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1. Introduction

The metric fixed point theory is one of the most useful and attractive topics of nonlinear
functional analysis. Considering Banach’s pioneering fixed point theorem, in the last
hundred years, a large number of results have been observed and published on this
subject [1–7]. Basically, there are two mainstream concepts on the advances of the metric
fixed point: The first is changing (weakening) the conditions of the contraction mapping,
and the second is changing the abstract structure. So far, several generalizations and
extensions of metric spaces have been introduced. Among these are the quasi-metric space,
b-metric space, symmetric space, fuzzy metric space, dislocated metric space, partial metric
space, 2-metric spaces, modular metric spaces, cone metric spaces, ultra metric spaces,
and a lot more of their combinations.

It is worth noting that the fixed point theory is very functional and useful in solving
many problems in various fields. For this reason, a lot of research has been performed
on this subject, and the results of these research works have been published in the form
of articles and books. On the other hand, in the last decades, observational articles have
indicated that the results of a significant number of publications either coincide, overlap, or
are equivalent to other existing results in the literature. These observations underline the
fact that the there is congestion and squeezing with regard to the fixed point theory. For ex-
ample, most of the fixed results for cone metric spaces are equivalent to the corresponding
results in the setting of standard metric space. The same conclusion can be reached for the
G-metric space.

Consequently, the most important reason for us to write this article is to put forward a
proposal to remove this congestion. Therefore in this paper, we propose a new result in the
context of a new structure, namely the supermetric space [8]. We were able to obtain certain
fixed point theorems in this structure, and we think this approach may help to overcome
the aforementioned congestion and squeezing.

Before stating the definition of supermetric, we recall some basic definitions, notations,
and results. We first consider two interesting generalizations of metric spaces: Let X be
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a non-empty set and b, D : X× X → [0, ∞) be two given mappings. We can then say
the following:

(A) b is a b-metric ([9]) on X if it satisfies the following conditions:

(A1)For every (x , y) ∈ X×X, we have b(x , y) = 0 ⇔ x = y ;
(A2)For every (x , y) ∈ X×X, we have b(x , y) = b(y , x );
(A3)There exists s ≥ 1 such that for every (x , y , v) ∈ X×X×X, we have

b(x , y) ≤ s[b(x , v) + b(v , y)].

The tripled (X, b, s) is called a b-metric space.
(B) D is a generalized metric ([10]) on X if it satisfies the following conditions:

(B1) For every (x , y) ∈ X×X, we have D(x , y) = 0 → x = y ;
(B2) For every (x , y) ∈ X×X, we have D(x , y) = D(y , x );
(B3) There exist C > 0 such that if (x , y) ∈ X×X, {xn} ∈ C(D,X, x ), then

D(x , y) ≤ C lim sup
n→∞

D(xn, y),

where C(D,X, x ) =
{
{xn} ∈ X : lim

n→∞
D(xn, x ) = 0

}
.

The tripled (X, D, C) is called a generalized metric space.

Let T : X → X be a mapping and {Tnx }n≥0 be the Picard iteration for the initial point
x ∈ X, where Tn denotes the n-th iterates of T. Following [11], we then say that the Picard
sequence is

• infinite if
xn 6= xp for all n, p ∈ N, n 6= p; (1)

• almost periodic if there exists k0, N ∈ N, such that

xk0+k+Nm = xk0+k for all m ∈ N and all k ∈ {0, 1, 2, ..., N − 1}. (2)

Therefore,

{xk : k ≥ k0} =
{

xk0 , xk0+1, xk0+2, ..., xk0+N−1
}
= {xk : k ≥ m0}, (3)

for all m0 ≥ k0 (see [11]).

The mapping T is asymptotically regular if lim
k→∞

m(Tkx ,Tk+1x ) = 0 for every x ∈ X.

A fixed point of a mapping T : X→ X is an element ω ∈ X, such that Tω = ω.

2. Main Results

We begin this section with the definition of the supermetric.

