search Depth Three with Two Iterations

We apply the U3−puzzle operator ignoring the trace for simplicity for the depth t
resulting in 2t states represented by the path descriptor

U3−puzzle = ((L(t)⊗ I1)
∗)t · (It ⊗ T) · (L(t)⊗ I1)

t (11)

With Grover amplification on t qubits representing the path descriptor by the unitary
operator Gt

Γt := (Gt ⊗ I10) ·U3−puzzle. (12)

With r iterations

Γr
t =

r

∏
t=1

Γt (13)

and determine the solution by the measurement of the register that represents the path
descriptor. In our case t = 3 and r = 2, with Γ2

3 resulting in the circuit represented in the
Figure 12. One marked state results after two iterations are indicated in the histogram of
Figure 13. One marked state results after two iterations are indicated with a probability
value of 0.945 and the path descriptor 001.

Figure 12. The quantum circuit for the 3-puzzle task of the depth search three with two iterations.
Since we are using the statevector simulator, we do not need any measurement since the simulator
determines the exact probabilities of each qubit. The circuits depth in the number of quantum gates is
25. The path descriptor has eight possible states represented by three qubits. An important operation
before the second iteration is the setting of the auxiliary qubit 24 in superposition by a Hadamard
gate. One marked state results in a solution after two iteration indicated in the histogram of Figure 13.

Mathematics 2022, 10, 3103 13 of 28

Figure 13. One marked state results after one iteration is indicated with a probability value 0.945 by
the statevector simulator. This is the optimum theoretical value for one marked solution using Grover’s
amplification of eight state. If we apply another rotation, the theoretical probability would decrease.

The 3-puzzle quantum production system highlighted the principles of quantum tree
search and quantum production systems. It does not give any true computational speed up
due to the simplicity of the problem.

3. Extending to 8-Puzzle

For 8-puzzle, there are 9 different objects: eight cells and one empty cell. Each object
has to be represented by four 4 qubits since 3 qubits allow only to represent 23 = 8 different
states. The object 1 is represented by 001, 2 is represented by 010 and 3 is represented
by 011, and we continue the representation as binary numbers with 8 represented as
1000. We represent the empty space x by 1111. The state is represented by 36 qubits
x0, x1, x2, x3, x4, x5, x6, x7, · · · , x35, see Figure 14.

Figure 14. 8-puzzle coding. The 9 objects are by a register of 36 qubits. We indicate the state, its
representation and below the position of the 36 qubits. In this representation, position description
(adjective) is fixed and the class descriptors move.

The empty cell can be present in 9 different positions. The empty cell can move either
up, down, left or right. The new board configuration is determined by the function p. The in-
put of the function p is the current board configuration and two bits m = m1, m2 (qubits
46 and 47) indicating whether the blank cell should perform move right (m = 0 = |00〉),
left (m = 1 = |01〉), up (m = 2 = |10〉) or down (m = 3 = |11〉). There are 36 qubits to
represent the state and 9 qubits for the trace, together with the auxiliary qubit 49 qubits are
represented by the quantum circuit.

Mathematics 2022, 10, 3103 14 of 28

qc = QuantumCircuit(49,2)
#State Preparation 0-35
#N3
qc.x(0)
qc.x(1)
#2
#3
..
..

#Flag 36
#1St Trace 37-45
#1St Path Descriptor in superposition 46, 47
qc.h(46)
qc.h(47)
#Preparation of Aux
qc.x(48)
qc.h(48)

In case the empty cell is in the center, four movements are possible. For a cell in the
edge, only three movements are possible, for the corner, only two movements are possible

def if_rules():
qc = QuantumCircuit(46)
#Marke the trace indicate the rule group through trace
gate = MCXGate(4)
#Empty Space in corner, 2 movements
qc.append(gate, [0, 1, 2, 3, 37])
#Empty Space in edge, 3 movements
qc.append(gate, [4, 5, 6, 7, 38])
#Empty Space in corner, 2 movements
qc.append(gate, [8, 9, 10, 11, 39])
#Empty Space in edge, 3 movements
qc.append(gate, [12, 13, 14, 15, 40])
#Empty Space in center, 4 movements
qc.append(gate, [16, 17, 18, 19, 41])
#Empty Space in edge, 3 movements
qc.append(gate, [20, 21, 22, 23, 42])
#Empty Space in corner, 2 movements
qc.append(gate, [24, 25, 26, 27, 43])
#Empty Space in edge, 3 movements
qc.append(gate, [28, 29, 30, 31, 44])
#Empty Space in corner, 2 movements
qc.append(gate, [32, 33, 34, 35, 45])
qc.name="IF"
return qc

