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Abstract: In this research, three different time-varying mean-variance portfolio optimization (MVPO)
problems are addressed using the zeroing neural network (ZNN) approach. The first two MVPO
problems are defined as time-varying quadratic programming (TVQP) problems, while the third
MVPO problem is defined as a time-varying nonlinear programming (TVNLP) problem. Then,
utilizing real-world datasets, the time-varying MVPO problems are addressed by this alternative
neural network (NN) solver and conventional MATLAB solvers, and their performances are compared
in three various portfolio configurations. The results of the experiments show that the ZNN approach
is a magnificent alternative to the conventional methods. To publicize and explore the findings of this
study, a MATLAB repository has been established and is freely available on GitHub for any user who
is interested.

Keywords: Markowitz framework; mean-variance portfolio optimization (MVPO); zeroing neural
network (ZNN); time-varying quadratic programming; time-varying nonlinear programming
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1. Introduction and Motivation

Portfolio management refers to the process of controlling an asset portfolio to achieve
an investor’s risk tolerance and long-term financial aims. Option replication [1], risk man-
agement [2], transaction costs [3], insurance costs [4], liquidity risk [5], and other disciplines
of portfolio optimization may be effectively approached using conventional optimization
methods. Most recently, neural network (NN) methods such as weights-and-structure-
determination (WASD)-based NNs [6], collaborative neurodynamic optimization [7], non-
linear NNs [8], and reinforcement learning [9] have been utilized to address portfolio
optimization. This work defines and explores the continuous-time (CT) version of three
variations of the mean-variance portfolio optimization (MVPO) problem, while the zeroing
NN (ZNN) method is used to solve these financial CT problems. The first two MVPO
problems are defined as time-varying quadratic programming (TVQP) problems, while
the third MVPO problem is defined as a time-varying nonlinear programming (TVNLP)
problem. This article’s primary goal is to solve the time-varying MVPO problem through
the ZNN method accurately in a short amount of time. The CT versions of the MVPO
problems permit the appliance of the ZNN method to the field of finance.

The ZNN framework was created by Zhang et al. in [10] for generating online solutions
to TV problems and is based on the Hopfield neural network. Notice that the vast majority
of ZNN-based dynamical systems are classified as recurrent NNs (RNNs), which are
utilized to locate equations’ zeros. The ZNN approach has been widely used to solve
a number of TV issues as a result of its thorough examination, with the most common
applications being problems of generalized inversion [11], matrix equations systems [12],
problems of quadratic optimization [13], linear equations systems [14], and various matrix
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functions approximation, such as performing TV QR decomposition [15] and solving TV
algebraic Riccati equations [16].

The main benefits of an artificial NN include generalization, fault and noise tolerance,
and the capacity to predict data that have not yet been seen while saving costs and time [15].
Based on this and the appeal of utilizing NNs to tackle portfolio selection problems in
the recent past, our Markowitz’s mean-variance framework approaches take advantage
of the benefits of the NN solver (i.e., ZNN method) through the time-varying MVPO
problems, which are extremely realistic problems of financial risk management. Addi-
tionally, the NN solver may be regarded as predictive dynamics, as is well known. By
employing this NN method, the models proposed in [6,11] have magnificent convergence
performance, while the convergence speed of the approaches can be changed by altering
the design parameter [15]. As a consequence, by using the ZNN method, the time-varying
MVPO problems can be addressed with exponential convergence performance. It is worth
mentioning that conventional optimization algorithms, such as standard solvers [17], evo-
lutionary algorithms [18], and genetic algorithms [19,20], are typically sufficient for solving
the static MVPO. However, conventional optimization methods are only able to solve
the time-varying MVPO in the discrete-time (DT) case, whereas the ZNN approach can
solve it in both the DT and CT cases. In [21], the authors contended that “Static-time
and time-varying problems sometimes behave differently. Therefore time-invariant and
time-varying problems may require different approaches.” To be able to track the evolution
of the static MVPO problems over time and to offer a form of prediction, we investigate
the MVPO problems as continuous TVQP and TVNLP problems, respectively. Last but not
least, well-known methods for addressing a series of static problems, such as ZNN, exceed
the methodology for dealing with time-varying situations.

The main contributions of this work can be summed up as follows:

• Three time-varying MVPO problems are defined and explored;
• Three novel ZNN models for addressing the time-varying MVPO problems are defined;
• For the first time, the ZNN approach has been used to solve a TVNLP problem;
• Using real-world datasets to apply in the field of finance the NN solver;
• The performances of the NN solver and conventional MATLAB solvers are demon-

strated and contrasted in trials using three different portfolio configurations.

The following hierarchy governs the overall organization of parts in the document.
The three variations of the MVPO problem are introduced in Section 2. Section 3 presents
the ZNN solver. Experiments in Section 4 look at the performance and efficacy of the NN
solver for resolving the time-varying MVPO problems in three different portfolio setup
cases using daily real-world data. Additionally, information about a publicly accessible
MATLAB repository on GitHub is provided in Section 4. This repository implements all of
the techniques and procedures outlined in Sections 3 and 4 to promote the readability and
computational value of this research. The final remarks are found in Section 5.

We will utilize these symbols in the follow-up: 1 and 0, respectively, for those elements
of Rn consisting of ones and zeros; Ok, Ik, respectively, for the zero and the identity k× k
matrix; (·)T, (·)−1, respectively, denote matrix transposition and inversion.

2. Mean-Variance Portfolio Optimization

A portfolio, in finance, is a compilation of all the assets possessed by a public or
private institution. In Markowitz’s modern portfolio theory (MPT), which was established
half a century ago [22], we face the challenge of assigning the funds to the assets that are
available in a way that risk decreases and profit increases, where the profit refers to the
expected mean return of the portfolio, and the risk refers to the portfolio’s variance. That is,
the less variance there is, the lesser the risk. Furthermore, short sales are outlawed in the
MPT’s ideal market, in which shares are endlessly separable and thus could be sold in any
(non-negative) portion, free of taxes and transaction costs. This work also adheres to these
assumptions.
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The MVPO problem is important both practically and theoretically [22]. The MVPO is
an optimization problem, in finance, that includes allocating the assets in the portfolio in a
way that reduces risk while achieving a desired expected return. As seen in [23–26], the
MVPO has been extensively investigated over the past few decades. For instance, different
approaches for solving variations of the static MVPO problem are examined in [23,24], a
CT MVPO problem with stochastic parameters under a no-bankruptcy limit is investigated
in [25], and a multi-period modified MVPO problem is presented and examined in [26]. The
definition of the three MVPO problem’s variations are covered in great detail in this section.

