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Abstract: This paper aims at finding a fixed-time solution to the Sylvester equation by using a
gradient neural network (GNN). To reach this goal, a modified sign-bi-power (msbp) function
is presented and applied on a linear GNN as an activation function. Accordingly, a fixed-time
convergent GNN (FTC-GNN) model is developed for solving the Sylvester equation. The upper
bound of the convergence time of such an FTC-GNN model can be predetermined if parameters
are given regardless of the initial conditions. This point is corroborated by a detailed theoretical
analysis. In addition, the convergence time is also estimated utilizing the Lyapunov stability theory.
Two examples are then simulated to demonstrate the validation of the theoretical analysis, as well as
the superior convergence performance of the presented FTC-GNN model as compared to the existing
GNN models.
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1. Introduction

As a set of prominent and proverbial linear matrix equations, the Sylvester equation
has aroused general concern among researchers in the past few decades, owing to its crucial
role in matrix theory and diverse applications, such as image fusion [1], dimensionality
reduction [2], linear descriptor systems [3], machine learning [4], the stabilization of PDE
(partial differential equation)—ODE (ordinary differential equation) cascade systems [5],
and so on. Consequently, a great deal of time and energy of researchers has been expended
to put forward various numerical algorithms to rapidly seek out the solution to the Sylvester
equation. Gradient-based iterative algorithms [6,7], the Bartels–Stewart algorithm [8], and
its extensions [9,10] are some typical examples of them. Although the concrete forms of
these algorithms may be diverse, they share one common characteristic, i.e., the solving
process is carried out in a serial processing manner. In addition, generally speaking, O(n3)
arithmetic operations are usually required to execute most of these numerical algorithms
to seek out the solution [11,12]. It is thus predictable that vast amounts of time will be
consumed (or, say, wasted) when applying these serial computational schemes to large-scale
matrix-related problems (including the Sylvester equation), and it may be also inappropriate
to apply them to real-time problem solving.

To work around these issues as well as to promote computational efficiency, parallel
processing schemes based on recurrent neural networks (RNNs) are preferred and heralded
as a powerful alternative. In addition to the characteristic of parallel processing, RNN
models can be implemented expediently by circuit components in the wake of the rapid
development of field-programmable gate array and integrated circuit technology [13–15].
As the result of these two outstanding features, a growing number of RNN models that
aim at solving the Sylvester equation and related problems (e.g., matrix pseudoinverse)
have been successively put forward and discussed in recent years [16–25]. ZNN (zeroing
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neural network) and GNN (gradient neural network) are two popular RNN categories
that are extensively investigated in the literature. For example, in [16], by designing a
matrix-valued error function and making use of the exponential decay formula, a novel
RNN is proposed for finding the solution to the time-variant Sylvester equation. Following
this groundbreaking work, a ZNN model under the action of the Li activation function (also
termed the sign-bi-power function) is established for solving the time-variant Sylvester
equation [17]. This model is the first ZNN model that realizes finite-time convergence.
Inspired by this study, in [18], two nonlinear functions are exerted on linear ZNN as
activation functions. Correspondingly, two predefined-time convergent ZNN models
are successfully constructed for solving the time-variant Sylvester equation. Some ZNN
models with varying design parameters are constructed and applied to the dynamic
Sylvester equation and matrix pseudoinversion/inversion with real or complex coefficient
matrices [19–25]. Additionally, discrete-time ZNN models based on continuous ZNN
models are also developed for Sylvester equation solving [26–29].

On the other hand, a GNN model under the activation of four conventional functions
is investigated in [30]. The property of global convergence of this GNN model is presented.
To improve noise tolerance, a GNN model with an integration feedback term is proposed
and investigated in [31]. In [32], a GNN model with adaptive coefficients is constructed to
solve the time-varying Sylvester equation. To further quicken GNN models’ convergence
speed, a sign-bi-power function activated GNN model that is able to converge to the
theoretical solution of the Sylvester equation in finite time is established in [33]. Regrettably,
the detailed theoretical analysis of this point and the estimate of the finite convergence time
are not presented in the work. Recently, to solve the periodic Sylvester matrix equation,
a GNN under the action of several activation functions is proposed and theoretically
studied in [34].