Definition 1. Let m : X × X → [0,+∞), where X is a nonempty set. We say that m is a
supermetric if it satisfies the following axioms:

(m1) For all x , y ∈ X, if m(x , y) = 0, then x = y ;
(m2) m(x , y) = m(y , x ) for all x , y ∈ X;
(m3) There exists s ≥ 1 such that for every y ∈ X, there exist distinct sequences (xn), (yn) ⊂ X,

with m(xn, yn)→ 0 when n→ ∞, such that

lim sup
n→∞

m(yn, y) ≤ s lim sup
n→∞

m(xn, y). (4)

The tripled (X, m , s) is called a supermetric space.

The notions of convergence and the Cauchy sequence with respect to completeness of
a supermetric space are defined as follows:
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Definition 2. On a supermetric space (X, m , s), a sequence {xn}:
(c) converges to x in X if and only if lim

n→∞
m(xn, x ) = 0;

(C) is a Cauchy sequence in X if and only if lim
n→∞

sup
{

m(xn, xp) : p > n
}
= 0.

Proposition 1. On a supermetric space, the limit of a convergent sequence is unique.

Proof. Let x ∈ X, and (xn) be a sequence in X such that m(xn, x ) → 0 as n → ∞. Thus,
letting yn = x in (m3), we get

m(x , y) ≤ s lim sup
n→∞

m(xn, y),

for any y ∈ X. Supposing that (xn) converges to y , the above inequality leads to m(x , y) = 0.
Consequently, taking (m1) into account, it follows that x = y .

Definition 3. We say that a supermetric space (X, m , s) is complete if and only if every Cauchy
sequence is convergent in X.

Example 1. Let the set X = R, s = 2, and m : X × X → [0, ∞) be an application defined
as follows:

m(x , y) = (x − y)2, for x , y ∈ R \ {1}

m(1, y) = m(y , 1) = (1− y3)2, for y ∈ R

Of course, we can easily observe that the conditions (m1) and (m2) are satisfied. Let y ∈ R \ {1}
and two sequences {xn}, {yn} in R \ {1}, such that m(xn, yn)→ 0 as n→ ∞. Thus, we get that
lim

n→∞
xn = lim

n→∞
yn = v and

lim sup
n→∞

m(yn, y) = lim sup
n→∞

(xn − y)2 = (v − y)2 ≤ s(v − y)2 = lim sup
n→∞

m(xn, y).

If y = 1, by choosing the same sequences {xn}, {yn} ∈ X, it follows that (m1) indeed holds.
Consequently, the tripled (X, m , s) forms a supermetric space.

On the other hand, let C(m ,X, 1) =
{
{xn} ∈ X : lim

n→∞
m(xn, 1) = 0

}
. If we can find s ≥ 1,

such that

(1− y3)2 = m(1, y) ≤ s lim sup
n→∞

m(xn, y) = s lim sup
n→∞

(xn − y)2 = s(1− y)2,

for any y ∈ R \ {1}, we get (1+ y + y2)2 ≤ s. Subsequently, we cannot find a bound for s by which

m(1, y) ≤ s lim sup
n→∞

m(xn, y).

This shows that (X, m , s) is not a generalized metric space.

Example 2. Let the set X = [0,+∞] and m : X × X → [0,+∞) be an application, defined
as follows:

m(x , y) =
|xy−1|
x+y+1 , for x , y ∈ [0, 1) ∪ (1,+∞], x 6= y

m(x , y) = 0, for x , y ∈ [0,+∞) x = y ,
m(x , 1) = m(1, x ) = |x − 1|, for x ∈ [0,+∞]

′

We can easily see that m forms a supermetric on X. Indeed, for any y ∈ X, choosing the sequences
(xn), (yn) in (X), such that lim

n→∞
xn = lim

n→∞
yn = 1, we have m(xn, yn)→ 0 as n→ ∞. Thus, the

following can be stated:
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1. For y 6= 1,

lim sup
n→∞

m(yn, y) = lim sup
n→∞

|yny − 1|
yn + y + 1

=
|y − 1|
y + 2

≤ s
|y − 1|
y + 2

= s lim sup
n→∞

m(xn, y),

for any s ≥ 1;
2. For y = 1,

lim sup
n→∞

m(yn, 1) = lim sup
n→∞

|yn − 1| = 0 ≤ s lim sup
n→∞

m(xn, y),

for any s ≥ 1.