For the empty space in the center, there are four instantiations corresponding to the
four movements

• For the path descriptor 00, move right 16, 17, 18, 19→ 12, 13, 14, 15.
• For the path descriptor 00, move left 16, 17, 18, 19→ 20, 21, 22, 23.
• For the path descriptor 00, move up 16, 17, 18, 19→ 28, 29, 30, 31.
• For the path descriptor 00, move down 16, 17, 18, 19→ 4, 5, 6, 7.

See Appendix A.2.1 Puzzle Rules1 8-Puzzle. For the empty space in the edge, there are
four instantiations corresponding to the three movements. The representation if performed
in the same way as before, in our example, the empty space is at the position 12, 13, 14, 15.

• For the path descriptor 00, move up 12, 13, 14, 15→ 24, 25, 26, 27.
• For the path descriptor 01, move down 12, 13, 14, 15→ 0, 1, 2, 3.
• For the path descriptor 10, move left 12, 13, 14, 15→ 16, 17, 18, 19.

Mathematics 2022, 10, 3103 15 of 28

• For the path descriptor 11, move left 12, 13, 14, 15→ 16, 17, 18, 19.

The only difference is that the rule move left is repeated twice. For the empty space in
the corner, there are four instantiations corresponding to the two movements. The repre-
sentation is performed in the same way as before, in our example, the empty space is at the
position 0, 1, 2, 3.

• For the path descriptor 00, move up 0, 1, 2, 3→ 12, 13, 14, 15.
• For the path descriptor 01, move up 0, 1, 2, 3→ 12, 13, 14, 15.
• For the path descriptor 10, move left 0, 1, 2, 3→ 4, 5, 6, 7.
• For the path descriptor 11, move left 0, 1, 2, 3→ 4, 5, 6, 7.

The rule move left and the rule move left are repeated twice. Simulating 36 qubits
requires higher memory capacity, we cannot use the statevector simulator or a search depth
of two due to memory constraints. We can measure the path descriptor after applying
the function rules1 8 puzzle, see Figure 15. These constraints can be overcome by higher
memory capacity.

Figure 15. The quantum circuit for the 9-puzzle task of the depth search 1. Simulating 36 qubits
requires higher memory capacity, we cannot use the statevector simulator or a search depth of two due
to memory constraints. The path descriptor has four possible states represented by two qubits and is
measured after applying the function rules1.

Mathematics 2022, 10, 3103 16 of 28

Number of Iterations

For 8-puzzle Bmax = 4, Bmin = 2 and Baverage

Baverage =
4 · 1 + 2 · 4 + 3 · 4

9
= 2.6667. (14)

Naïvely, we would assume that the branching factor is reduced by Grover’s amplifica-
tion to √

Bmax =
√

4 = 2 (15)

However, this is not the case in our coding strategy. With growing value n, the
branching factor is reduced by Grover’s amplification to√

Baverage =
√

2.6667 = 1.63299 (16)

For k solutions, the probability of measuring a state that represents one solution of k
solutions is related to the number r of iterations of the Grover’s operator. The probability
of seeing one solution should be as close as possible to 1, and the number of iterations r
should be as small as possible. After r iterations, the probability of measuring a solution is
nearly one, with m being the number of qubits describing the path descriptor [19,20]

r =

⌊
π

4
·
√

2m

k
− 1

2

⌋
. (17)

The number of iterations r is the largest integer not greater than the computed value.
Simplified, we can state that

r =

√
(Bmax)

m

k
(18)

The value of r depends on the relation of m versus k. For the depth m, there are k
solutions with

k =

(
Bmax

Baverage

)m
(19)

it follows
r =

√(
Baverage

)m (20)

and the branching factor is reduced by Grover’s amplification to
√

Baverage√
Baverage =

√
2.6667 = 1.63299.