It should be noted that, in more recent years, more efforts have focused on the devel-
opment of finite-/fixed-time convergent ZNN models due to their superior convergence
performance as compared to infinite-time convergent ZNN models. Comparatively, much
fewer efforts are focused on the development and investigation of finite-time convergent
GNN models. Moreover, in view of the fact that the convergence time of finite-time
convergent GNN (and ZNN) models is heavily reliant on the initial state of the solving
task, fixed-time convergent GNN models are much more preferable and imperatively
needed. With these considerations, inspired by [35,36], a fast fixed-time convergent GNN
(FTC-GNN) model is developed for solving the Sylvester equation in this paper. The resul-
tant fixed-time convergent GNN model has a particular feature: the convergence time is
bounded by a constant that is not bound up with the initial conditions.

We would like to emphasize the main contributions and novelties of this paper
as follows.

(1) As significant enhancements to the GNN models with infinite-time and finite-time
convergence, a fixed-time convergent GNN (FTC-GNN) model is developed as a
solution to the Sylvester equation. More specifically, the presented GNN model
outperforms the linear GNN model [30] with exponential convergence (infinite-time
convergence) and the sbp function activated GNN model [33] with declared finite-time
convergence in terms of convergence performance.

(2) The mathematical analysis of the fixed-time convergence of the presented GNN model
is provided. It is shown that the convergence time of the presented FTC-GNN model
has a predetermined upper bound, which is independent of the initial conditions. It
is noted that infinite-time convergent (e.g., exponential convergence) and finite-time
convergent GNN models do not have such a feature. In addition, the theoretical
analysis in terms of convergence of the sbp function activated GNN model presented
in the previous work [33] is also provided. These theoretical results demonstrate
that the sbp function activated GNN model with declared finite-time convergence is,
in fact, of fixed-time convergence, and the presented GNN model has faster fixed-time
convergence as compared to the sbp function activated GNN model.
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(3) Comparative simulation results of two examples demonstrate the theoretical results
as well as the superior convergence performance of the presented FTC-GNN model.

The remainder of this paper is structured as follows. Related preliminaries and some
existing GNN models aimed at solving the Sylvester equation are presented in Section 2.
In this section, for comparison and better illustration, a novel GNN model with fixed-time
convergence is also established. The mathematical deduction on the fixed-time convergence
of the presented GNN models is shown in Section 3. Section 4 presents two illustrative
examples to demonstrate the theoretical results and the advantages of the presented FTC-
GNN model over the existing GNN models in terms of convergence. Some remarks are
given in Section 5.

2. Preliminaries and Model Description

In this section, the related preliminaries, including two definitions and three lemmas,
are first provided for the basis of further discussion. Then, a fixed-time convergent GNN
model for seeking out the solution to the Sylvester equation is developed, with some
existing GNN models shown as well.

2.1. Preliminaries

Let Ψ : R+ ×Rn → Rn represent a function mapping; the system with the following
differential equation is considered:

ẏ(t) = Ψ(t, y(t)), y(t) ∈ Rn, y(0) = y0, t ∈ (0,+∞), (1)

where vector y(t) is termed the system state, and the origin y(t) = 0 is supposed to be an
equilibrium point.

Definition 1 ([37]). The equilibrium point y(t) = 0 of system (1) is globally finite-time stable if
the following two conditions hold true.

(1) It is of globally asymptotical stability;
(2) There exists a mapping function T : Rn → R+

⋃{0}, such that, y(t, y0) = 0, when
t ≥ T(y0), where T is called the settling-time function and y(t, y0) is an arbitrary solution
starting from y0.

Definition 2 ([37]). The equilibrium point y(t) = 0 of system (1) is globally fixed-time stable if
the following two conditions hold true.