Consequently, since (m1), (m2) are obviously satisfied, it follows that m is a supermetric on X.
However, for instance, by letting x = n, y = 2n, n ∈ N, and z = 0, if there exists s ≥ 1 such

that

m(x , y) =

∣∣2n2 − 1
∣∣

3n + 1
≤ s

[
1

n + 1
+

1
2n + 1

]
= s[m(x , 0) + m(0, y)],

we get that s ≥ |2n2−1|(2n2+3n+1)
3n+2 , which is a contradiction because X is unbounded. Consequently,

m does not define a b-metric.
At the same time, letting y ∈ X, y 6= 1 and the sequence (xn) in X, such that xn → 1 as

n→ ∞,

m(1, y) = |y − 1| ≤ s lim sup
n→∞

m(xn, y) = s lim sup
n→∞

|xny − 1|
xn + y + 1

=
|y − 1|
y + 2

,

which means that s ≥ y + 2, which is a contradiction. Therefore, m it is not a generalized metric
on X.

Proposition 2. Let T : X→ X be an asymptotically regular mapping on a complete supermetric
space (X, m , s). Then, the Picard iteration {Tnx} for the initial point x ∈ X is a convergent
sequence on X.

Proof. For x ∈ X, setting xk = Tkx for n ∈ N∪ {0}, we have

lim
k→∞

m(xk, xk+1) = 0. (5)

We can assume that the Picard sequence of T is infinite. If not, we can find a pair (k, p),
k, p ∈ N ∪ {0}, k < p, such that xk = xp. Choosing (k0, p0) such that the difference of
N = p0 − q0 is minimum, we can claim that

xk0+Nq = xk0 for all q ∈ N. (6)

To prove this, we use mathematical induction. Indeed, for q = 0, we have xk0 = xk0 , and for
q = 1, we get xk0+N = xp0 = xk0 . Now, supposing that (6) holds for some q ∈ N, we have

xk0+N(q+1) = xk0+Nq+N = TN(xk0+Nq) = TNxk0 = xk0+N = xk0 ,

which completes the proof of our claim. Moreover,

xk0+k+Nq = Tk(xk0+Nq) = Tkxk0 = xk0+k,

for all q ∈ N and all k ∈ {0, 1, 2, ..., N − 1}, that is, the sequence {xk} is almost periodic.
Now,
Case 1. If N = 1, we have xk0+q = xk0 for all q ≥ 0, which means that for k ≥ k0, xk = ω,
where ω ∈ X. Therefore, Tω = Txk = xk+1 = ω, so ω is a fixed point of the mapping T.
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Case 2. If N ≥ 2, then xk0+j 6= xk0+l for all 0 ≤ j < l ≤ N − 1, because N was supposed to
be the smallest integer such that (6) holds. Thus, for l = j + 1, we have

2ε = min
0≤j≤N−1

m(xk0+j, xk0+j+1) > 0.