4. Blocks World

The blocks world is a planning domain in artificial intelligence [1]. The blocks can be
placed at the table and picked up and set down on a table or another block, and the goal is
to build one or more vertical stacks of blocks. Only one block may be moved at a time and
any blocks that are under another block cannot be moved. There are three different types
of blocks. They differ by attributes such as color (red, green and blue) or marks, but not by
form. In AI, they are traditionally called A, B, C blocks [4].

4.1. Representation

The class descriptor is fixed and the position descriptor (adjective) moves. It is reversed
as in the puzzle examples, since the reverse in this case is a more economic representation
requiring 9 qubits, three qubits for each block (see Figures 16 and 17).

Mathematics 2022, 10, 3103 17 of 28

Figure 16. Three qubits (bits) for each block represent its state. The first qubit equaling one indicates
that the block is on top of one other block. The second qubit equaling one indicates that the block is
on top of two other blocks. The third qubit equaling one indicates that the block is clear with nothing
on top of it.

Figure 17. Representing a state of A, B, C blocks by 9 qubits (bits). The class descriptor is fixed and
the position descriptor (adjective) moves (is changed). Three qubits (bits) for each block represent its
state. Their value changes indicating different states. On top, we see the three A, B, C blocks and the 9
positions of the qubits by the index from 0 to 9, x indicates that the qubit is equal to one. Below, we
represent the corresponding state and the corresponding binary string.

The architecture uses 27 qubits, 9 for representation of the state, one for flag and 13
qubits to represent the 13 different categories of rules. The path descriptor for the depth
search one is represented by three qubits, since the number of maximal instantiations is six.

qc = QuantumCircuit(27)
#State Preparation 0-8
Flag 9
#1st Trace (ten) 10-22 Rule Classes
#1st Path descriptor represented by three qubit
qc.h(23)
qc.h(24)
qc.h(25)
#Preparation of Aux
qc.x(26)
qc.h(26)

The architecture is indicated in the Figure 18.

Mathematics 2022, 10, 3103 18 of 28

Figure 18. The quantum circuit for the ABC blocks task of the depth search 1. Since we are using
the statevector simulator, we do not need any measurement since the simulator determines the exact
probabilities of each qubit. The circuit’s depth in the number of quantum gates is 13. The path
descriptor has eight possible states represented by three qubits.

All blocks on the floor are represented as:

ef state_floor():
qc = QuantumCircuit(9)
#All Blocks are on floor
#BLOCK A qubits 0-2
qc.x(2)
#BLOCK B qubits 3-5
qc.x(5)
#BLOCK C qubits 6-8
qc.x(8)
qc.name="S_FL"
return qc

Different classes of rules are recognized during the i f _rules() function. The class all
blocks on the floor has one combination (see Figure 19), the class tower appears in six
different combinations (see Figure 20) as well as the class small tower and a block on table
(such as BC tower and block A, see Figure 21).

Figure 19. The class all blocks on the floor has one combination.

Figure 20. The class tower appears in six different combinations.

Mathematics 2022, 10, 3103 19 of 28

Figure 21. The class small tower and a block on the table appears in six different combinations.

def if_rules():
qc = QuantumCircuit(23)
gate = MCXGate(3)

#All blocks on table
qc.append(gate, [2, 5, 8, 10])

#ABC tower
qc.append(gate, [1, 2, 3, 11])
#ACB tower
qc.append(gate, [1, 2, 6, 12])
#BAC tower
qc.append(gate, [4, 5, 1, 13])
#BCA tower
qc.append(gate, [4, 5, 6, 14])
#CAB tower
qc.append(gate, [1, 7, 8, 15])
#CBA tower
qc.append(gate, [4, 7, 8, 16])

#BC tower and block A
qc.append(gate, [2, 5, 3, 17])
#BA tower and block C
qc.append(gate, [8, 5, 3, 18])
#CA tower and block B
qc.append(gate, [8, 6, 5, 19])
#CB tower and block A
qc.append(gate, [8, 6, 2, 20])
#AC tower and block B
qc.append(gate, [0, 2, 5, 21])
#AB tower and block C
qc.append(gate, [0, 2, 8, 22])

qc.name="IF"
return qc

The class tower, such as for example the ABC tower, has just one instantiation; the class
small tower and a block on the table (such as BC tower and block A) have three instantia-
tions. All blocks on the table have six different instantiations, for each block, there are two
rules, see the Appendix A.3.1 for the qiskit listing for rules floor.

