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Abstract: In this study, we mainly employ a proper orthogonal decomposition (POD) to lower
the dimension for the unknown Crank–Nicolson finite element (FE) (CNFE) solution coefficient
vectors of the viscoelastic wave (VW) equation so as to build a reduced-dimension recursive CNFE
(RDRCNFE) algorithm, adopt matrix analysis to analyze the stability together with errors to the
RDRCNFE solutions, and utilize some numerical experimentations to verify the effectiveness of the
RDRCNFE algorithm.
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1. Introduction

Let Θ ⊂ Rs (s = 2, 3) be a bounded open region with the boundary ∂Θ. For convenience,
we herein study the following viscoelastic wave (VW) equation with constant coefficients.

Problem 1. Seek v : (t, x)→ R that meets
vtt(t, x)− λ∆vt(t, x)− ε∆v(t, x) = ρ(t, x), t ∈ (0, T), x ∈ Θ,

v(t, x) = φ(t, x), t ∈ (0, T), x ∈ ∂Θ,

v(0, x) = v0(x), vt(0, x) = $(x), x ∈ Θ̄,

(1)

in which x = (x1, x2, . . . , xs), vt = ∂u/∂t, vtt = ∂2u/∂t2, ∆ represents the Laplacian, λ and ε
are two positive reals, T represents the final moment, and ρ(t, x), φ(t, x), v0(x), and $(x) are four
sufficiently smooth known functions.

The VW equation is of real physical significance and is available for depicting natural
phenomena such as vibration wave diffusion (see [1–4]). However, when it includes compli-
cated initial boundary values and a source term or the irregular calculated region Θ, it has no
analytical solution. Therefore, we have to seek its approximate numerical solutions (see [1–4]).

The Crank–Nicolson finite element (FE) (CNFE) algorithm in [4] is one of the best
numerical methods for finding the numerical solutions of the VW equation since its CNFE
solution is unconditionally stable, but it also includes many unknowns. Hence, the object
herein is to lower the dimension of unknown solution vectors in the CNFE algorithm so as
to mitigate the CPU runtime, as well as the error accumulating in the calculated procedure.

It has been proven from many numerical experimentations (see, e.g., [4–28]) that the
proper orthogonal decomposition (POD) is one of the most valid methods that reduces
the unknowns in the numerical methods. Unfortunately, according to our knowledge, at
the moment, there is no study in which the dimension of the unknown CNFE solution
vectors for the VW equation is reduced by the POD method. Hence, we herein make
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use of the POD to lower the dimension of unknown CNFE solution vectors for the VW
equation so as to establish the reduced-dimension recursive CNFE (RDRCNFE) algorithm.
In this case, the RDRCNFE algorithm possesses the same FE subspace and accuracy as the
classical CNFE algorithm, but is distinguished from the dimension reduction methods of
FE subspaces in existing works [4,5,8,17] because the accuracy in the dimension reduction
methods of FE subspaces would be severely affected by POD dimension reduction. Of
course, the RDRCNFE algorithm is also distinguished from the reduced dimension methods
of unknown solution vectors for the hyperbolic, parabolic, Sobolev, and unsteady Stokes
equations in [10,11,27,28], both technically and theoretically, because the VW equation is
far more complex than the hyperbolic, parabolic, Sobolev, and unsteady Stokes equations.

The rest of this paper is arranged as follows. The functional form and matrix form of
the CNFE algorithm for the VW equation, the existence, as well as the stability, together
with the error estimations for the CNFE solutions are given in Section 2. In Section 3, the
RDRCNFE algorithm is constructed with the POD basis vectors generated by the first
several CNFE solution vectors, and the stability, as well as the errors for the RDRCNFE
solutions are analyzed via matrix analysis, resulting in a very simple theoretical analysis.
In Section 4, several numerical experimentations are used to confirm the advantage of the
RDRCNFE algorithm. The main conclusions are summarized in Section 5.