On the other hand, by (5), there exists r0 ∈ N with r0 ≥ k0, such that

m(xr0 , xr0+1) < ε. (7)

If ̂(r0 − k0)modN = j0, with j0 ∈ {0, 1, 2, ..., N − 1}, there exists an unique integer q ≥ 0, such
that r0 − k0 = Nq + j0 and

xr0 = xk0+j0+Nq = xk0+j0 ,

where k0 + j0 ∈ {k0, k0 + 1, ..., k0 + N − 1}. Thus, we obtain

2ε = min
0≤j≤N−1

m(xk0+j, xk0+j+1) ≤ m(xk0+j0 , xk0+j0+1) = m(xr0 , xr0+1) < ε,

which is a contradiction. Consequently, we can assume that the Picard sequence {xk} of T
is infinite. Thus, by using mathematical induction, we will show that

lim
p→∞

m(xp, xp+n) = 0, for all n > 0. (8)

Without loss of generality, we can suppose that xp 6= xp+n. Indeed, for n = 1, by (5),
lim
p→∞

m(xp, xp+1) = 0. Letting n = 2 , by (m3), we have

lim sup
p→∞

m(xp, xp+2) ≤ s lim sup
p→∞

m(xp+1, xp+2) = 0;

it follows that lim sup
p→∞

m(xp, xp+2) = 0. Now, supposing that lim sup
p→∞

m(xp, xp+n) = 0, where

n > 0, we have
lim sup

p→∞
m(xp, xp+n+1) ≤ s lim sup

p→∞
m(xp, xp+n) = 0.

Consequently,

lim
n→∞

sup
{

m(xp, xn) : n > p
}
= 0,

that is, the sequence {xk} is Cauchy. Since the space (X, m , s) was supposed to be complete,
we know that there exists ω ∈ X, such that lim

k→∞
m(xk, ω) = 0.

Rational Contractions in Super Metric Space

Theorem 1. Let (X, m , s) be a complete supermetric space and T : X→ X be a mapping, such that
there exists κ ∈ [0, 1) and that

m(Tx ,Ty) ≤ κ max
{

m(x , y),
m(x ,Tx )m(y ,Ty)

m(x , y) + 1

}
. (9)

Then, T has a unique fixed point.

Proof. Let x ∈ X and {xk} be the Picard iteration of the mapping T. If there exists k0 ∈ N,
such that xk0 = xk0+1, from the way in which this sequence is defined, it follows that
Txk0 = xk0+1 = xk0 , which means that xk0 is a fixed point of the mapping T. Therefore,
we can assume that xk 6= xk+1 for all k ∈ N. Hence, m(xk0 , xk0+1) > 0, and taking (9)
into account,
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m(xk, xk+1) = m(Txk−1,Txk) ≤ κ max
{

m(xk−1, xk),
m(xk−1,Txk−1)m(xk ,Txk)

m(xk−1,xk)+1

}
= κ max

{
m(xk−1, xk),

m(xk−1,xk)m(xk ,xk+1)
m(xk−1,xk)+1

}
≤ κ max{m(xk−1, xk), m(xk, xk+1)}.

Since in the case of max{m(xk−1, xk, m(xk, xk+1)} = m(xk, xk+1) we get a contradiction
(m(xk, xk+1) ≤ κm(xk, xk+1) < m(xk, xk+1)), it follows that max{m(xk−1, xk), m(xk, xk+1)} =
m(xk−1, xk). Thus, we have

0 < m(xk, xk+1) ≤ κm(xk−1, xk) ≤ κ2m(xk−2, xk−1) ≤ ... ≤ κkm(x0, x1),

and in taking the limit from the above inequality, we get

lim
k→∞

m(xk, xk+1) = lim
k→∞

m(Tk−1x ,Tkx ) = 0.

Therefore, T is asymptotically regular, and from Proposition (2), the Picard iteration {Tnx }
is a convergent sequence. Thus, there exists ω ∈ X, such that lim

n→∞
m(xn, ω) = 0.

We claim that ω is a fixed point of the mapping T. If not, ω 6= Tω, and then
m(ω,Tω) > 0. On the other hand, since the sequence {xk} is supposed to be infinite,
we can find a sub-sequence

{
xkn

}
of the sequence {xk}, such that xkn 6= ω for all kn ∈ N.