(1) It is of global finite-time stability;
(2) There exists a positive constant Tmax, such that, for any y0 ∈ Rn, T(y0) ≤ Tmax.

The following lemma is invaluable for our main results, presented in Section 3.

Lemma 1 ([38,39]). Assume that u1, u2, . . . , uK are nonnegative, 0 < α ≤ 1, and β > 1, and the
following two inequalities

K

∑
k=1

uα
k ≥

(
K

∑
k=1

uk

)α

,
K

∑
k=1

uβ
k ≥ K1−β

(
K

∑
k=1

uk

)β

,

are satisfied.

Lemma 2 ( [36,38]). For system (1), assume that there is a continuous function V(y) : Rn →
R+

⋃{0} satisfying the following:

(1) V(y) is radially unbounded and holds the property of positive definiteness;
(2) V(y) ∈ C1 and V̇(y) ≤ −pVc(y)− rVd(y), for any solution y(t) of system (1), where

p, r > 0, 0 < c < 1, and d > 1.
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Then, the equilibrium point y(t) = 0 of system (1) is globally fixed-time stable, and the upper
bound of convergence time

Tmax =
1

p(1− c)
+

1
r(d− 1)

. (2)

In addition, the following lemma, which is a further investigation on Lemma 3 of [35],
is presented here for later use.

Lemma 3. For system (1), assume that there is a continuous function V(y) : Rn → R+
⋃{0}

satisfying the following:

(1) V(y) is radially unbounded and holds the property of positive definiteness;
(2) V(y) ∈ C1 and V̇(y) ≤ −pVc(y)− qV(y)− rVd(y), for any solution y(t) of system (1),

where p, q, r > 0, 0 < c < 1, and d > 1.

Then, the equilibrium point y(t) = 0 of system (1) is globally fixed-time stable, and the upper
bound of convergence time

Tmax =
ln[1 + q

r ]

q(d− 1)
+

ln[1 + q
p ]

q(1− c)
. (3)

Proof of Lemma 3. According to Lemma 3 of [35], if V(y0) < 1, then y(t) converges

to 0 within t1 =
ln[1+ q

p V(1−c)(y0)]

q(1−c) ; and if V(y0) ≥ 1, y(t) converges to 0 within t2 =

ln[ q+r

qV(1−d)(y0)+r
]

q(d−1) +
ln[1+ q

p ]

q(1−c) . It is not difficult to find that t2 > t1 and t2 is monotonically
increasing with respect to V(y0). Hence, the upper bound of convergence time is

Tmax = lim
V(y0)→+∞

t2 =
ln[1 + q

r ]

q(d− 1)
+

ln[1 + q
p ]

q(1− c)
,

which is not related to the initial value y(0). Therefore, the origin y(t) = 0 is globally
fixed-time stable, which completes the proof.

Remark 1. In view of ln(1 + x) < x for any x > 0, it is useful to note that Tmax presented in (3)
is less than that presented in (2).

2.2. Model Description

The Sylvester equation to be investigated in this work is of the following form [30,33]:

GX(t)− X(t)H + Q = 0, (4)

where constant matrices G ∈ Rm×m, H ∈ Rn×n, and Q ∈ Rm×n are given, and X(t) ∈ Rm×n

is the unknown variable to be determined. The goal of this work is to online obtain X(t)
satisfying (4) in a manner of fixed-time convergence. To lay a foundation for further analysis
and discussion, it is supposed that the eigenvalues of matrix G are unequal to that of matrix
H throughout this work. Thus, a unique solution X∗ of Sylvester Equation (4) exists.