Assume the marketed space Q(t) = [q1(t), q2(t), . . . , qn(t)] ∈ Rn at time t = 1, 2, . . . , µ,
where qi(t) ∈ R denotes the asset’s i, i = 1, 2, . . . , n, return. Assuming the past val-
ues (or delays) number τ ∈ N, we set p(t) = [p1(t), p2(t), . . . , pn(t)] ∈ Rn the mar-
ket’s space expected return at time t, where pi(t) = ∑τ−1

d=0 qi(t − d)/τ ∈ R denotes the
asset’s i, i = 1, 2, . . . , n, expected return. In this way, pi(t) turns into a weight-free av-
erage of the previous τ values, i.e., a simple moving average (SMA) [27]. It is worth
mentioning that one of the most frequently utilized technical indicators is the moving
average. Furthermore, C(t) ∈ Rn×n is covariance matrix of the marketed space and
η(t) = [η1(t), η2(t), . . . , ηn(t)] ∈ Rn is the optimal portfolio. Based on [13,28], the three
variations of the MVPO problem are described in the following subsections.

2.1. Time-Varying MVPO Problem (Version 1)

Considering pg(t) ∈ [min(p(t)), max(p(t))] ⊆ R the target expected return of the
portfolio, the TVQP formulation for the first version of the time-varying MVPO (MVPO1)
problem is as follows:

min
η(t)

ηT(t)C(t)η(t) (1)

s. t. 1Tη(t) = 1 (2)

− pT(t)η(t) ≤ −pg(t) (3)

0 ≤ η(t) ≤ 1. (4)

The constraint in (2) is the typical holding constraint, which requires that the sum of all
asset weights be 1, and the constraint in (4) indicates the lower and upper limits of the
portfolio asset weights. The constraint in (3) shows that the expected return must equal or
exceed the target value pg(t), whereas the objective function (1) and the portfolio’s overall
variance are the same. As a result, the MVPO1 problem finds the minimum risk portfolio
with an expected return greater or equal to the target pg(t). That is, solving the MVPO1
problem for values of pg(t) ∈ [min(p(t)), max(p(t))] one obtains all efficient portfolios.

2.2. Time-Varying MVPO Problem (Version 2)

In this version, pg(t) ≥ 0 stands for a risk tolerance factor. A value of pg(t) = 0
indicates a portfolio with minimum risk, while a value of pg(t)→ ∞ indicates a portfolio
that is indefinitely out on the frontier with both unbounded expected return and risk. Based
on this, the TVQP formulation for the second version of the time-varying MVPO (MVPO2)
problem is as follows:

min
η(t)

ηT(t)C(t)η(t)− pg(t)
(

pT(t)η(t)
)

(5)

s. t. 1Tη(t) = 1 (6)

0 ≤ η(t) ≤ 1. (7)

The constraint in (6) is the typical holding constraint, which requires that the sum of all asset
weights be 1, and the constraint in (7) indicates the lower and upper limits of the portfolio
asset weights. It is important to mention that the objective function (5) is a risk-adjusted
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return function where the constant pg(t) serves as a risk-aversion constant. As a result, the
MVPO2 problem determines the location on the frontier where the inverse of the frontier’s
slope would be pg(t).

2.3. Time-Varying MVPO Problem (Version 3)

In this version, pg(t) ≥ 0 is a given upper limit on the variance of the portfolio. Based
on this, the TVNLP formulation for the third version of the time-varying MVPO (MVPO3)
problem is as follows:

min
η(t)

− pT(t)η(t) (8)

s. t. 1Tη(t) = 1 (9)

ηT(t)C(t)η(t) ≤ pg(t), (10)

0 ≤ η(t) ≤ 1. (11)

The constraint in (9) is the typical holding constraint, which requires that the sum of all
asset weights be 1, and the constraint in (11) indicates the lower and upper limits of the
portfolio asset weights, whereas the objective function (8) is the portfolio’s expected return.
Notice that the MVPO3 problem is not a TVQP problem since it has a convex quadratic
constraint in (10). As a result, the MVPO3 problem finds the maximum expected return
portfolio with a variance below the limit pg(t).

2.4. Conversion from Discrete-Time to Continuous-Time MVPO Problems

By interpolating the p(t) and the C(t) into continuous functions with any methodology
of preferences, we transform the time-varying MVPO problems from DT to CT. As a
result, considering the space of all continuous real functions C[0, µ− τ − 1] on the interval
[0, µ − τ − 1], we have that p(t), C(t) ∈ C[0, µ − τ − 1], and η(t) becomes the online
solution of the MVPO1 problem of (1)–(4), the MVPO2 problem of (5)–(7), and the MVPO3
problem of (8)–(11).

3. The Neural Network Approach

Using NNs to address intractability problems and solve complex computation equa-
tions is now commonplace in academia and industry. Due to their central significance
in mathematical optimization, TVQP problems have gotten a lot of attention in recent
decades [29–31], whereas the NN concept is regarded a powerful tool for real-time com-
putation because of its hardware implementation availability and parallel distributed
computing nature [15]. TVQP and TVNLP problems may be stated as a set of error equa-
tions in the case of RNNs by finding their zeros. ZNN is a type of NNs that is specifically
designed to zeroing equations, which has played an important role in the online solution
of time-varying problems in recent years by tackling a variety of difficult problems in a
variety of scientific domains [13,32]. This section describes the NN solver for approaching
the MVPO1, MVPO2, and MVPO3 problems.

3.1. ZNN Approach on the MVPO1 Problem

Since its introduction by Zhang et al. in 2001 [33], the ZNN evolution has been
studied and developed as a significant class of recurrent NNs. Furthermore, ZNN has
been theoretically investigated and shown to be a powerful and trustworthy method
for resolving time-varying problems. The error matrix Z(t) is created and then may be
dynamically controlled using the next formula, according to the ZNN design with the
linear activation function [12]:

Ż(t) = −γZ(t), (12)

where γ > 0 is the design parameter, and ˙( ) signifies the time derivative. Z(t) is forced to
exponentially converge to zero matrix by (12), while it is demonstrated that the convergence
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rate increases with the value supplied to γ. The three steps listed below can be used
to achieve our goal of developing a ZNN model based on [30,31] in order to solve the
MVPO1 problem.