Thus, by (m3),
0 < m(xkn+1,Tω) = m(Txkn ,Tω)

≤ κ max
{

m(xkn , ω), m(xkn ,Txkn )m(ω,Tω)
m(xkn ,ω)+1 ,

}
= κ max

{
m(xkn , ω), m(xkn ,xkn+1)m(ω,Tω)

m(xkn ,ω)+1

}
≤ s lim sup

n→∞
m(ω, xkn) = 0.

(10)

Consequently,
lim

n→∞
m(xkn+1,Tω) ≤ κ lim

n→∞
m(ω, xkn) = 0,

and we obtain lim
n→∞

m(xkn+1,Tω) = 0. That is, that Tω is also a limit for the Picard iteration.

However, from Proposition 1, it follows that Tω = ω, so that ω is a fixed point of the
mapping T.

Supposing that there exists another point, η ∈ X, such that Tη = η 6= ω = Tω. Then,
by (9), we have

m(Tη,Tω) ≤ κ max
{

m(η, ω), m(η,Tη)m(ω,Tω)
m(η,ω)+1

}
= κm(η, ω) < m(η, ω),

which is a contradiction.

Example 3. Let X = [0, 1], s = 1, and the application m : X×X→ [0, ∞) be defined as follows:

m(x , y) = xy , for all x 6= y , x , y ∈ (0, 1);

m(x , y) = 0, for all x = y , x , y ∈ [0, 1];

m(0, y) = m(y , 0) = y , for all y ∈ (0, 1];

m(1, y) = m(y , 1) = 1− y
2 , for all y ∈ [0, 1).
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We claim that m is a supermetric on X. Since the conditions (m1), (m2) are easy to verify, we will
focus on (m3). For any y ∈ (0, 1), we can choose the sequences {xn}, {yn} in X, where

xn =
n2 + 1
n2 + 2

, and yn =
n + 1
n2 + 1

, for any n ∈ N.

Since lim
n→∞

xn = 1 and lim
n→∞

yn = 0, we have lim
n→∞

m(xn, yn) = 0. Thus,

lim sup
n→∞

m(yn, y) = lim sup
n→∞

yny = 0,

lim sup
n→∞

m(xn, y) = lim sup
n→∞

xny = y ,

and (m1) holds.
If y = 0, using the same sequences, we get

lim sup
n→∞

m(yn, y) = lim sup
n→∞

yn = 0,

lim sup
n→∞

m(xn, y) = lim sup
n→∞

xn = 1,

and again, (m1) holds.
If y = 1, choosing xn = n+1

n2+2 and yn = n+2
n+3 , we have m(xn, yn) = 0 and

lim sup
n→∞

m(yn, y) = lim sup
n→∞

(1− yn

2
) =

1
2

,

lim sup
n→∞

m(xn, y) = lim sup
n→∞

(1− xn

2
) = 1.

Therefore,

lim sup
n→∞

m(yn, y) =
1
2
< 1 = s lim sup

n→∞
m(xn, y).

Hence, our claim is proven. That is, m defines a supermetric on X.
On the other hand, let {zn} be a sequence in X, such that lim

n→∞
zn = 1. Since m(1, y) = 1− y

2 ,

for any y ∈ (0, 1), if there exists C > 0 such that

1− y
2
= m(1, y) ≤ C lim sup

n→∞
m(zn, y) = C lim sup

n→∞
zny ≤ Cy , (11)

we get C > (1− y
2 )/y . Subsequently, we cannot find a bound for C, such that 11 holds; that means

m is not a generalized metric space.

Now, let the mapping T : X → X, with Tx =


x
2 , if x ∈ [0, 1)

1
8 , if x = 1

. We then check if the

mapping T satisfies (9), for κ = 1
2 . We consider the following cases:

1. If x , y ∈ (0, 1), we have

m(x , y) = xy , m(Tx ,Ty) = m( x
2 , y

2 ) =
xy
4 ,

m(Tx ,Ty) =
xy
4 ≤

xy
2 = κ · m(x , y) ≤ κ ·max

{
m(x , y), m(x ,Tx )m(y ,Ty)

m(x ,y)+1

}
.