To build the GNN model, firstly, the error (energy) function based on the matrix
Frobenius norm ‖·‖F is defined as ω(t) = ‖GX(t)− X(t)H + Q‖2

F/2. It is obvious that
neural solution X(t) is convergent to the exact solution when ω(t) is reduced to 0. Then, it
is necessary to adopt the fastest descent direction (i.e., negative gradient direction) of ω(t)
to reduce the energy function ω(t) to 0. We summarize the above analysis to establish the
linear GNN model for the Sylvester equation as follows [30,33]:

Ẋ(t) = −ν
∂ω

∂X
= −νGT(GX(t)− X(t)H + Q) + ν(GX(t)− X(t)H + Q)HT, (5)
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where constant ν > 0 is a mutable parameter that is bound up with the convergence rate of
the GNN model (5). It is shown in the previous works [30,40] that the GNN model (5) can
achieve global exponential convergence. To attain finite-time convergence, an improved
GNN model that takes advantage of the sign-bi-power (sbp) activation function is proposed
in [33], and the corresponding neural dynamic system is represented as follows [33]:

Ẋ(t) = −νGTΦsbp(GX(t)− X(t)H + Q) + νΦsbp(GX(t)− X(t)H + Q)HT. (6)

Herein, Φsbp(·) is a matrix of m × n elements, of which each element is the sbp
activation function expressed as [17,33]

φsbp(u) = |u|$sign(u) + |u|1/$sign(u), (7)

where real number 0 < $ < 1, and | · | and sign(·), are, respectively, the absolute and
sign functions.

It is reported in [33] that the GNN model (6) is able to converge to the theoretical
solution within finite time, which is an improvement as compared to the GNN model (5).
On the other hand, the convergence time of finite-time GNN models relies on the initial
value of neural state X(t). This deficiency may mean that they are insufficient in some
real-time applications. In light of these problems, a fixed-time convergent GNN model for
solving the Sylvester Equation (4) is imperatively needed. To realize this goal, inspired
by [35,36], a modified sign-bi-power (msbp) function is presented and applied for the
construction of the GNN model in this paper. Its definition is given as

φmsbp(u) = η1|u|$sign(u) + η2u + η3|u|σsign(u), (8)

where η1, η2, η3 > 0, σ > 1, and 0 < $ < 1 are defined similarly as before. Then, with the
use of the above msbp function, we have the following novel fixed-time GNN model for
the Sylvester Equation (4):

Ẋ(t) = −νGTΦmsbp(GX(t)− X(t)H + Q) + νΦmsbp(GX(t)− X(t)H + Q)HT. (9)

For a better understanding of the presented GNN model (9), we illustrate the block
diagram realization of the GNN model (9) in Figure 1. In this figure, symbols×, ∑, and

∫
are

adopted to indicate matrix multiplication, the accumulator, and the integrator, respectively.
G, H, and Q are given matrices and could be viewed as the input of the GNN model (9). X(t)
is the neural state matrix and output of GNN model (9), while Ẋ(t) is the time derivative
of X(t). In addition, Φmsbp(·) is the activation function array and defined element-wise.
That is, Φmsbp(U) = [φmsbp(uij)] ∈ Rm×n for matrix U = [uij] ∈ Rm×n. As time elapses,
X(t) with any initial value, X(0) will converge to the theoretical solution of the Sylvester
equation. (This point will be illustrated in the manner of mathematical derivation and
simulation verification in the next sections.) Furthermore, to better illustrate the differences
between the GNN model (9) and other GNN models (i.e., GNN models (5) and (6)) as well
as the novelties and contributions of this work, the comparison of these three GNN models
is summarized in Table 1. When parameters are set as η1 = η3 = 1, η2 = 0, σ = 1/$, GNN
model (9) is simplified to GNN model (6). When η1 = η3 = 0, η2 = 1, GNN model (9)
is simplified to GNN model (5). It can thus be concluded that GNN model (9) is a more
general model that incorporates GNN models (5) and (6) as special cases. In addition,
as illustrated in Table 1, the presented GNN model (9) is superior to GNN models (5) and (6)
in terms of convergence.
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X tX t
G

H

Q

G

H

X t

Figure 1. Block diagram of GNN model (9) for solving Sylvester equation.

Table 1. Comparison of GNN models (5), (6), and (9) for solving Sylvester equation.