Step 1: (MVPO1 problem reformulation) The MVPO1 problem of (1)–(4) can be reformu-
lated as follows:

min
η(t)

ηT(t)C(t)η(t) (13)

s. t. 1Tη(t) = 1 (14)

− p(t)Tη(t) ≤ −pg(t) (15)

η(t) ≤ 1, (16)

− η(t) ≤ 0, (17)

or equivalent

min
η(t)

ηT(t)C(t)η(t) (18)

s. t. 1Tη(t) = 1 (19)

A(t)η(t) ≤ b(t), (20)

where A(t) =

−pT(t)
In
−In

 ∈ R(1+2n)×n and b(t) =

−pg(t)
1
0

 ∈ R1+2n. Then, using the

penalty function proposed in [30,31], the problem of (18)–(20) may be reformulated as
below:

min
η(t)

ηT(t)C(t)η(t) + P(η(t)) (21)

s. t. 1Tη(t) = 1, (22)

where P(η(t)) = h ∑1+2n
i=1 e−sNi(t) ∈ R with Ni(t) = bi(t)− Ai(t)η(t), i = 1, 2, . . . , 1 + 2n.

Notice that h ≥ 0 and s > 0, respectively, denote the penalty and the design parameter. The
P(η(t)) value is more consequent with the conditions (20) as s increases, although calcu-
lations will take longer if is too large. When N(t) = 0, h can push the P(η(t)) value to be
close to zero.

Step 2: (Conditions of minimization) The optimization problem in (21) and (22) is solved
by determining the following Lagrange function:

L(η(t), λ(t), t) = ηT(t)C(t)η(t) + P(η(t)) + λT(t)(1Tη(t)− 1). (23)

The following are the first-order conditions:
∂L(η(t),λ(t),t)

∂η(t) = 2C(t)η(t) + Pη(t) + λ(t)1 = 0
∂L(η(t),λ(t),t)

∂λ(t) = 1Tη(t)− 1 = 0
(24)

where Pη(t) = hs ∑1+2n
i=1

(
e−sNi(t)AT

i (t)
)
∈ Rn.

Step 3: (ZNN solver) The next error matrix equation group is set:Z1(t) = 2C(t)η(t) + Pη(t) + λ(t)1

Z2(t) = 1Tη(t)− 1
(25)
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and then replacing Z(t) in (12) with Zi(t), i = 1, 2, defined in (25), one obtains:2Ċ(t)η(t) + 2C(t)η̇(t) + Ṗη(t) + λ̇(t)1 + λ(t)0 = −γZ1(t)

0Tη(t) + 1Tη̇(t) = −γZ2(t)
(26)

where Ṗη(t) = P1(t)η̇(t) + P2(t)η(t) + P3(t) with

P1(t) = hs2
1+2n

∑
i=1

(
e−sNi(t)AT

i (t)Ai(t)
)
∈ Rn×n,

P2(t) = hs2
1+2n

∑
i=1

(
e−sNi(t)AT

i (t)Ȧi(t)
)
∈ Rn×n,

P3(t) = hs
1+2n

∑
i=1

(
e−sNi(t)

(
ȦT

i (t)− sAT
i (t)ḃ(t)

))
∈ Rn.

(27)

It is important to mention that Ȧ(t) =

− ṗ(t)T

On
On

 ∈ R(1+2n)×n and ḃ(t) =

− ṗg(t)
0
0

 ∈
R1+2n. As a consequence, (26) may be reformulated as below: (2C(t) + P1(t))η̇(t) + λ̇(t)1 = −γZ1(t)− 2Ċ(t)η(t)− P2(t)η(t)− P3(t)

1Tη̇(t) = −γZ2(t)
(28)

Then setting

M(t)=
[

2C(t)+P1(t) 1
1T 0

]
, v(t)=

[
−γZ1(t)−2Ċ(t)η(t)−P2(t)η(t)−P3(t)

−γZ2(t)

]
, (29)

where M(t) ∈ R(1+n)×(1+n) and v(t) ∈ R1+n, (28) may be reformulated as below:

M(t)ẇ(t) = v(t), (30)

where ẇ(t) =
[

η̇(t)
λ̇(t)

]
∈ R1+n. Since M(t) is a nonsingular mass matrix, the model of (30) is

adequate for addressing the MVPO1 problem of (1)–(4); however, as will be demonstrated
in Section 4, since the construction of p and C in our approach in terms of MATLAB code
relies on function handle, the next model of (31) is simpler to control under a MATLAB
ode solver. As a consequence, the following is the suggested ZNN model for the MVPO1
problem of (1)–(4):

ẇ(t) = M−1(t)v(t), (31)

which, with the exception of the expense of computing the matrix’s inverse, is equivalent to
(30). It is important to note that using a MATLAB solver for the ode can effectively produce
the solution w(t) of Equation (31). The following theorem, 1, establishes that the ZNN
solver converges to the theoretical solution.

Theorem 1. The state vector w(t) = [ηT(t), λT(t)]T of ZNN (31) converges universally to the
theoretical solution w∗(t) = [η∗T(t), λ∗T(t)]T starting from any initial condition w(0) ∈ Rn+k.
To put it another way, lim

t→∞
(w∗(t) − w(t)) = 0, while the first n components of x∗(t) are the

theoretical solution η∗(t) of TVQP (21) and (22).

Proof. The error matrix equation group is determined as in (25), inline with the ZNN
architecture, to achieve the solution w(t) of TVQP (21) and (22). The model (26) is then
obtained by using the linear design formula for zeroing (25). When t → ∞, each error
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matrix equation in the group (26) converges to zero matrix, according to ([10] Theorem 1).
As a consequence, when t→ ∞, the solution of (26) converges to the theoretical solution of
TVQP (21) and (22). Additionally, we can infer from the (31) derivation procedure that it is
merely a variant of the (26) error. Thus, the proof is finished.

3.2. ZNN Approach on the MVPO2 Problem

Similar to the ZNN approach on the MVPO1 problem, the three steps listed below can
be used to develop a ZNN model in order to solve the MVPO2 problem.