2. If x = 0, y ∈ (0, 1), we have

m(0, y) = y , m(T0,Ty) = m(0, y
2 ) =

y
2 ,

m(Tx ,Ty) =
y
2 ≤

y
2 = κ · m(0, y) ≤ κ ·max

{
m(0, y), m(0,T0)m(y ,Ty)

m(0,y)+1

}
.
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3. If x = 0, y = 0 or x = 1, y = 1, we have m(x , y) = 0 = m(Tx ,Ty), and so (9) is
obviously verified.

4. If x = 0, y = 1:

m(0, 1) = 1, m(T0,T1) = m(0, 1
8 ) =

1
8 ,

m(T0,T1) = 1
8 < 1

2 = κ · m(0, 1) ≤ κ ·max
{

m(0, 1), m(0,T0)m(1,T1)
m(0,1)+1

}
.

5. If x = 1, y ∈ (0, 1):

m(1, y) = 1− y
2 , m(T1,Ty) = m( 1

8 , y
2 ) =

y
16 , m(1,T1) = 1− 1

16 , m(y ,Ty) = y2

2

m(T1,Ty) =
y

16 ≤
1
2
(
1− y

2
)
= κ · m(1, y) ≤ κ ·max

{
m(1, y), m(1,T1)m(y ,Ty)

m(1,y)+1

}
.

Therefore, we conclude that the mapping T has a unique fixed point; that is, x = 0.

Theorem 2. Let (X, m , s) be a complete supermetric space and T : X → X be an asymptotically
regular mapping. If there exists κ ∈ [0, 1), such that

m(Tx ,Ty) ≤ κ max


m(x , y), m(x ,Ty)+m(y ,Tx )

2s

m(x ,Tx )m(x ,Ty)+m(y ,Ty)m(y ,Tx )
m(x ,Ty)+m(y ,Tx )+1

, (12)

then T has a unique fixed point.

Proof. Let x ∈ X be an arbitrary (but fixed) point in X and {xk} the Picard sequence associ-
ated with the mapping T, which started in x . Since T is an asymptotically regular mapping,

lim
k→∞

m(xk, xk+1) = 0, (13)

and moreover, by Proposition 1, there exists ω ∈ X, such that

lim
k→∞

m(xk, ω) = 0. (14)

Supposing that xk 6= xk+1 for all k ∈ N (see the previous proof), replacing these in (12),
we have

0 < m(xk+1,Tω) = m(Txk,Tω)

≤ κ max


m(xk, ω), m(xk ,Tω)+m(ω,Txk)

2s ,

m(xk ,Txk)m(xk ,Tω)+m(ω,Tω)m(ω,Txk)
m(xk ,Tω)+m(ω,Txk)+1


= κ max


m(xk, ω), m(xk ,Tω)+m(ω,xk+1)

2s ,

m(xk ,Tω)m(xk ,xk+1)+m(ω,Tω)m(ω,xk+1)
m(xk ,Tω)+m(ω,xk+1)+1
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Consequently, while keeping in mind (13), (14), and (m3), we get

lim sup
k→∞

m(xk+1,Tω) ≤ κ lim sup
k→∞

max


m(xk, ω), m(xk ,Tω)+m(ω,xk+1)

2s ,

m(xk ,Tω)m(xk ,xk+1)+m(ω,Tω)m(ω,xk+1)
m(xk ,Tω)+m(ω,xk+1)+1


≤ κ lim sup

k→∞

m(xk,Tω)

2s

≤ κs lim sup
k→∞

m(xk+1,Tω)

2s

= κ lim sup
k→∞

m(xk+1,Tω).

However, κ ∈ [0, 1), therefore

lim sup
k→∞

m(xk+1,Tω) = 0,

which means that Tω is the limit of the Picard iteration, and Propsition 1 leads us to
Tω = ω.