2. The CNFE Algorithm

For the sake of convenience in the theoretical analysis, we suppose that ε = λ = 1 and
φ(t, x) = 0 in Sections 2 and 3.

The Sobolev spaces, as well as the norms used herein are traditional (see [29]). If we
set U = H1

0(Θ) := {v : v|∂Θ = 0,
∫

Θ |v(x)|2dx +
∫

Θ |∇v(x)|2dx < ∞}, by using Green’s
formula for Problem 1, we may derive the following functional formulation.

Problem 2. For t ∈ (0, T), seek v ∈ U that satisfies{
(vtt, ϑ) + B̃(vt, ϑ) + B̃(v, ϑ) = (ρ, ϑ), ∀ϑ ∈ U,

v(x, 0) = v0(x), vt(x, 0) = $(x), x ∈ Θ̄,
(2)

where (·, ·) represents the inner product in L2(Θ) and B̃(v, ϑ) = (∇v,∇ϑ).

The existence and uniqueness of the solution to Problem 2 were given in [4,8].
Assume that=h is a quasi-uniform triangulation onto Θ̄ (see [4]) and the M-dimensional

FE subspace Uh is spanned with the normalized bases
{

ζ j(x)
}M

j=1 with respect to the inner

product B̃(·, ·) in H1
0(Θ), i.e., B̃(ζi, ζ j) =

{
1, if i = j;
0, if i 6= j,

in which
{

ζ j(x)
}M

j=1 may be

obtained by orthonormalizing in [29], Section 1.6.3, and ζ j(x)|K ∈ Pl(K) (K ∈ =h) are
lth-degree polynomials, namely

Uh =
{

ϑh ∈ H1
0(Θ) : ϑh|K ∈ Pl(K), K ∈ =h

}
= span{ζ j : j = 1, 2, . . . , M}. (3)

For a given positive integer N, we assume that ∆t = T/N is the time step, vn
h is the

CNFE solutions at time moments tn = n∆t, and ρn = ρ(t, xn) (0 6 n 6 N). Then, the
CNFE algorithm of the functional-form for Problem 2 can be stated as follows.

Problem 3. Seek vn
h ∈ Uh (1 6 n 6 N) that satisfies

2(vn+1
h , ϑh)− 4(vn

h , ϑh) + 2(vn−1
h , ϑh)

+∆tB̃(vn+1
h −vn−1

h , ϑh) + ∆t2B̃(vn+1
h + vn−1

h , ϑh)

= 2∆t2(ρn, ϑh), ∀ϑh ∈ Uh, 1 6 n 6 N − 1

v0
h(x) = Phv0(x), v1

h(x) = v0
h(x) + ∆tPh$(x), x ∈ Θ̄.

(4)
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Herein, Ph : H1
0(Θ)→ Uh represents the Ritz projection (see [4]).

By using the normalized bases
{

ζ j(x)
}M

j=1, the CNFE solutions to Problem 3 can be
denoted by the following vector-form:

vn
h =

M

∑
j=1

cn
j ζ j(x) = Un · ζ,

where Un = (un
1 , un

2 , . . . , un
M)T and ζ = (ζ1, ζ2, . . . , ζM)T . Thus, Problem 3 may be rewritten

in the following matrix form.

Problem 4. Seek Un ∈ RM and vn
h ∈ Uh (1 6 n 6 N) that satisfy

2C(Un+1 − 2Un + Un−1) + ∆t(Un+1 −Un−1) + ∆t2(Un+1 + Un−1)

= 2∆t2Gn, 1 6 n 6 N − 1,

vn
h =

M

∑
j=1

Un
j ζ j(x) = Un · ζ, 1 6 n 6 N,

(5)

where M×M is Gram’s matrix, C = ((ζi, ζ j)) is the symmetrical positive definite matrix,
Gn = ((ρn, ζ1), (ρn, ζ2), . . . , (ρn, ζM))T , U1 = U0 + ∆tG0, and U0 = (v0(P1), v0(P2), . . . ,
v0(PM))T and G0 = ($(P1), $(P2), . . . , $(PM))T are two given vectors that are formed with
function values of v0(x) and $(x) at the lth-degree interpolating nodes Pjs, respectively.