Step 1: (MVPO2 problem reformulation) The MVPO2 problem of (5)–(7) can be reformu-
lated as follows:

min
η(t)

ηT(t)C(t)η(t)− pg(t)
(

p(t)Tη(t)
)

(32)

s. t. 1Tη(t) = 1 (33)

η(t) ≤ 1 (34)

− η(t) ≤ 0, (35)

or equivalent

min
η(t)

ηT(t)C(t)η(t)− pg(t)
(

p(t)Tη(t)
)

(36)

s. t. 1Tη(t) = 1 (37)

A(t)η(t) ≤ b(t), (38)

where A(t) =

[
In
−In

]
∈ R2n×n and b(t) =

[
1
0

]
∈ R2n. Then, using the penalty function

proposed in [30,31], the problem of (36)–(38) may be reformulated as below:

min
η(t)

ηT(t)C(t)η(t)− pg(t)(p(t)Tη(t)) + P(η(t)) (39)

s. t. 1Tη(t) = 1, (40)

where P(η(t)) = h ∑2n
i=1 e−sNi(t) ∈ R with Ni(t) = bi(t)− Ai(t)η(t), i = 1, 2, . . . , 2n. Notice

that h ≥ 0 and s > 0, respectively, denote the penalty and the design parameter. The P(η(t))
value is more consequent with the conditions (38) as s increases, although calculations will
take longer if is too large. When N(t) = 0, h can push the P(η(t)) value to be close to zero.

Step 2: (Conditions of minimization) The optimization problem in (39) and (40) is solved
by determining the following Lagrange function:

L(η(t), λ(t), t) = ηT(t)C(t)η(t)− pg(t)(p(t)Tη(t)) + P(η(t)) + λT(t)(1Tη(t)− 1). (41)

The following are the first-order conditions:
∂L(η(t),λ(t),t)

∂η(t) = 2C(t)η(t)− pg(t)p(t) + Pη(t) + λ(t)1 = 0
∂L(η(t),λ(t),t)

∂λ(t) = 1Tη(t)− 1 = 0
(42)

where Pη(t) = hs ∑2n
i=1

(
e−sNi(t)AT

i (t)
)
∈ Rn.
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Step 3: (ZNN solver) The next error matrix equation group is set:Z1(t) = 2C(t)η(t)− pg(t)p(t) + Pη(t) + λ(t)1

Z2(t) = 1Tη(t)− 1
(43)

and then replacing Z(t) in (12) with Zi(t), i = 1, 2, defined in (43), one obtains:
2Ċ(t)η(t) + 2C(t)η̇(t)− ṗg(t)p(t)− pg(t) ṗ(t) + Ṗη(t) + λ̇(t)1 + λ(t)0 = −γZ1(t)

0Tη(t) + 1Tη̇(t) = −γZ2(t)
(44)

where Ṗη(t) = P1(t)η̇(t) + P2(t)η(t) + P3(t) with

P1(t) = hs2
2n

∑
i=1

(
e−sNi(t)AT

i (t)Ai(t)
)
∈ Rn×n,

P2(t) = hs2
2n

∑
i=1

(
e−sNi(t)AT

i (t)Ȧi(t)
)
∈ Rn×n,

P3(t) = hs
2n

∑
i=1

(
e−sNi(t)

(
ȦT

i (t)− sAT
i (t)ḃ(t)

))
∈ Rn.

(45)

It is important to mention that Ȧ(t) =

[
On
On

]
∈ R2n×n and ḃ(t) =

[
0
0

]
∈ R2n. As a

consequence, (26) may be reformulated as below:
(2C(t) + P1(t))η̇(t) + λ̇(t)1 = −γZ1(t)− 2Ċ(t)η(t)

+ ṗg(t)p(t) + pg(t) ṗ(t)− P2(t)η(t)− P3(t)

1Tη̇(t) = −γZ2(t)

(46)

Then setting

M(t)=
[

2C(t)+P1(t) 1
1T 0

]
∈R(1+n)×(1+n),

v(t)=
[
−γZ1(t)−2Ċ(t)η(t)+ ṗg(t)p(t)+pg(t) ṗ(t)−P2(t)η(t)−P3(t)

−γZ2(t)

]
∈R1+n,

(47)

(46) may be reformulated as below:

M(t)ẇ(t) = v(t), (48)

where ẇ(t) =
[

η̇(t)
λ̇(t)

]
∈ R1+n. Since M(t) is a nonsingular mass matrix, the model of (48) is

adequate for addressing the MVPO1 problem of (5)–(7). However, as will be demonstrated
in Section 4, since the construction of p and C in our approach in terms of MATLAB code
relies on function handle, the next model of (31) is simpler to control under a MATLAB
ode solver. As a consequence, the following is the suggested ZNN model for the MVPO1
problem of (5)–(7):

ẇ(t) = M−1(t)v(t), (49)

which, with the exception of the expense of computing the matrix’s inverse, is equivalent to
(48). It is important to note that using a MATLAB solver for the ode can effectively produce
the solution w(t) of Equation (49). The following theorem, Theorem 2, establishes that the
ZNN solver converges to the theoretical solution.
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Theorem 2. The state vector w(t) = [ηT(t), λT(t)]T of ZNN (49) converges universally to the
theoretical solution w∗(t) = [η∗T(t), λ∗T(t)]T starting from any initial condition w(0) ∈ Rn+k.
To put it another way, lim

t→∞
(w∗(t) − w(t)) = 0, while the first n components of x∗(t) are the

theoretical solution η∗(t) of TVQP (39) and (40).

Proof. The error matrix equation group is determined as in (43), inline with the ZNN
architecture, to achieve the solution w(t) of TVQP (39) and (40). Model (44) is then obtained
by using the linear design formula for zeroing (43). When t → ∞, each error matrix
equation in the group (44) converges to zero matrix, according to ([10] Theorem 1). As a
consequence, when t → ∞, the solution of (44) converges to the theoretical solution of
TVQP (39) and (40). Additionally, we can infer from the (49) derivation procedure that it is
merely a variant of the (44) error. Thus, the proof is finished.

3.3. ZNN Approach on the MVPO3 Problem

Similar to the ZNN approach on the MVPO1 and MVPO2 problems, the three steps
listed below can be used to develop a ZNN model in order to solve the MVPO3 problem.