If we can find another point, η ∈ X, such that η = Tη and η 6= ω, then

0 < m(η, ω) = m(Tη,Tω) ≤ κ max


m(η, ω), m(η,Tω)+m(ω,Tη)

2s ,

m(η,Tη)m(η,Tω)+m(ω,Tω)m(ω,Tη)
m(η,Tω)+m(ω,Tη)+1


= κm(η, ω) < m(η, ω),

which is a contradiction. Therefore, the mapping T has a unique fixed point.

Example 4. Let the set X = {1, 2, 3, 4} and m : X×X→ [0,+∞) be an application, such that

m(x , y) = m(y , x ) = |x − y |2, for x , y ∈ {2, 3, 4}
m(1, x ) = m(x , 1) = (1− x 3)2, for x ∈ X

It is easy to check that m forms a supermetric on X, with s = 2. Now, let the mapping T : X→ X,
where

T1 = T4 = 2, T2 = T3 = 3.

First of all, we observe that T is an asymptotically regular mapping since Tnx = 3 for any
n ∈ {2, 3, ...}. We must then consider the following cases:

1. For x = 1, y = 4, respectively x = 2, y = 3, we have m(Tx ,Ty) = 0, and (12) holds for any
κ ∈ (0, 1).

2. For x = 1, y = 2, we have m(1, 2) = 49, m(T1,T2) = m(2, 3) = 1, and (12) holds for any
κ ∈ (0, 1).

3. For x = 1, y = 3, we have m(1, 3) = 262, m(T1,T3) = m(2, 3) = 1, and (12) holds for any
κ ∈ (0, 1).

4. For x = 2, y = 4, we have m(2, 4) = 16, m(T2,T4) = m(2, 3) = 1, and (12) holds for any
κ ∈ (0, 1).

5. For x = 3, y = 4, we have m(3, 4) = 1, m(T3,T4) = m(2, 3) = 1, and

m(3,T3) = m(3, 3) = 0, m(4,T4) = m(4, 2) = 4,
m(3,T4) = m(3, 2) = 1, m(4,T3) = m(4, 3) = 1.
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Thus,

max


m(3, 4), m(3,T4)+m(4,T3)

2s

m(3,T3)m(3,T4)+m(4,T4)m(4,T3)
m(3,T4)+m(4,T3)+1

 = max
{

1,
2
4

,
4
3

}
=

4
3

.

Therefore, in choosing κ = 7
8 , for example, we have

m(T3,T4) = 1 ≤ 7
6
= κ max

{
1,

2
4

,
4
3

}
= κ max


m(3, 4), m(3,T4)+m(4,T3)

2s

m(3,T3)m(3,T4)+m(4,T4)m(4,T3)
m(3,T4)+m(4,T3)+1

,

and (12) holds. Hence, according to Theorem 2, we can conclude that the mapping T has a
unique fixed point, this being x = 3.
In the end, we observe that Theorem 1 cannot be applied because by letting x = 3, y = 4
in (9), we have

m(T3,T4) = 1 ≤ κ = κ max
{

m(3, 4),
m(3,T3)m(4,T4)

m(3, 4) + 1

}
,

which is a contradiction.

Theorem 3. Let (X, m , s) be a complete supermetric space and T : X → X be an asymptotically
regular mapping. If there exist κ ∈ [0, 1) and L ≥ 0, such that

m(Tx ,Ty) ≤ κ · m(x , y) + L ·min
{

m(x ,Tx ), m(y ,Ty),
m(x ,Tx )m(y ,Ty)

m(x , y) + 1
,

m(x ,Ty)m(y ,Tx )
m(x , y) + 1

}
, (15)

then T has a fixed point.