The above Gram matrix C possesses the following result (see [10,11]).

Lemma 1. The Gram matrix C in Problem 4 meets the estimate:

‖C‖2,2 6 αh,

where ‖C‖2,2 = supϑ 6=0 ‖Cς‖/‖ς‖, ‖ς‖ is the Eulerian norm for vector ς, and α is a positive
constant.

The following theorem gives the result for the existence, as well as the stability, together
with the convergence of the CNFE solutions to Problem 3 (i.e., Problem 4).

Theorem 1. Problem 3 (i.e., Problem 4) has a unique sequence of CNFE solutions {vn
h}

N
n=1 ⊂ Uh

that meet the following stability:

‖vn
h‖0 6 α, n = 1, 2, . . . , N, (6)

where α represents a generic positive constant that does not depend on h and ∆t, which may be
unequal at different occurrences. When the solution v to Problem 2 has sufficient smoothness, the
set of CNFE solutions {vn

h}
N
n=1 meets the following error estimations:

‖v(tn)−vn
h‖0 6 α

(
∆t2 + hl+1

)
, 1 6 n 6 N. (7)

Proof. Because the coefficient matrix 2C + (∆t + ∆t2)I of the unknown vectors Un+1 in
the system of Equation (5) is symmetrical positive definite (herein I is the identity matrix),
while Un, Un−1, and Gn are given, Problem 4 (i.e., Problem 3) has a unique sequence of
CNFE solutions.

Taking the inner product by left multiplying the first equation in (5) with (Un+1 −Un−1)T,
by Cauchy–Schwarz’s inequality, we obtain
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(Un+1 −Un)TC(Un+1 −Un) +
∆t
2
‖Un+1 −Un−1‖2

−(Un −Un−1)TC(Un −Un−1) +
∆t2

2
(‖Un+1‖2 − ‖Un−1‖2)

= ∆t2(Un+1 −Un−1)TGn

6
∆t
2
‖Un+1 −Un−1‖2 +

∆t3

2
‖Gn‖2.

(8)

It follows that

(Un+1 −Un)TC(Un+1 −Un) +
∆t2

2
(‖Un+1‖2 − ‖Un−1‖2)

−(Un −Un−1)TC(Un −Un−1)

6
∆t3

2
‖Gn‖2, n = 1, 2, . . . , N − 1.

(9)

By summating for (9) from 1 to n, we gain

(Un+1 −Un)TC(Un+1 −Un) +
∆t2

2
(‖Un+1‖2 + ‖Un‖2)

6 (U1 −U0)TC(U1 −U0) +
∆t2

2
(‖U1‖2 + ‖U0‖2)

+
∆t3

2

n

∑
i=1
‖Gi‖2, n = 1, 2, . . . , N − 1.

(10)

Noting that U1 −U0 = ∆tG0 and (Un+1 −Un)TC(Un+1 −Un) > 0 because of the
positive definiteness of C, from (10), we obtain

‖Un‖2 6 2GT
0 CG0 + (‖U0 + ∆tG‖2 + ‖U0‖2) + ∆t

n

∑
i=1
‖Gi‖2

6 α, n = 1, 2, . . . , N,
(11)

which implies that the CNFE solution coefficient vectors Un (n = 1, 2, . . . , N) to Problem 4
are unconditionally stable. Thereupon, we obtain

‖vn
h‖0 6 ‖Un · ζ‖0 6 α‖Un‖‖ζ‖0

6 α
[
2GTCG + (‖U0 + ∆tG‖2 + ‖U0‖2) + ∆t

n

∑
i=1
‖Gi‖2

]1/2
, n = 1, 2, . . . , N. (12)

Thus, the CNFE solutions {vn
h}

N
n=1 are also unconditionally stable. Lastly, the error

estimations (7) may be proven by using Nitsche’s skill and the same approach as in [4],
Theorem 2.2.3.