The class tower (such as for example the ABC tower) appears in six different combi-
nations. For each combination, there is only one instantiation that is represented through
all eight states:

Mathematics 2022, 10, 3103 20 of 28

def rules_tw():
qc = QuantumCircuit(17)
#There is a tower,
#6 different towers indicated by 11,12,..,16
qc.cswap(11,1,5)
qc.cswap(12,1,8)
qc.cswap(13,2,4)
qc.cswap(14,2,8)
qc.cswap(15,2,7)
qc.cswap(16,5,7)
qc.name="R_TW"
return qc

There are six combinations of the class small tower and a block on the table (such as
BC tower and block A). Each of these combination has three instantiations. Since there
are eight possible states represented by the path descriptor for each combination, the three
instantiations are executed twice with two additional instantiations. See Appendix A.3.2
for the qiskit listing for rules tw bl.

One solution is marked, after one iteration of Grover’s amplification, the probabilities
of measuring a state using the statevector simulator are indicated in the Figure 22 and The
case in which three different path descriptors lead to the same solution is indicated in the
Figure 23.

Figure 22. One marked state results in a solution after one iteration indicated for the initial state all
blocks on the floor and the goal states AC and B. The solution is described by the path descriptor by
the qubits 23, 24 and 25 with the binary value 101, the fifth branch. There are 8 branches described by
8 possible transitions 0, 1 · · · 7.

Mathematics 2022, 10, 3103 21 of 28

Figure 23. Three marked states results in a solution after one iteration indicated for the initial state
BC and A and the goal states AC and B by the statevector simulator.

4.2. Number of Iterations

For A, B, C blocks Bmax = 6, Bmin = 1 and Baverage

Baverage =
6 · 1 + 1 · 6 + 3 · 6

13
= 2.30769. (21)

Naïvely, we would assume that the branching factor is reduced by Grover’s amplifica-
tion to the number 8 represented by three qubits

√
8 = 2.82843 (22)

With growing value m, the branching factor is reduced by Grover’s amplification to√
Baverage =

√
2.30769 = 1.51911 (23)

For k solutions, the probability of measuring a state that represents one solution of k
solutions is related to the number r of iterations of the Grover’s operator. Simplified, we
can state that

r =

√
(8)m

k
(24)

The value of r depends on the relation of m versus k. For the depth m

k =

(
8

Baverage

)m
(25)

it follows

Mathematics 2022, 10, 3103 22 of 28

r =
√(

Baverage
)m (26)

and the branching factor is reduced by Grover’s amplification to
√

Baverage = 1.5191.

5. Conclusions

The objects are represented by symbols and adjectives. The object is always present
in the world and only its adjectives, such as the position value, change by permutations.
Two principles of representations were presented. Either the position description (adjective)
is fixed and the class descriptors moves/is changed or, in the reverse interpretation, the class
descriptor is fixed and the position descriptor (adjective) moves/is changed. Depending
on the task, one representation of the two is more economic than the other. We have shown
by three examples how to implement a quantum tree search algorithm using qiskit using
simulation. The efficient implementation is based on the state representation and the trace
that allows a deeper search. We have shown as well that the branching factor is reduced by
Grover’s amplification to the square root of the average branching factor.

Funding: This work was supported by national funds through FCT, Fundação para a Ciência e a
Tecnologia, under project UIDB/50021/2020.

Institutional Review Board Statement: This article does not contain any studies with human partic-
ipants or animals performed by any of the authors.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this paper are provided within the main body of
the manuscript.

Conflicts of Interest: The author declares no conflict of interest.The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Appendix A. Qiskit Code

Appendix A.1. 3-Puzzle

Appendix A.1.1. 3-Puzzle Rules
#If then rule (1) for empty at 0, 1 -> 4, 5 or 2, 3
#Search empty state with the descriptor
qc.ccx(9,13,8)
#Execute 1st then part by moving the empty space clockwise
qc.cswap(8,0,4)
qc.cswap(8,1,5)
#Secod then part with changed descriptor
#Reset Flag
qc.ccx(9,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(9,13,8)
#Execute 2th then part by moving the empty space anti-clockwise
qc.cswap(8,0,2)
qc.cswap(8,1,3)
#Reset Flag
qc.ccx(9,13,8)
#Restore descriptor
qc.x(13)
qc.barrier()

The second rule is represented accordingly.