GNN Model Activation Function Convergence Property

(5) φ(u) = u exponential (infinite-time)
(6) φsbp(u) (7) fixed-time
(9) φmsbp(u) (8) faster fixed-time

Remark 2. Continuous-time GNN models (5), (6), and (9) are computational schemes. On one
hand, a computational scheme can be generally treated as a neural network if it is realized by a
hardware circuit (analog circuit and/or digital circuit) in an interconnecting way [41]. Considering
potential hardware implementation, the above comparison of the three GNN models is significant
and of practical relevance. On the other hand, such a computational scheme can be regarded
as a numerical algorithm if it is realized by a serial computing computer program and executed
on a digital computer [41]. For the development of effective numerical algorithms, discrete-time
GNN models with convergence and high precision need to be obtained, which is one of the future
research directions.

3. Theoretical Analysis

In this section, a theorem in terms of the convergence performance of the presented
FTC-GNN model (9) is first provided and proven. Then, for comparative purposes,
two propositions concerning the convergence properties of GNN models (5) and (6) are
also offered.

Theorem 1. Given matrices G ∈ Rm×m, H ∈ Rn×n, and Q ∈ Rm×n of Sylvester Equation (4),
GNN model (9) can achieve global fixed-time convergence, i.e., the neural solution X(t) of GNN
model (9) with any initial value X(0) globally reaches the theoretical solution X∗ within a predeter-
mined time

Tmax =
ln[1 + η2

η3
(mn

2λ )
σ−1

2 ]

νη2λ(σ− 1)
+

ln[1 + η2
η1
(2λ)

1−$
2 ]

νη2λ(1− $)
,

where λ > 0 is the minimum eigenvalue of symmetric matrix WTW with W := In⊗G−HT⊗ Im
and In denoted the n-by-n identity matrix.

Proof of Theorem 1. First, y(t) := vec(X(t)) ∈ Rmn, y∗ := vec(X∗) ∈ Rmn, and solution
error ȳ(t) := y(t)− y∗ are defined, where vec(·) and X∗ separately denote the vectorization
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operator [36,40] and the unique exact solution of Sylvester Equation (4). Vectorizing the
GNN model (9) by the Kronecker product denoted by symbol ⊗ yields

˙̄y(t) = ẏ(t)

= −ν
(
(In ⊗GT)− (H⊗ Im)

)
vec
(

Φmsbp(GX(t)− X(t)H + Q)
)

= −ν
(
(In ⊗GT)− (H⊗ Im)

)
Φv

msbp

(
vec(GX(t)− X(t)H + Q)

)
= −ν

(
(In ⊗GT)− (H⊗ Im)

)
Φv

msbp

((
(In ⊗G)− (HT ⊗ Im)

)
(y(t)− y∗)

)
= −νWTΦv

msbp(Wȳ(t)).

(10)

where W := In⊗G−HT⊗ Im, with In denoted the n-by-n identity matrix, and Φv
msbp(·) =

vec(Φmsbp(·)) ∈ Rmn.
Now, L(t) = ‖ȳ(t)‖2

2/2 ≥ 0 is selected as the Lyapunov function candidate [36]. It is
easy to conclude that L(t) is positive definite and y(t)→ ∞, L(t)→ ∞. The calculation of
the time derivative of L(t) along the state trajectory of system (10) is given as follows:

L̇(t) = ȳT(t) ˙̄y(t)

= −νȳT(t)WTΦv
msbp(Wȳ(t))

= −ν(Wȳ(t))TΦv
msbp(Wȳ(t))

= −ν
mn

∑
i=1

[Wȳ(t)]i · φmsbp([Wȳ(t)]i)

= −ν
mn

∑
i=1
|[Wȳ(t)]i| · (η1|[Wȳ(t)]i|$ + η2|[Wȳ(t)]i|+ η3|[Wȳ(t)]i|σ)

= −νη1

mn

∑
i=1

([Wȳ(t)]2i )
1+$

2 − νη2

mn

∑
i=1

([Wȳ(t)]2i )− νη3

mn

∑
i=1

([Wȳ(t)]2i )
1+σ

2

≤ −νη1

(
mn

∑
i=1

[Wȳ(t)]2i

) 1+$
2

− νη2

(
ȳT(t)WTWȳ(t)