Remark 1. While the meshes of Θ̄ need to be adequately subdivided, Problem 4, namely Problem 3,
could have many unknowns, resulting in the round-off errors in the computation being quickly
accumulated, and it is difficult to obtain satisfying numerical solutions. Hence, it is very necessary
to lower the dimension of unknown vectors in Problem 4 by means of the POD technique.

3. The RDRCNFE Algorithm of the VW Equation
3.1. Generation of POD Bases

We first seek the first L solution vectors {Un}L
n=1 with Problem 4 and make a snapshot

matrix Λ = (U1, U2, . . . , UL, G̃)M×(L+1); here, G̃ = 1
∆t (U

L −UL−1). We then calculate
the positive eigenvalues χi > 0 (1 6 i 6 ` := rank(Λ)) listed degressively together with
the corresponding orthogonalized eigenvectors Υ̃ = (ξ1, ξ2, · · · , ξr) ∈ RM×r of ΛΛT . We
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finally obtain a set of POD basis vectors Υ = (ξ1, ξ2, · · · , ξd) (d 6 `) from the foremost d
vectors in Υ̃, meeting the following equality (see [4]):

‖Λ− ΥΥTΛ‖2,2 =
√

χd+1. (13)

Further, the following estimates hold:

‖Un − ΥΥTUn‖ = ‖(Λ− ΥΥTΛ)en‖
6 ‖Λ− ΥΥTΛ‖2,2‖en‖ 6 √χd+1, n = 1, 2, . . . , L, (14)

‖G̃− ΥΥTG̃‖ = ‖(Λ− ΥΥTΛ)eL+1‖
6 ‖Λ− ΥΥTΛ‖2,2‖eL+1‖ 6 √χd+1. (15)

Herein, en (1 6 n 6 L + 1) represent the (L + 1)th-dimension orthonormal vectors,
whose only nth component is 1.

Remark 2. Because of (L + 1) � M, namely the order (L + 1) of ΛTΛ being far smaller than
the order M of ΛΛT , but their positive eigenvalues χi (1 6 i 6 `) being identical, we may first
seek the initial d eigenvalues χj (1 6 i 6 d) of ΛTΛ together with the associated eigenvectors ηi
(1 6 i 6 d). Thus, we may readily obtain the initial eigenvectors ξ i = Ληi/

√
χi (1 6 i 6 d) so as

to obtain a set of POD bases Υ = (ξ1, ξ2, . . . , ξd) (d 6 `). Especially, the ingenious construction
for the above snapshot matrix Λ can bring great convenience in the following theoretical analysis.

3.2. Establishment of RDRCNFE Algorithm

If we assume that Zn
d = (zn

1 , zn
2 , . . . , zn

d)
T, Un

d = (Un
d1, Un

d2, . . . , Un
dM)T = ΥZn

d = ΥΥTUn,
and vn

d = ζ ·Un
d , we may obtain the initial L RDRCNFE solutions vn

d = ζ ·Un (1 6 n 6 L)
from (14). Replacing the vectors Un in Problem 4 with Un

d = ΥZn
d (L + 1 6 n 6 N), we can

set up the RDRCNFE algorithm as follows.

Problem 5. Seek Zn
d ∈ Rd and vn

d ∈ Uh (n = 1, 2, . . . , N) that satisfy
Zn

d = ΥTUn, 1 6 n 6 L;
2C(ΥZn+1

d − 2ΥZn
d + ΥZn−1

d ) + ∆t(ΥZn+1
d − ΥZn−1

d ) + ∆t2(ΥZn+1
d + ΥZn−1

d )

= 2∆t2Gn, L 6 n 6 N − 1,
vn

d = ζ · (ΥZn
d ), 1 6 n 6 N,

(16)

where Un (1 6 n 6 L) stand for the initial L solution vectors for Problem 4 and C and Gn are the
same as those for Problem 4.