Step 1: (MVPO3 problem reformulation) The MVPO3 problem of (8)–(11) can be reformu-
lated as follows:

min
η(t)

− p(t)Tη(t) (50)

s. t. 1Tη(t) = 1 (51)

ηT(t)C(t)η(t) ≤ pg(t) (52)

η(t) ≤ 1 (53)

− η(t) ≤ 0, (54)

or equivalent

min
η(t)

− p(t)Tη(t) (55)

s. t. 1Tη(t) = 1 (56)

ηT(t)C(t)η(t) ≤ pg(t) (57)

A(t)η(t) ≤ b(t), (58)

where A(t) =

[
In
−In

]
∈ R2n×n and b(t) =

[
1
0

]
∈ R2n. Then, using the penalty function

proposed in [30,31], the problem of (55)–(58) may be reformulated as below:

min
η(t)

− p(t)Tη(t) + P(η(t)) + P2(η(t)) (59)

s. t. 1Tη(t) = 1, (60)

where P(η(t)) = h ∑2n
i=1 e−sNi(t) ∈ R with Ni(t) = bi(t) − Ai(t)η(t), i = 1, 2, . . . , 2n,

and P2(η(t)) = h2W(t) ∈ R with W(t) = e−s2(pg(t)−ηT(t)C(t)η(t)). Notice that h, h2 ≥ 0
and s, s2 > 0, respectively, denote the penalty and the design parameter. The values of
P(η(t)), P2(η(t)), respectively, are more consequent with the conditions (58) as s, s2 in-
crease, although calculations will take longer if s, s2 are too large. When N(t) = 0 and
ηT(t)C(t)η(t) = pg(t), h, h2, respectively, can push the values of P(η(t)), P2(η(t)) to be
close to zero.
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Step 2: (Conditions of minimization) The optimization problem in (59) and (60) is solved
by determining the following Lagrange function:

L(η(t), λ(t), t) = −p(t)Tη(t) + P(η(t)) + P2(η(t)) + λT(t)(1Tη(t)− 1). (61)

The following are the first-order conditions:
∂L(η(t),λ(t),t)

∂η(t) = −p(t) + Pη(t) + P2,η(t) + λ(t)1 = 0
∂L(η(t),λ(t),t)

∂λ(t) = 1Tη(t)− 1 = 0
(62)

where Pη(t) = hs ∑2n
i=1

(
e−sNi(t)AT

i (t)
)
∈ Rn and P2,η(t) = 2h2s2W(t)C(t)η(t) ∈ Rn.

Step 3: (ZNN solver) The next error matrix equation group is set:Z1(t) = −p(t) + Pη(t) + P2,η(t) + λ(t)1

Z2(t) = 1Tη(t)− 1
(63)

and then replacing Z(t) in (12) with Zi(t), i = 1, 2, defined in (63), one obtains:− ṗ(t) + Ṗη(t) + Ṗ2,η(t) + λ̇(t)1 + λ(t)0 = −γZ1(t)

0Tη(t) + 1Tη̇(t) = −γZ2(t)
(64)

where Ṗη(t) = P1(t)η̇(t) + P2(t)η(t) + P3(t) with P1(t), P2(t), P3(t) defined exactly as in
(45), and Ṗ2,η(t) = P4(t)η̇(t) + P5(t)η(t) + P6(t)

P4(t) = 2h2s2W(t)(2s2ηT(t)C(t)η(t)C(t) + C(t)) ∈ Rn×n,

P5(t) = 2h2s2W(t)Ċ(t) ∈ Rn×n,

P6(t) = 2h2s2
2W(t)C(t)η(t)(ηT(t)Ċ(t)η(t)− ṗg(t)) ∈ Rn.

(65)

It is important to mention that Ȧ(t) =

[
On
On

]
∈ R2n×n and ḃ(t) =

[
0
0

]
∈ R2n. As a

consequence, (26) may be reformulated as below:
(P1(t) + P4(t))η̇(t) + λ̇(t)1 = −γZ1(t)− 2Ċ(t)η(t)

−(P2(t) + P5(t))η(t)− P3(t)− P6(t) + ṗ(t)

1Tη̇(t) = −γZ2(t)

(66)

Then setting

M(t)=
[

P1(t)+P2(t) 1
1T 0

]
∈R(1+n)×(1+n),

v(t)=
[
−γZ1(t)−2Ċ(t)η(t)−(P2(t)+P5(t))η(t)−P3(t)−P6(t)+ ṗ(t)

−γZ2(t)

]
∈R1+n,

(67)

(46) may be reformulated as below:

M(t)ẇ(t) = v(t), (68)

where ẇ(t) =
[

η̇(t)
λ̇(t)

]
∈ R1+n. Since M(t) is a nonsingular mass matrix, the model of (68) is

adequate for addressing the MVPO1 problem of (8)–(11); however, as will be demonstrated
in Section 4, since the construction of p and C in our approach in terms of MATLAB code
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relies on function handle, the next model of (31) is simpler to control under a MATLAB
ode solver. As a consequence, the following is the suggested ZNN model for the MVPO1
problem of (8)–(11):

ẇ(t) = M−1(t)v(t), (69)

which, with the exception of the expense of computing the matrix’s inverse, is equivalent to
(68). It is important to note that using a MATLAB solver for the ode can effectively produce
the solution w(t) of Equation (69). The following Theorem 3, establishes that the ZNN
solver converges to the theoretical solution.

Theorem 3. The state vector w(t) = [ηT(t), λT(t)]T of ZNN (69) converges universally to the
theoretical solution w∗(t) = [η∗T(t), λ∗T(t)]T starting from any initial condition w(0) ∈ Rn+k.
To put it another way, lim

t→∞
(w∗(t) − w(t)) = 0, while the first n components of x∗(t) are the

theoretical solution η∗(t) of the optimization problem in (59) and (60).

Proof. The error matrix equation group is determined as in (63), inline with the ZNN
architecture, to achieve the solution w(t) of the optimization problem in (59) and (60).
The model (64) is then obtained by using the linear design formula for zeroing (63). When
t → ∞, each error matrix equation in the group (64) converges to zero matrix, according
to ([10] Theorem 1). As a consequence, when t → ∞, the solution of (64) converges to
the theoretical solution of the optimization problem in (59) and (60). Additionally, we can
infer from the (69) derivation procedure that it is merely a variant of the (64) error. Thus,
the proof is finished.

4. Real-World Simulation Results

The time series data in the MVPO problems are the portfolio’s covariance matrix and
expected return array. Since the input data are in DT, they must be converted to CT. We
accomplish this by employing interpolation functions. Algorithm 1 describes how we
create the expected return array p and its first derivative ṗ, as well as the covariance matrix
C and its first derivative Ċ. It is important to note that the input data must be translated
from DT to CT since we are aiming to calculate the online solution of CT problems. In
order to interpolate linearly between arrays and matrices, Algorithm 1 uses the MATLAB
custom functions linots and linotss, which are retrieved from [34]. The DT arrays
p(t), ṗ(t), pg(t), and ṗg(t) are converted into interpolated CT functions using linots,
and the DT matrices C(t) and Ċ(t) are converted into interpolated CT functions using
linotss. Nevertheless, a number of additional custom interpolation functions for well-
liked interpolation techniques are suggested in [34], where their major benefit over the
commercial functions of MathWorks is that they are being operated more effectively by the
MATLAB ode solvers, reducing computational expenses. To put it another way, when time
series constitute the input data, the ZNN produces quicker results.