)

− νη3(mn)
1−σ

2

(
mn

∑
i=1

[Wȳ(t)]2i

) 1+σ
2

= −νη1

(
ȳT(t)WTWȳ(t)

) 1+$
2 − νη2

(
ȳT(t)WTWȳ(t)

)
− νη3(mn)

1−σ
2

(
ȳT(t)WTWȳ(t)

) 1+σ
2

≤ −νη12
1+$

2 λ
1+$

2 L
1+$

2 (t)− 2νη2λL(t)− νη3(mn)
1−σ

2 2
1+σ

2 λ
1+σ

2 L
1+σ

2 (t)

= −pL
1+$

2 (t)− qL(t)− rL
1+σ

2 (t) ≤ 0,

(11)

where λ > 0 represents the minimum eigenvalue of symmetric matrix WTW. In addition,

p = νη12
1+$

2 λ
1+$

2 , q = 2νη2λ, and r = νη3(mn)
1−σ

2 2
1+σ

2 λ
1+σ

2 . It is noted that Lemma 1 has
been adopted where the symbol ≤ first appears. The above analysis implies that Lemma 3
applies, and a conclusion is thus drawn that the unique equilibrium point ȳ(t) = 0 is
globally fixed-time stable. Furthermore, we have

Tmax =
ln[1 + q

r ]

q((1 + σ)/2− 1)
+

ln[1 + q
p ]

q(1− (1 + $)/2)

=
ln[1 + η2

η3
(mn

2λ )
σ−1

2 ]

νη2λ(σ− 1)
+

ln[1 + η2
η1
(2λ)

1−$
2 ]

νη2λ(1− $)
.

(12)
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In light of ȳ(t) = y(t) − y∗ = vec(X(t)) − vec(X∗), the conclusion is obtained
that X(t) is globally fixed-time convergent to the theoretical solution X∗. The proof is
thus completed.

Proposition 1 ([30,40]). Given matrices G ∈ Rm×m, H ∈ Rn×n, and Q ∈ Rm×n of Sylvester
Equation (4), linear GNN model (5) can attain global exponential convergence, i.e., the neural
solution X(t) of linear GNN model (5) with any initial value X(0) is globally exponentially
convergent to the theoretical solution X∗, with the exponential convergence rate being νλ, where
λ > 0 is the minimum eigenvalue of matrix WTW with W := In ⊗G−HT ⊗ Im and In denoting
the n-by-n identity matrix.

Proposition 2. Given matrices G ∈ Rm×m, H ∈ Rn×n, and Q ∈ Rm×n of Sylvester Equation (4),
GNN model (6) can achieve global fixed-time convergence, i.e., the neural solution X(t) of GNN
model (6) with any initial value X(0) globally reaches the theoretical solution X∗ within a predeter-
mined time

Tmax =
2

(2λ)
1+$

2 ν(1− $)
+

2$

(mn)
$−1
2$ (2λ)

1+$
2$ ν(1− $)

,

where λ > 0 is the minimum eigenvalue of symmetric matrix WTW with W := In⊗G−HT⊗ Im
and In denoting the n-by-n identity matrix.

Proof of Proposition 2. See Appendix A for details.

Remark 3. In light of the above theoretical results, we know that the sbp function activated GNN
model (6) with declared finite-time convergence in the previous work [33] is, in fact, of fixed-time
convergence. Furthermore, if η1 = η3 = 1 and σ = 1/$ are set for the msbp function, based on
Remark 1, it is easy to see that GNN model (9) has faster fixed-time convergence as compared to
GNN model (6), which theoretically ensures its superior convergence performance.

4. Numerical Simulations

In this section, two illustrative examples are simulated to demonstrate the theoretical
results presented in the above section.

4.1. Example 1

The Sylvester Equation (4) with the following 2-by-2 coefficient matrices and theoreti-
cal solution X∗ is investigated as an example:

G =

[
2 1
−1 1

]
, H =

[
2 3
4 5

]
, Q =

[
10 2
1 0

]
, X∗ =

[
−1 2
−2 1

]
.