Remark 3. It is obvious that Problem 5 has a unique set of RDRCNFE solutions {vn
d}

N
n=1 ⊂ Uh

because of the positive definiteness of the matrix (2C + (∆t + ∆t2)I). It is worth noting that
Problem 5 at every time node only contains d unknowns (d � M), whereas Problem 4 has M
unknowns at the same time node, but both have the same FE basis functions {ζi}M

i=1 and the same
accuracy. Hence, Problem 5 is distinctly superior to Problem 4, which means that Problem 5 could
not only immensely decrease the unknowns, but could also vastly save the CPU runtime, lessen the
rounded-off error accumulation, and enhance the accuracy of the numerical solutions in the actual
calculations (see the numerical tests in Section 4).

3.3. The Stability and Error Estimates for the RDRCNFE Solutions

The RDRCNFE solutions to Problem 5 have the following stability, as well as error
estimations.
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Theorem 2. Under the identical conditions of Theorem 1, the set of RDRCNFE solutions {vn
d}

N
n=1

to Problem 5 has the unconditional stability together with the following error estimations:

‖v(tn)−vn
d‖0 6 α

(
∆t2 + hl+1 +

√
χd+1

)
, 1 6 n 6 N, (17)

where the v(tn)s represent the states of the solution v(t, x) to Problem 1 when tn = n∆t.

Proof. (i) Prove the unconditional stability for the RDRCNFE solutions.

When n = 1, 2, . . . , L, using the orthonormality for the POD basis vectors Υ and the
unconditional stability of {vn

h}
N
n=1 in Theorem 1, we obtain

‖vn
d‖0 = ‖Un

d · ζ‖0 = ‖ΥΥTUn · ζ‖0 6 α‖vn
h‖0 6 α, (18)

which signifies that {vn
d}

L
n=1 is unconditionally stable.

When n = L + 1, L + 2, . . . , N, using Un
d = ΥZn

d , we could revert (16) as

2C(Un+1
d − 2Un

d + Un−1
d ) + ∆t(Un+1

d −Un−1
d ) + ∆t2(Un+1

d + Un−1
d )

= 2∆t2Gn, n = L, L + 1, . . . , N − 1.
(19)

Taking the inner product by left multiplying Equation (19) with (Un+1
d −Un−1

d )T and
using the Cauchy-Schwarz inequality, we gain

(Un+1
d −Un

d )
TC(Un+1

d −Un
d ) +

∆t
2
‖Un+1

d −Un−1
d ‖2

−(Un
d −Un−1

d )TC(Un
d −Un−1

d ) +
∆t2

2
(‖Un+1

d ‖2 − ‖Un−1
d ‖2)

= ∆t2(Un+1
d −Un−1

d )TGn

6
∆t
2
‖Un+1

d −Un−1
d ‖2 +

∆t3

2
‖Gn‖2, n = L, L + 1, . . . , N − 1.

(20)

It follows that

(Un+1
d −Un

d )
TC(Un+1

d −Un
d ) +

∆t2

2
(‖Un+1

d ‖2 − ‖Un−1
d ‖2)

−(Un
d −Un−1

d )TC(Un
d −Un−1

d )

6
∆t3

2
‖Gn‖2, n = L, L + 1, . . . , N − 1.

(21)

By summating for (21) from L to n, we gain

(Un+1
d −Un

d )
TC(Un+1

d −Un
d ) +

∆t2

2
(‖Un+1

d ‖2 + ‖Un
d ‖

2)

6 (UL
d −UL−1

d )TC(UL
d −UL−1

d ) +
∆t2

2
(‖UL

d ‖
2 + ‖UL−1

d ‖2)

+
∆t3

2

n

∑
i=L
‖Gi‖2, n = L, L + 1, . . . , N − 1.