To have an appropriate covariance matrix for comparisons, it is important to note
that the portfolio’s data are normalized for each time period. The covariance matrix C is
multiplied by 100 without loss of generality, which results in the variance of the portfolio
being expressed in percentages. Additionally, the MATLAB ode15s solver is used to create
the online solution of the MVPO1, MVPO2, and MVPO3 problems for Equations (31), (49),
and (69), respectively. In addition, in the following experiments, all the parameters have
been set as shown in Table 1. The financial time series utilized are retrieved from https:
//finance.yahoo.com (accessed on 1 February 2022) and the following link leads you to the
entire implementation and development of the MVPO1, MVPO2, and MVPO3 problems
discussed in Sections 3 and 4 on GitHub: https://github.com/SDMourtas/CTMVPO
(accessed on 1 February 2022). Lastly, the solutions provided by the ZNN solver are
contrasted to the presumptive theoretical solutions produced by the MATLAB functions
quadprog in the MVPO1 and MVPO2 problems, and fmincon in the MVPO3 problem,
for comparison purposes.

https://finance.yahoo.com
https://finance.yahoo.com
https://github.com/SDMourtas/CTMVPO
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Table 1. The ZNN parameters for solving the CT MVPO problems.

Case 1: 4 Stocks PortfolioParameters MVPS1 MVPS2 MVPS3
h 1 × 10−8 1 × 10−8 1 × 10−8

s 1 × 105 3 × 104 3 × 104

h2 - - 2 × 10−4

s2 - - 5 × 102

pg 0.963 1 0.045
γ 1 × 104 1 × 104 1 × 104

Case 2: 10 Stocks Portfolio
MVPS1 MVPS2 MVPS3

h 1 × 10−8 1 × 10−8 1 × 10−8

s 6 × 104 3 × 104 3 × 104

h2 - - 2 × 10−4

s2 - - 5 × 102

pg 0.955 1 0.039
γ 1 × 104 1 × 104 1 × 104

Case 3: 20 Stocks Portfolio
MVPS1 MVPS2 MVPS3

h 1 × 10−8 1 × 10−8 1 × 10−8

s 6 × 104 3 × 104 3 × 104

h2 - - 1 × 10−4

s2 - - 5× 102

pg 0.955 1 0.037
γ 1 × 104 1 × 104 1 × 104

Algorithm 1 Data preprocessing algorithm for the CT MVPO problems.

Require: The marketed space Q = [q1, q2, . . . , qn], the moving average’s number of time
periods τ ≤ µ− 1, τ ∈ N.

1: procedure DATA_PREP(Q, τ)
2: Set [µ, n] =size(Q), p =zeros(µ− τ, n), and C{µ− τ, 1} = {}
3: for i = 1 : µ− τ do
4: Set h =max(Q(i : τ + i− 1, :))
5: Put C{i, 1} = 100∗cov(Q(i : τ + i− 1, :)./h)
6: Put p(i, :) =mean(Q(i : τ + i− 1, :)./h)
7: end for
8: for k = 1 :length(p)− 1 do
9: Set Ċ{k, 1} = C{k + 1, 1} − C{k, 1} and ṗ(k, :) = p(k + 1, :)− p(k, :)

10: end for
11: Put Ċ = @(t)linotss(Ċ, t) and C = @(t)linotss(C, t)
12: Put ṗ = @(t)linots( ṗ, t)′ and p = @(t)linots(p, t)′

13: end procedure
Ensure: The CT functions C, Ċ, p and ṗ.

Three alternative portfolio setup cases are covered by the trials. In Figure 1, the portfo-
lio cases are shown, and the marketed space includes some of the most active stocks on the
US market. We consider the market Q = [q1, q2, . . . , qs] in the r-th case, r = 1, 2, 3, where Q
includes the daily prices of the s stocks shown in Figure 1 into q1, q2, . . . , qs, respectively,
for the time period 2 April 2019 to 1 October 2019. We employ linear data interpolation
in the previously mentioned time series to convert them into functions of time; we set
the time delay parameter τ = 20 to calculate the expected returns p and covariance C of
Algorithm 1. The remaining data span the dates 1 May 2019 to 1 October 2019 and includes
107 recorded prices. May, July, and August, in particular, each had 22 recorded prices; June
has 20 recorded prices, and September and October together have 21 recorded prices. To
solve the omitted recorded prices problem between periods of the same division, we utilize
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the parameter ω presented in [34], which splits the recorded prices to the time periods for
each t inside the ZNN model. That is, we set

ω =


22 , t ∈ [0, 1)
(22 + 20 · (t− 1))/t , t ∈ [1, 2)
(42 + 22 · (t− 2))/t , t ∈ [2, 4)
(86 + 21 · (t− 4))/t , t ∈ [4, 5]

and, then, we employ p(ωt), C(ωt) instead of p(t), C(t), and ṗ(ωt), Ċ(ωt) instead of
ṗ(t), Ċ(t). As a result, we divide our time series into five monthly periods, and we set
tspan = [0, 5] in the MATLAB ode15s solver to find the optimal portfolio η(t) for the time
period 1 May 2019 to 1 October 2019. That is, May to October correspond to the values 0 to
5 of the ode15s solver in all the figures in this section. Starting from w(0) =ones(s + 1, 1)/s
in (31), (49), and (69), the results are presented in Figures 2–4.

Case 1

s=4
GSPC XAU AAPL CL

QTEC TSLA GM JNJ KO WMT
Case 2

s=10

Case 2

s=20
7A2-F AIG ALV-DE BRK-B ING LFC AXP BAC C MS

Figure 1. The portfolio cases stocks that have been utilized in the CT MVPO problems experiments.
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Figure 2. Portfolios weights, variance %, expected return, and the error between ZNN and MATLAB’s
solvers in case 1.
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Figure 3. Portfolios variance %, expected return, and the error between ZNN and MATLAB’s solvers
in case 2.
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Figure 4. Portfolios variance %, expected return, and the error between ZNN and MATLAB’s solvers
in case 3.