#If then rule (2) for empty at 2, 3 -> 6, 7 or 0, 1
#Search empty state with the descriptor

Mathematics 2022, 10, 3103 23 of 28

qc.ccx(10,13,8)
#Execute 1st then part
qc.cswap(8,2,6)
qc.cswap(8,3,7)
#Secod then part with changed descriptor
#Reset Flag
qc.ccx(10,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(10,13,8)
#Execute 2th then part
qc.cswap(8,0,2)
qc.cswap(8,1,3)
#Reset Flag
qc.ccx(10,13,8)
#Restore descriptor
qc.x(13)
qc.barrier()

The third and the fourth rules are represented in the same way. Finally, we measure
the state represented by the 8 qubits.

qc.measure(0,0)
qc.measure(1,1)
qc.measure(2,2)
qc.measure(3,3)
qc.measure(4,4)
qc.measure(5,5)
qc.measure(6,6)
qc.measure(7,7)

Appendix A.1.2. 3-Puzzle Task
qc = QuantumCircuit(20,2)
#State Preparation 0-7
Flag bit 8
#1St Trace 9-12
#1St Path Descriptor in superposition
qc.h(13)
#1St Trace 14-17
#2th Path descriptor in superposition
qc.h(18)
#Aux bit c indicating the solution is negated and
put in superposition
qc.x(19)
qc.h(19)
qc.barrier()
#Preperation of state
qc.append(state_A(),range(8))
#Depth1
qc.append(rules1(),range(14))
#Depth2
qc.append(rules2(),range(19))
#Oracle
qc.append(oracle(),range(20))
#Depth2
qc.append(rules2_inv(),range(19))
#Depth1
qc.append(rules1_inv(),range(14))
#Redo Preperation
qc.append(state_A(),range(8))

Mathematics 2022, 10, 3103 24 of 28

qc.barrier()
#Redo Superposition of Aux Bit
qc.h(19)
qc.barrier()
qc.append(Grover(),range(19))
qc.measure(13,0)
qc.measure(18,1)

Appendix A.2. 8-Puzzle

Appendix A.2.1. Rules1 8-Puzzle
def rules1():
qc = QuantumCircuit(48)
#Flag 36
#Path Descriptor 46, 47
#Trace 37-45
flag_gate = MCXGate(3)

#If then rule move right, for~empty at 16, 17, 18, 19 -> 12, 13, 14, 15
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,12)
qc.cswap(36,17,13)
qc.cswap(36,18,14)
qc.cswap(36,19,15)
#Clear Flag
qc.append(flag_gate, [41, 46, 47, 36])

#If then rule move left, for~empty at 16, 17, 18, 19 -> 20, 21, 22, 23
qc.x(46)
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,20)
qc.cswap(36,17,21)
qc.cswap(36,18,22)
qc.cswap(36,19,23)
#Clear Flag
qc.append(flag_gate, [41, 46, 47, 36])
qc.x(46)

#If then rule move up, for~empty at 16, 17, 18, 19 -> 28, 29, 30, 31
qc.x(47)
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,28)
qc.cswap(36,17,29)
qc.cswap(36,18,30)
qc.cswap(36,19,31)
#Clear Flag
qc.append(flag_gate, [41, 46, 47, 36])

qc.x(47)

#If then rule move down, for~empty at 16, 17, 18, 19 -> 4, 5, 6, 7
qc.x(46)
qc.x(47)
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,4)
qc.cswap(36,17,5)

Mathematics 2022, 10, 3103 25 of 28

qc.cswap(36,18,6)
qc.cswap(36,19,7)
#Clear Flag
qc.append(flag_gate, [41, 46, 47, 36])
qc.x(47)
qc.x(46)

qc.name="R1"
return qc

Appendix A.3. ABC Blocks World

Appendix A.3.1. Rules Floor
def rules_floor():
qc = QuantumCircuit(26)
gate4 = MCXGate(4)
qc.append(gate4, [10, 23, 24, 25, 9])
#All blocks on~floor