(22)

Owing to the positive definiteness of the matrix C, it holds that (Un+1
d −Un

d )
TC(Un+1

d −
Un

d ) > 0. Thus, using ‖UL
d ‖ = ‖ΥΥTUL‖ 6 ‖UL‖, as well as ‖UL−1

d ‖ = ‖ΥΥTUL−1‖
6 ‖UL−1‖, by (11) and (22) we obtain
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∆t2

2
‖Un

d ‖
2 6 (UL

d −UL−1
d )TC(UL

d −UL−1
d )

+
∆t2

2
(‖UL

d ‖
2 + ‖UL−1

d ‖2) +
∆t3

2

n

∑
i=L
‖Gi‖2

6 ∆t2GT
0 CG0 +

∆t2

2
(‖U0 + ∆tG0‖2 + ‖U0‖2)

+
∆t3

2

n

∑
i=1
‖Gi‖2, n = L + 1, L + 2, . . . , N.

(23)

It follows that

‖Un
d ‖

2 6 2GT
0 CG0 + ‖U0 + ∆tG0‖2 + ‖U0‖2 + ∆t

n

∑
i=1
‖Gi‖2

6 α, n = L + 1, L + 2, . . . , N,
(24)

which implies that the RDRCNFE solution vectors Un
d (n = L + 1, L + 2, . . . , N) for

Problem 5 are unconditionally stable. Furthermore, we obtain

‖vn
d‖0 6 ‖Un

d · ζ‖0 6 α‖Un
d ‖‖ζ‖0 6 α, n = L + 1, L + 2, . . . , N. (25)

Thus, the inequalities (18) and (25) imply that the RDRCNFE solutions vn
d (n =

1, 2, . . . , N) are unconditionally stable.

(ii) Discuss the error estimations of the RDRCNFE solutions.

When n = 1, 2, . . . , L, using vn
h = ζ ·Un and ‖ζ‖0 6 α, by (14), we obtain

‖vn
h −vn

d‖0 6 ‖ζ‖0‖Un −Un
d ‖∞ 6 α‖Un − ΥΥTUn‖ 6 α

√
χd+1. (26)

Set En = Un −Un
d . When n = L + 1, L + 2, . . . , N, Subtracting (19) from (5), we obtain

C(En+1 − 2En + En−1) +
∆t2

2
(En+1 + En−1) +

∆t
2
(En+1 − En−1)

= 0, L 6 n 6 N − 1. (27)

Taking the inner product by left multiplying Equation (27) with (En+1 − En−1)T ,
we obtain

(En+1 − En)TC(En+1 − En)− (En − En−1)TC(En − En−1)

+
∆t
2
‖En+1 − En−1‖2 +

∆t2

2
(‖En+1‖2 − ‖En−1‖2) = 0.

(28)

Summating for (28) from L to n 6 N − 1, we obtain

∆t2

2
(‖En+1‖2 + ‖En‖2)

+
∆t
2

n

∑
i=L
‖Ei+1 − Ei−1‖2 + (En+1 − En)TC(En+1 − En)

= (EL − EL−1)TC(EL − EL−1)

+
∆t2

2
(‖EL‖2 + ‖EL−1‖2), n = L, L + 1, · · · , N − 1.

(29)

Owing to the positive definiteness of the matrix C, it holds that (En+1− En)TC(En+1−
En) > 0. Thus, using UL

d = ΥΥTUL and UL−1
d = ΥΥTUL−1, by (11) and (29) we obtain

∆t2

2
‖En‖2 6 (EL − EL−1)TC(EL − EL−1) +

∆t2

2
(‖EL‖2 + ‖EL−1‖2)

6 ∆t2(G̃− ΥΥTG̃)TC(G̃− ΥΥTG̃) +
∆t2

2
(‖EL‖2 + ‖EL−1‖2).

(30)
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Using Lemma 1 together with (14), from (30), we obtain

‖En‖ 6 α
(

h1/2‖G̃− ΥΥTG̃‖+√χd+1

)
6 α
√

χd+1, L + 1 6 n 6 N. (31)

Thereupon, we obtain

‖vn
h −vn

d‖0 6 ‖ζ‖0‖En‖ 6 α‖En‖ 6 α
√

χd+1, L + 1 6 n 6 N. (32)

Combining (26) with (32) and Theorem 1 yields (17), which finishes the proof of
Theorem 2.