More precisely, Figure 2a,e,i show the optimal mean-variance portfolios weights η(t)
in the case 1 for the MVPO1, MVPO2, and MVPO3, respectively, generated by quadprog,
fmincon, and ZNN. We may observe, therein, that the portfolios weights are identical.
For the MVPO1, the variance of portfolios η(t) are depicted in Figures 2b, 3a, and 4a for
the cases 1, 2, and 3, respectively. The expected return of portfolios η(t) (i.e., η(t)p(ωt)),
contrasted to the outcome of quadprog and the SMA20 of X(t) (i.e., mean(p(ωt))), for the
cases 1, 2, and 3, respectively, are shown in Figures 2c, 3b, and 4b. These figures also show
the target price pg(t). Comparing the Figures 2b, 3a, and 4a to Figures 2c, 3b, and 4b,
respectively; we can observe that the variance of η(t) is rising only in the case where it
needs to keep its expected return at pg(t).

For the MVPO2, the variance of portfolios η(t) are depicted in Figures 2f, 3d, and 4d
for the cases 1, 2, and 3, respectively. The expected return of portfolios η(t) contrasted to
the outcome of quadprog and the SMA20 of X(t), for the cases 1, 2, and 3, respectively, are
shown in Figures 2g, 3e, and 4e. We may observe, therein, that the variance and expected
return of portfolios η(t) are identical.

For the MVPO3, the variance of portfolios η(t), along with the target price pg(t), are
depicted in Figures 2j, 3g, and 4g for the cases 1, 2, and 3, respectively. The expected return
of portfolios η(t) contrasted to the outcome of fmincon and the SMA20 of X(t), for the cases
1, 2, and 3, respectively, are shown in Figures 2k, 3h, and 4h. Comparing the Figures 2j, 3g,
and 4g to Figures 2k, 3h, and 4h, respectively; we can observe that the expected return of
η(t) is declining only in the case where it needs to keep its variance below the target pg(t).

Figures 2d, 3c, and 4c for the MVPO1 and Figures 2h, 3f, and 4f for the MVPO2 depict
the error between ZNN and quadprog, produced during the ZNN convergence. In addition,
Figures 2l, 3i, and 4i for the MVPO3 depict the error between ZNN and fmincon, produced
during the ZNN convergence. It is important to note that ηquadprog(t), ηfmincon(t), and
ηZNN(t) in these figures represent, respectively, the portfolios produced by the quadprog,
fmincon, and ZNN. Due to the non-smooth changes in portfolio weights, there has been
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a sharp increase in the error depicted in Figures 2l, 3i, and 4i. Furthermore, the noise is
expected since we are dealing with time series and, considering the design parameter’s
γ low value, the error value is excellent. Note that the overall error value of the ZNN
decreases even more when the price of parameter γ increases. Our method is also more
practical when taking into account the ω parameter, which comes in handy when combining
time periods that each have a distinct amount of recorded prices. Overall, the portfolio
cases presented in numerical experiments of this section demonstrate that the ZNN worked
effectively in addressing the MVPO1, MVPO2, and MVPO3 problems.

For the purpose of monitoring the performance between the employed MATLAB
custom functions (namely linots and linotss, pchinots and pchinotss, and splinots
and splinotss), which are taken from [34]; we present Table 2. This table presents the
average consumption time of ZNN, along with quadprog and fmincon, on each portfolio
case, by using all the aforementioned MATLAB functions for linear, P.C.Hermite and
C.Spline interpolation. According to Table 2, the P.C.Hermite is the least effective technique,
while the linear interpolation is the most effective. Furthermore, in the MVPO1 and MVPO2
problems, the ZNN solver is always around twice as quick than the quadprog; however, in
the MVPO3 problem, it is between 20 and 70 times quicker than the fmincon. It is important
to mention that these MATLAB custom functions, which handle matrices and structure
time series, are the best choices in terms of computing time responses, even though they
yield identical results as the corresponding conventional MATLAB functions [13]. The
efficacy and computational efficiency of the ZNN is proven based on this and the analyses
presented in this section’s numerical experiments.

Table 2. The ZNN and MATLAB’s solvers time consumption for solving the MVPO problems.

Interpolation Case 1: 4 Stocks Portfolio
Method MVPO1 MVPO2 MVPO3

ZNN quadprog ZNN quadprog ZNN fmincon
Linear 0.6 s 1.4 s 0.6 s 1.1 s 0.7 s 35 s

P.C.Hermite 1 s 1.3 s 0.4 s 1 s 1 s 23 s
C.Spline 0.4 s 1.1 s 0.4 s 0.9 s 0.6 s 19 s

Case 2: 10 Stocks Portfolio
ZNN quadprog ZNN quadprog ZNN fmincon

Linear 1.3 s 3 s 1 s 2.6 s 2 s 144 s
P.C.Hermite 2.1 s 2.7 s 1.8 s 2.8 s 3.8 s 140 s

C.Spline 1.4 s 2.6 s 1.4 s 2.3 s 2.9 s 135 s
Case 3: 20 Stocks Portfolio

MVPO1 MVPO2 MVPO3
ZNN quadprog ZNN quadprog ZNN fmincon

Linear 2.8 s 4.3 s 2 s 3.8 s 5 s 355 s
P.C.Hermite 4.9 s 5 s 4.4 s 4.6 s 9 s 300 s

C.Spline 2.7 s 4.3 s 3.4 s 4.5 s 5.7 s 290 s

5. Conclusions

Three time-varying MVPO problems are introduced in this paper, as well as three
novel ZNN models for addressing them. The focus of this research was on the use of
NN computational techniques to address the MVPO1, MVPO2, and MVPO3 problems
accurately in a short amount of time. Simulations with real-world data have proved
the efficiency of the NN solver in financial TVQP and TVNLP problems. According
to the results of the simulations, which included three various portfolio configuration
cases, the ZNN models did exceptionally well in addressing the CT MVPO problems,
demonstrating their utility in practical circumstances. A study limitation was the maximum
portfolio dimension because the ZNN approach is unable to handle problems with very
big dimensions.

There are a few prospective study areas that can be explored.

1. The use of NN solvers in higher-dimensional portfolios and in a variety of financial
portfolio optimization tasks.
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2. The ZNN solver’s performance in real-world data problems utilizing varied activa-
tion functions.