Moving A
#A on B
qc.cswap(9,0,5)
#Secod then part with changed descriptor
#Reset WM (Working Memory)
qc.append(gate4, [10, 23, 24, 25, 9])
#Fetch second superposition
qc.x(23)
qc.append(gate4, [10, 23, 24, 25, 9])
#A on C
qc.cswap(9,0,8)
#Reset WM
qc.append(gate4, [10, 23, 24, 25, 9])
#Restore descriptor
qc.x(23)

Moving B
qc.x(24)
qc.append(gate4, [10, 23, 24, 25, 9])
B on A
qc.cswap(9,2,3)
#Secod then part with changed descriptor
#Reset WM
qc.append(gate4, [10, 23, 24, 25, 9])
qc.x(24)
#Fetch second superposition
qc.x(23)
qc.x(24)
qc.append(gate4, [10, 23, 24, 25, 9])
#B on C
qc.cswap(9,3,8)
#Reset WM
qc.append(gate4, [10, 23, 24, 25, 9])
#Restore descriptor
qc.x(24)
qc.x(23)

Moving C
qc.x(25)
qc.append(gate4, [10, 23, 24, 25, 9])

Mathematics 2022, 10, 3103 26 of 28

#C on A
qc.cswap(9,6,2)
#Secod then part with changed descriptor
#Reset WM
qc.append(gate4, [10, 23, 24, 25, 9])
qc.x(25)
#Fetch second superposition
qc.x(25)
qc.x(23)
qc.append(gate4, [10, 23, 24, 25, 9])
C on B
qc.cswap(9,6,5)
#Reset WM
qc.append(gate4, [10, 23, 24, 25, 9])
#Restore descriptor
qc.x(23)
qc.x(25)

#We have only six rules, but~eight possible paths!!!
#To get rid of the initial state we will move C again!!!

Moving C Again
qc.x(24)
qc.x(25)
qc.append(gate4, [10, 23, 24, 25, 9])
A clear goes to high of B
qc.cswap(9,6,2)
#Secod then part with changed descriptor
#Reset WM
qc.append(gate4, [10, 23, 24, 25, 9])
qc.x(25)
qc.x(24)
#Fetch second superposition
qc.x(23)
qc.x(24)
qc.x(25)
qc.append(gate4, [10, 23, 24, 25, 9])
C clear goes to high of B
qc.cswap(9,6,5)
#Reset WM
qc.append(gate4, [10, 23, 24, 25, 9])
#Restore descriptor
qc.x(25)
qc.x(24)
qc.x(23)

qc.name="R_FL"
return qc

Appendix A.3.2. Rules tw bl
def rules_tw_bl():
qc = QuantumCircuit(26)
gate4 = MCXGate(4)
#Flag 9
#Path Descriptor 23, 24, 25

#The three instantiations
#BC tower and block A
#qc.append(gate, [2, 5, 3, 17])

Mathematics 2022, 10, 3103 27 of 28

#Put it on Floor
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,3,8)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
#Make Tower BCA
qc.x(23)
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,5,1)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
qc.x(23)
#Move C on the other block A
qc.x(24)
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,2,8)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
qc.x(24)

#Repeat three instantiations again for the states 4-6
of the path descriptor
#Put it on Floor
qc.x(24)
qc.x(23)
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,3,8)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
qc.x(24)
qc.x(23)
#Make Tower BCA
qc.x(25)
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,5,1)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
qc.x(25)
#Move C on the other block A
qc.x(25)
qc.x(23)
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,2,8)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
qc.x(25)
qc.x(23)

#Repeat two instantiations again for the states 7-8
of the path descriptor
#Make Tower BCA
qc.x(25)
qc.x(24)
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,5,1)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
qc.x(25)

Mathematics 2022, 10, 3103 28 of 28

qc.x(24)
#Move C on the other block A
qc.x(25)
qc.x(24)
qc.x(23)
qc.append(gate4, [17, 23, 24, 25, 9])
qc.cswap(9,2,8)
#Clear WM
qc.append(gate4, [17, 23, 24, 25, 9])
qc.x(25)
qc.x(24)
qc.x(23)

#In the same way
#BA tower and block C
#CA tower and block B
#CB tower and block A
#AC tower and block B
#AB tower and block C
.....
qc.name="R_TB"
return qc