Remark 4. Even though the errors in Theorem 2 have one more error term
√

χd+1 than those in
Theorem 1, which is brought by adopting the POD technique to reduce the order of Problem 4, it
may serve as a criterion to choose the number d of POD bases. Moreover, as long as the selected
initial d POD bases meet

√
χd+1 6 ∆t2 + hl+1, it would not make a big difference in the total

errors. Especially, Problem 5 includes the same basis functions as Problem 4 so that its accuracy
remains the same as Problem 4 in actual applied computations. It has been verified by many
numerical simulating tests (see, e.g., [4–13,27,28]) that the eigenvalue √χj could rapidly drop off
to 0; generally, when d = 5 or 6,

√
χd+1 is already very small and satisfies

√
χd+1 6 ∆t2 + hl+1.

In particular, if the RDRCNFE solution vn0+1
d obtained by Problem 5 at the time node tn0+1 cannot

satisfy the desired accuracy, but vn
d at the time node tn 6 tn0 still satisfies the accuracy requirement,

then we can take a new snapshot matrices Λ = (Un0+1−L, Un0+2−L, . . . , Un0−1, Un0 , G̃) (where
G̃ = (Un0 − Un0−1)/∆t) to construct a new set of POD basis vectors so as to construct the
new RDRCNFE algorithm to seek the RDRCNFE solutions satisfying the accuracy requirement.
Likewise, we can gain the RDRCNFE solutions satisfying the accuracy requirement at an arbitrary
time node. This is something that the classical CNFE algorithm cannot do.

4. Some Numerical Experiments

In order to verify the correctness of the theory results and to exhibit the importance
of the RDRCNFE algorithm, we herein provide some numerical experiments to show that
the VW equation has the analytical solution. Generally, when its initial boundary values
and source term are complicated or the calculating region Θ is irregular, there is not an
analytical solution.

In the VW equation (i.e., Problem 1), we take Θ̄ = [−1, 1] × [−1, 1], ε = λ = 1,
x = (x, y), $(x) = sin 2πx sin 2πy − 1, φ(t, x) = ρ(t, x) = v0(x)e−t (see Figure 1), and
v0(x) = 1− sin 2πx sin 2πy. The VW Equation (1) has an analytical solution: v(t, x, y) =
(1− sin 2πx sin 2πy)e−t.

Figure 1. The initial function v0(x, y).
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The triangulation =h on Θ̄ is made up of the isosceles right triangles with the right
side 1/1000 parallel to the x and y axes such that h =

√
2/1000. If Uh in Problem 4 consists

of the piecewise linear polynomials (i.e., l = 1), ∆t = 1/1000, and
√

χd+1 6 α× 10−6 (here,
the constant α < 10), then the theoretical errors of both the CNFE and RDRCNFE solutions
are no more than α× 10−6 according to Theorems 1 and 2.

We first find the initial 20 CNFE solutions {Un}20
n=1 by Problem 4 and compose the

matrix Λ = (U1, U2, . . . , U20, G̃), in which G̃ = 1
∆t (U

20 −U19). Afterwards, we compute
the eigenvalues χi for ΛTΛ (arranged degressively), so as to estimate that

√
χ6 6 1.2× 10−6.

Hence, we just have to take the initial five eigenvectors ηi (i = 1, 2, . . . , 5) of ΛTΛ to
construct the POD bases Υ = (ξ1, ξ2, . . . , ξ5) with ξ i = Ληi/

√
χi (1 6 i 6 5). In the end,

the RDRCNFE solutions are solved by Problem 5, exhibited in Figures 2a, 3a and 4a, and
the CPU runtime together with the numerical errors ‖v(tn)−vn

d‖0 between the analytical
solutions v(tn) and RDRCNFE solutions vn

d are recorded and listed in Table 1, when
n = 500, 1000, and 1500 (i.e., t = 0.5, 1.0, and 1.5), respectively.