Proof. Let x ∈ X be an arbitrary (but fixed) point in X and {xk} the Picard sequence
associated with the mapping T, which started in x . Since T is an asymptotically regular
mapping,

lim
k→∞

m(xk, xk+1) = 0, (16)

and moreover, by Proposition 1, there exists ω ∈ X, such that

lim
k→∞

m(xk, ω) = 0. (17)

We can then claim that ω is a fixed point of the mapping T. Supposing that xk 6= xk+1 for all
k ∈ N (see the previous proof), by replacing this in (15), we have

0 < m(xk+1,Tω) = m(Txk,Tω)

≤ κ · m(xk, ω) + L ·min
{

m(xk,Txk), m(ω,Tω), m(xk ,Txk)m(ω,Tω)
m(xk ,ω)+1 , m(xk ,Tω)m(ω,Txk)

m(xk ,ω)+1

}
,

= κ · m(xk, ω) + L ·min
{

m(xk, xk+1), m(ω,Tω), m(xk ,xk+1)m(ω,Tω)
m(xk ,ω)+1 , m(xk ,Tω)m(ω,xk+1)

m(xk ,ω)+1

}
.

Letting k→ ∞ in the above inequality, we have

lim
k→∞

m(xk+1,Tω) ≤ lim
k→∞

κm(xk, ω) + +L ·min


m(xk, xk+1), m(ω,Tω),

m(xk ,xk+1)m(ω,Tω)
m(xk ,ω)+1 , m(xk ,Tω)m(ω,xk+1)

m(xk ,ω)+1


 = 0.

Therefore, lim
k→∞

m(xk+1,Tω) = 0, and then Tω = ω.
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Example 5. Let the set X = [0,+∞) and m : X×X→ [0, ∞) be the supermetric (s = 2) defined
as follows:

m(x , y) = (x − y)2, for x , y ∈ R \ {1},

m(1, y) = m(y , 1) = (1− y3)2, for y ∈ R.

Let T : X→ X be a mapping defined by Tx =

{
3, for x ∈ [0, 6]

4, for x ∈ (6,+∞)
. Since T is an asymptoti-

cally regular mapping, we must make sure that (15) holds. Let κ = 1
2 .

For any x , y ∈ [0, 6] and respectively x , y ∈ (6,+∞), we have m(Tx ,Ty) = 0, and obviously,
(15) holds.

If x = 3, y ∈ (6,+∞),

m(3, y) = |3− y |2, m(T3,Ty) = 1, m(3,T3) = m(3, 3) = 0,

and

m(T3,Ty) = 1 ≤ |3− y |2

2
= κ · m(3, y).

Therefore, (15) holds.
If x = 4, y ∈ (6,+∞),

m(4, y) = |4− y |2, m(T4,Ty) = 1, m(4,Ty) = m(4, 4) = 0,

m(T4,Ty) = 1 ≤ |4− y |2

2
= κ · m(4, y),

and hence, (15) holds.
Similarly, if x = 1, y ∈ (6,+∞), we have

m(1, y) = (1− y3)2, m(T1,Ty) = 1,

and

m(T1,Ty) = 1 ≤ (1− y3)2

2
= κ · m(1, y).

If x ∈ [0, 1) ∪ (1, 3) ∪ (3, 4) ∪ (4, 6], y ∈ (6,+∞),

m(x , y) = |x − y |2, m(Tx ,Ty) = 1,

and min
{

m(x ,Tx ), m(y ,Ty), m(x ,Tx )m(y ,Ty)
m(x ,y)+1 , m(x ,Ty)m(y ,Tx )

m(x ,y)+1

}
6= 0. Consequently, we can find an

L > 0, such that (15) is satisfied.

3. Conclusions

In the last decades, in relation to the metric fixed point theory, a vast number of
the fixed point results have been re-discovered or have overlapped the existing ones;
additionally, equivalent versions have been published due to some false assumptions.
The main reason for these situations is that the theory is squeezed. In this paper, we
propose a new structure in which the existence and uniqueness of the fixed point of certain
operators can be discussed. The notion of the supermetric is possibly a very good candidate
for expanding the metric fixed point theory. In this paper, we gave some fixed point
theorems for this new structure. We believe that a good examination of this structure will
give priority to overcoming the congestion of the metric fixed point theory.
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