References
1. Nilsson, N.J. Principles of Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1982.
2. Anderson, J.R. Cognitive Psychology and Its Implications, 4th ed.; W. H. Freeman and Company: New York, NY, USA, 1995.
3. Brownston, L.; Farell, R.; Kant, E.; Martin, N. Programming Expert Systems in OPS5: An Introduction to Rule-Based Programming;

Addison-Wesley: Boston, MA, USA, 1985.
4. Luger, G.F.; Stubblefield, W.A. Artificial Intelligence, Structures and Strategies for Complex Problem Solving, 3rd ed.; Addison-Wesley:

Boston, MA, USA, 1998.
5. Wichert, A. Principles of Quantum Artificial Intelligence: Quantum Problem Solving and Machine Learning, 2nd ed.; World Scientific:

Porto Salvo, Portugal, 2020.
6. Tarrataca, L.; Wichert, A. Tree search and quantum computation. Quantum Inf. Process. 2011, 10, 475–500. [CrossRef]
7. Korf, R.E. Depth-first iterative-deepening: An optimal admissible tree search. Artif. Intell. 1985, 27, 97–109. [CrossRef]
8. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall Series in Artificial Intelligence; Prentice Hall:

Hoboken, NJ, USA, 2010.
9. Tarrataca, L.; Wichert, A. Quantum iterative deepening with an application to the halting problem. PLoS ONE 2013, 8, e57309.
10. Eagle, A.; Kato, T.; Minato, Y. Solving tiling puzzles with quantum annealing. arXiv 2019, arXiv:1904.01770v1.
11. Hamze, F.; Jacob, D.C.; Ochoa, A.J.; Perera, D.; Wang, W.; Katzgrabe, H.G. From near to eternity: Spin-glass planting, tiling

puzzles, and constraint satisfaction problems. arXiv 2018, arXiv:1711.04083v2.
12. Takabatake, K.; Yanagisawa, K.; Akiyama, Y. Solving generalized polyomino puzzles using the ising model. Entropy 2022, 24, 354.

[CrossRef] [PubMed]
13. Brooke, J.; Bitko, D.; Rosenbaum, T.; Aeppli, G. Quantum annealing of a disordered magnet. Science 1999, 284, 779–781. [CrossRef]

[PubMed]
14. Johnson, M.W.; Amin, M.H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al.

Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [CrossRef] [PubMed]
15. McGeoch, C.C. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice; Morgan & Claypool: San Rafael, CA,

USA, 2014.
16. Hertz, J.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation; Addison-Wesley: Boston, MA, USA, 1991.
17. Tarrataca, L.; Wichert, A. Problem-solving and quantum computation. Cogn. Comput. 2011, 3, 510–524. [CrossRef]
18. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
19. Hirvensalo, M. Quantum Computing; Springer: Berlin/Heidelberg, Germany, 2004.
20. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, MA, USA,

2000.

http://doi.org/10.1007/s11128-010-0212-z
http://dx.doi.org/10.1016/0004-3702(85)90084-0
http://dx.doi.org/10.3390/e24030354
http://www.ncbi.nlm.nih.gov/pubmed/35327865
http://dx.doi.org/10.1126/science.284.5415.779
http://www.ncbi.nlm.nih.gov/pubmed/10221904
http://dx.doi.org/10.1038/nature10012
http://www.ncbi.nlm.nih.gov/pubmed/21562559
http://dx.doi.org/10.1007/s12559-011-9103-6
http://dx.doi.org/10.1137/07070111X

	Introduction
	Tree Search and the Path Descriptors
	Quantum Tree Search
	Contribution

	Quantum Tree Search with Qiskit
	3-Puzzle
	Decomposition of Unitary Operators
	Representation
	Rules and Trace

	Search of Depth Two
	Search Depth Three
	Search Depth Three with Two Iterations

	Extending to 8-Puzzle
	Blocks World
	Representation
	Number of Iterations

	Conclusions
	Qiskit Code
	3-Puzzle
	3-Puzzle Rules
	3-Puzzle Task

	8-Puzzle
	Rules1 8-Puzzle

	ABC Blocks World
	Rules Floor
	Rules tw bl

	References