It is easy to see that the minimum eigenvalue of matrix WTW is λ = 2.3020. For a
fair comparison, the design parameters of GNN models (5), (6), and (9) are set as ν = 2,
η1 = η3 = 1, η2 = 2, $ = 0.8, σ = 1/$ = 1.25. Starting with an initial state X(0) generated
randomly from [−5, 5]2×2, GNN models (5), (6), and the presented GNN model (9) are
successively put to use to solve the Sylvester equation, with the simulation duration being
2 s. The convergence behaviors of neural state X(t) and residual error ‖GX(t)− X(t)H +
Q‖F are shown in Figure 2, which well substantiates the superior convergence of the
presented GNN model (9).

Then, to demonstrate the fixed-time convergence property of GNN models (6) and (9),
five values in the range of [−5, 5]2×2 are randomly created and used for the initial states
of X(t) (i.e., X(0)1 ∼ X(0)5). Model parameters involved remain the same. According
to the theoretical analysis results, the upper bounds of the convergence time of GNN
models (6) and (9) are, respectively, Tmax ≈ 2.12s and Tmax ≈ 1.13 s. Figure 3 illustrates
the change process of residual error ‖GX(t)− X(t)H + Q‖F. As expected, residual errors
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‖GX(t)− X(t)H + Q‖F are convergent to 0 within Tmax for the both GNN models, which
verifies the correctness of Theorem 1 and Proposition 2. Furthermore, comparing Figure 3a
and Figure 3b, it can be observed again that the GNN model (9) outperforms the GNN
model (6) in terms of convergence performance.
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Figure 2. Convergence behaviors of neural state X(t) denoted by blue solid curves and residual
error ‖GX(t)− X(t)H + Q‖F. (a) Neural state X(t) of GNN model (5). (b) Neural state X(t) of GNN
model (6). (c) Neural state X(t) of GNN model (9). (d) Residual error ‖GX(t)− X(t)H + Q‖F of three
GNN models.
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Figure 3. Convergence behaviors of residual error ‖GX(t)−X(t)H+Q‖F of GNN models (6) and (9)
starting from 5 randomly created initial values (i.e., X(0)1 ∼ X(0)5) for Sylvester equation. (a) By
GNN model (6). (b) By GNN model (9).

4.2. Example 2

In this subsection, a higher-dimensional example with the following coefficient matri-
ces and the theoretical solution is investigated to further demonstrate the superiority and
fixed-time convergence property of the presented GNN model (9):
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G =


3.8881 2.6582 0.4725 1.5207
0.3931 1.5262 2.8427 2.6915
2.7392 1.6217 3.3560 3.2598
0.6112 1.2168 1.6013 0.8726

, H =


0.7805 5.6584 2.9058 1.0066
5.5417 3.1858 3.7721 1.2818
3.5263 3.0900 0.0728 4.6441
2.2643 0.3490 5.5018 5.3392

,

Q =


1.8506 4.3380 5.4336 3.0296
3.0259 5.2791 5.3998 3.1585
3.6453 3.0072 2.9610 1.6716
5.7793 0.8481 3.6165 2.7530

, X∗ =


0.8785 0.4942 0.7850 1.2275
1.3911 0.4000 0.5590 0.9476
0.9526 0.7202 1.0077 1.0018
−0.2909 1.1417 0.5124 0.6068

.