Figure 2. (a) The RDRCNFE solution when t = 0.5. (b) The CNFE solution when t = 0.5. (c) The
error between the RDRCNFE solution and the CNFE solution when t = 0.5.

Figure 3. (a) The RDRCNFE solution when t = 1.0. (b) The CNFE solution when t = 1.0. (c) The
error between the RDRCNFE solution and the CNFE solution when t = 1.0.
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Figure 4. (a) The RDRCNFE solution when t = 1.5. (b) The CNCS solution when t = 1.5. (c) The
error between the RDRCNFE solution and the CNFE solution when t = 1.5.

Table 1. The errors between the analytical solution and the CNFE with RDRCNFE solutions and the
CPU runtime.

t n ‖u(tn)− un
h‖0 CPU Runtime ‖u(tn)− un

d‖0 CPU Runtime

0.5 500 2.224293× 10−6 88.897 s 2.361843× 10−6 2.478 s
1.00 1000 4.227492 × 10−6 187.957 s 4.963873 × 10−6 3.692 s
1.50 1500 6.746293 × 10−6 273.375 s 5.663234 × 10−6 4.323 s

In order to exhibit the importance of the RDRCNFE algorithm, the CNFE solutions are
also solved by Problem 4, shown in Figures 2b, 3b and 4b, and the CPU runtime together
with the numerical errors ‖v(tn)− vn

h‖0 between the analytical solutions v(tn) and the
CNFE solution vn

h are also recorded and are listed in Table 1, when n = 500, 1000, and
1500 (i.e., t = 0.5, 1.0, and 1.5), respectively. Moreover, the errors between the CNFE
solutions and the RDRCNFE solutions while t = 0.5, 1.0, and 1.5 are, respectively, exhibited
in Figures 2c, 3c and 4c, which show that the numerical errors are consistent with the
theoretical errors and that the diagrams for the RDRCNFE solutions are almost identical to
those for the CNFE solutions.

It follows from Table 1 that the CPU runtime of the RDRCNFE algorithm is far less
than that of the classical CNFE algorithm because the RDRCNFE algorithm has only five
unknowns at each time node, but the classical CNFE algorithm possesses 4× 106 unknowns
at the same time node. Thus, the RDRCNFE algorithm could not only slow down the
rounded off error accumulation and mitigate the computational load, but also save the CPU
runtime and memory space in the calculation process, as well as improve the calculation
efficiency. For example, the CPU runtime of the CNFE algorithm is about 63-times more
than that of the RDRCNFE algorithm as t = 1.5. It is indicated that the RDRCNFE algorithm
is far better than the CNFE algorithm. Furthermore, it is shown that the RDRCNFE
algorithm is effective at settling the VW equation.

5. Conclusions

Herein, we discussed the dimension reduction by the CNFE algorithm for the VW
equation. We skillfully made use of the POD to build the RDRCNFE algorithm of the VW
equation, adopted the matrix approaches to analyze the stability together with the errors of
the RDRCNFE solutions in detail, and accurately used some numerical experimentations
to confirm the importance of the RDRCNFE algorithm. The dimension for the RDRCNFE
algorithm is far lower than that for the CNFE algorithm, so that it could not only vastly
lessen the accumulation of the round-off errors together with the calculation burden, but
also vastly save the CPU runtime. In particular, the dimension reduction with respect to
the unknown CNFE solution coefficient vectors of the VW equation was developed by the



Mathematics 2022, 10, 3066 11 of 12

first time, so that the RDRCNFE algorithm is a new contribution and is distinguished from
all previous reduced-order methods.

Although, herein, we only studied the RDRCNFE algorithm for the VW equation, the
approach can be generalized to more complex real-world engineering problems, as well.
Hence, the RDRCNFE algorithm has very comprehensive applications. Moreover, herein,
we only considered the following VW equation with constant coefficients. However, when
one studies the properties of viscoelastic materials, if one adopts the Prony series repre-
sentations, one would obtain the more accurate representations of viscoelastic materials
(see [30]).
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