3. Due of the importance to real financial markets, future research should concentrate
on problems with more realistic and practical constraints.
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16. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S. Unique non-negative definite solution of the time-varying algebraic
Riccati equations with applications to stabilization of LTV systems. Math. Comput. Simul. 2022, 202, 164–180. [CrossRef]

17. Canakgoz, N.A.; Beasley, J.E. Mixed-integer programming approaches for index tracking and enhanced indexation. Eur. J. Oper.
Res. 2009, 196, 384–399. [CrossRef]

18. Branke, J.; Scheckenbach, B.; Stein, M.; Deb, K.; Schmeck, H. Portfolio optimization with an envelope-based multiobjective
evolutionary algorithm. Eur. J. Oper. Res. 2009, 199, 684–693. [CrossRef]

19. Nobre, J.; Neves, R.F. Combining principal component analysis, discretewavelet transform and xgboost to trade in the financial
markets. Expert Syst. Appl. 2019, 125, 181–194. [CrossRef]

20. Akbay, M.A.; Kalayci, C.B.; Polat, O. A parallel variable neighborhood search algorithm with quadratic programming for
cardinality constrained portfolio optimization. Knowl.-Based Syst 2020, 198, 105944. [CrossRef]

http://doi.org/10.1080/1350486X.2012.675161
http://dx.doi.org/10.1016/j.iref.2019.11.002
http://dx.doi.org/10.1080/17442508.2011.651219
http://dx.doi.org/10.3905/joi.2019.1.076
http://dx.doi.org/10.1007/s10690-008-9067-z
http://dx.doi.org/10.1016/j.neucom.2022.05.036
http://dx.doi.org/10.1109/TNNLS.2019.2957105
http://dx.doi.org/10.1016/j.eswa.2020.114517
http://dx.doi.org/10.1111/mafi.12281
http://dx.doi.org/10.1109/TNN.2005.857946
http://dx.doi.org/10.3390/math10081208
http://dx.doi.org/10.3390/math10111950
http://dx.doi.org/10.1016/j.cor.2021.105582
http://dx.doi.org/10.1109/TNNLS.2021.3052896
http://dx.doi.org/10.1007/s11063-021-10566-y
http://dx.doi.org/10.1016/j.matcom.2022.05.033
http://dx.doi.org/10.1016/j.ejor.2008.03.015
http://dx.doi.org/10.1016/j.ejor.2008.01.054
http://dx.doi.org/10.1016/j.eswa.2019.01.083
http://dx.doi.org/10.1016/j.knosys.2020.105944


Mathematics 2022, 10, 3079 20 of 20

21. Uhlig, F.; Zhang, Y. Time-varying matrix eigenanalyses via Zhang neural networks and look-ahead finite difference equations.
Linear Algebra Its Appl. 2019, 580, 417–435. [CrossRef]

22. Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91.
23. Dai, Z. A Closer Look at the Minimum-Variance Portfolio Optimization Model. Math. Probl. Eng. 2019, 2019, 1–8. [CrossRef]
24. Cornuejols, G.; Tütüncü, R. Optimization Methods in Finance; Cambridge University Press: Cambridge, UK, 2006. [CrossRef]
25. Bielecki, T.R.; Jin, H.; Pliska, S.R.; Zhou, X.Y. Continuous-time mean-variance portfolio selection with bankruptcy prohibition.

Math. Financ. 2005, 15, 213–244. [CrossRef]
26. Draviam, T.; Chellathurai, T. Generalized Markowitz mean-variance principles for multi-period portfolio-selection problems.

Proc. R. Soc. Lond. A 2002, 458, 2571–2607. [CrossRef]
27. Zakamulin, V. Market Timing with Moving Averages: The Anatomy and Performance of Trading Rules; Springer: Berlin/Heidelberg,

Germany, 2017.
28. Markowitz, H.M. Portfolio Selection: Efficient Diversification of Investments; Cowles Foundation Monograph: No. 16; Yale University

Press: New Haven, CT, USA, 1959; p. 368.
29. Zhang, Y.; Wang, Y.; Chen, D.; Peng, C.; Xie, Q. Neurodynamic solvers robotic applications and solution nonuniqueness of linear

programming. In Linear Programming: Theory, Algorithms and Applicant; Nova Science Publishers:Hauppauge, NY, USA, 2014;
pp. 27–100.

30. Zhong, N.; Huang, Q.; Yang, S.; Ouyang, F.; Zhang, Z. A Varying-Parameter Recurrent Neural Network Combined With Penalty
Function for Solving Constrained Multi-Criteria Optimization Scheme for Redundant Robot Manipulators. IEEE Access 2021,
9, 50810–50818. [CrossRef]

31. Zhang, Z.; Yang, S.; Zheng, L. A Penalty Strategy Combined Varying-Parameter Recurrent Neural Network for Solving Time-
Varying Multi-Type Constrained Quadratic Programming Problems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2993–3004.
[CrossRef]

32. Jin, L.; Zhang, Y.; Li, S.; Zhang, Y. Modified ZNN for Time-Varying Quadratic Programming With Inherent Tolerance to Noises
and Its Application to Kinematic Redundancy Resolution of Robot Manipulators. IEEE Trans. Ind. Electron. 2016, 63, 6978–6988.
[CrossRef]

33. Zhang, Y.; Wang, J. Recurrent neural networks for nonlinear output regulation. Automatica 2001, 37, 1161–1173. [CrossRef]
34. Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S.; Li, S.; Cao, X. Time-varying mean-variance portfolio selection under transaction

costs and cardinality constraint problem via beetle antennae search algorithm (BAS). SN Oper. Res. Forum 2021, 2, 18. [CrossRef]

http://dx.doi.org/10.1016/j.laa.2019.06.028
http://dx.doi.org/10.1155/2019/1452762
http://dx.doi.org/10.1017/CBO9780511753886
http://dx.doi.org/10.1111/j.0960-1627.2005.00218.x
http://dx.doi.org/10.1098/rspa.2002.0983
http://dx.doi.org/10.1109/ACCESS.2021.3068731
http://dx.doi.org/10.1109/TNNLS.2020.3009201
http://dx.doi.org/10.1109/TIE.2016.2590379
http://dx.doi.org/10.1016/S0005-1098(01)00092-9
http://dx.doi.org/10.1007/s43069-021-00060-5

	Introduction and Motivation
	Mean-Variance Portfolio Optimization
	Time-Varying MVPO Problem (Version 1)
	Time-Varying MVPO Problem (Version 2)
	Time-Varying MVPO Problem (Version 3)
	Conversion from Discrete-Time to Continuous-Time MVPO Problems

	The Neural Network Approach
	ZNN Approach on the MVPO1 Problem
	ZNN Approach on the MVPO2 Problem
	ZNN Approach on the MVPO3 Problem

	Real-World Simulation Results
	Conclusions
	References