The minimum eigenvalue of matrix WTW is obtained as λ = 6.3. Parameter ν = 1,
simulation duration is set as 1s, and other parameters remain the same as in Example 1.
Then, starting from five different initial values randomly generated from [−5, 5]4×4, the
GNN model (6) and the presented GNN model (9) are put to use for solving the above
Sylvester equation. Transient behaviors of neural solution X(t) and residual error ‖GX(t)−
X(t)H + Q‖F synthesized by the two GNN models are visualized in Figure 4, which well
illustrates the global convergence of the two GNN models. The superiority of the presented
GNN model (9) over the GNN model (6) can be obviously observed from Figure 4b,d.
In addition, for the presented GNN model (9), the residual errors ‖GX(t)− X(t)H + Q‖F
starting from five different initial neural states (i.e., X(0)1 ∼ X(0)5) are all able to arrive at
0 within Tmax ≈ 0.86 s, which is shown in Figure 4d. The fixed-time convergence of the
presented GNN model (9) is thus well demonstrated again.
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Figure 4. Convergence behaviors of neural state X(t) and residual error ‖GX(t)− X(t)H + Q‖F of
GNN models (6) and (9) starting from 5 randomly created initial values for Sylvester equation in
example 2, where red dashed lines denote the exact solution. (a) Neural state X(t) of GNN model (6).
(b) Residual error ‖GX(t)− X(t)H + Q‖F of GNN model (6). (c) Neural state X(t) of GNN model (9).
(d) Residual error ‖GX(t)− X(t)H + Q‖F of GNN model (9).
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In brief, the simulation results of the above two illustrative examples are in line with
the theoretical analysis presented in Theorem 1 and Proposition 2.

5. Conclusions

Along the research direction of GNN, the GNN model (9) with fixed-time convergence
is developed and analyzed to solve the Sylvester equation in this work. Such a model is
under the action of the msbp function (8) and has the fastest convergence rate as compared
to the linear GNN model (5) and the sbp function activated GNN model (6). Theorem 1 gives
detailed mathematical analysis to demonstrate that the upper bound of the convergence
time of the presented GNN model (9) is referable to the model parameters rather than
the initial value of the neural state. Furthermore, this work also provides mathematical
analysis to show the fixed-time convergence property of the GNN model (6). The fact that
the GNN model (9) has faster fixed-time convergence as compared to the GNN model (6) is
theoretically ensured by these mathematical analyses. Finally, the comparative simulation
results given through two numerical examples substantiate the theoretical analysis, as
well as the advantages of the presented GNN model over the existing GNN models (i.e.,
GNN models (5) and (6)) in terms of convergence performance. The development of more
GNN models for handling other problems and the application of the presented GNN
model (9) and/or extended models to the kinematic control of robot manipulators will be
our research directions in the future. Another research direction would be the development
of discrete-time GNN models with convergence and high precision.
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The following abbreviations are used in this manuscript:

GNN gradient neural network
FTC-GNN fixed-time convergent GNN
PDE partial differential equation
ODE ordinary differential equation
RNN recurrent neural network
ZNN zeroing neural network
SBP sign-bi-power
MSBP modified sign-bi-power

Appendix A. Proof to Proposition 2

It follows the proof of Theorem 1 that

L̇(t) ≤ −ν2
1+$

2 λ
1+$

2 L
1+$

2 (t)− ν(mn)
1−1/$

2 2
1+1/$

2 λ
1+1/$

2 L
1+1/$

2 (t)

= −ν2
1+$

2 λ
1+$

2 L
1+$

2 (t)− ν(mn)
$−1
2$ 2

1+$
2$ λ

1+$
2$ L

1+$
2$ (t)

= −c1L
1+$

2 (t)− c2L
1+$
2$ (t) ≤ 0,

(A1)

where L(t) is defined similarly as before, and c1 = ν2
1+$

2 λ
1+$

2 , c2 = ν(mn)
$−1
2$ 2

1+$
2$ λ

1+$
2$ .

In view of 0 < $ < 1, we have 0 < 1+$
2 < 1 and 1+$

2$ > 1. According to Lemma 2,
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it is concluded that X(t) is globally fixed-time convergent to the theoretical solution X∗.
In addition, we have

Tmax =
1

c1(1− 1+$
2 )

+
1

c2(
1+$
2$ − 1)

=
2

(2λ)
1+$

2 ν(1− $)
+

2$

(mn)
$−1
2$ (2λ)

1+$
2$ ν(1− $)

,

which completes the proof.
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