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Abstract: Chen’s first inequality for statistical submanifolds in Hessian manifolds of constant Hessian
curvature was obtained by B.-Y. Chen et al. Other particular cases of Chen inequalities in a statistical
setting were given by different authors. The objective of the present article is to establish the general
Chen inequalities for statistical submanifolds in Hessian manifolds of constant Hessian curvature.
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1. Motivation

In [1], the motivation of the definition of a statistical structure on a Riemannian
manifold was given, starting from the notion of probability distribution, as follows:

Let X ⊂ Rm be a discrete (countable) set or X = Rm. A map p : X → R is called a
probability distribution if:

(1) p(x) ≥ 0, ∀x ∈ X.
(2) ∑x∈X p(x) = 1, if X is discrete, or

∫
X p(x)dx = 1, if X = Rm.

The sum ∑x∈X is also denoted by
∫

X .
The expectation of a function f on X with respect to a probability distribution p is

defined by

E[ f ] =
∫

X
f (x)p(x)dx.

Let P = {p(x, λ)|λ ∈ Λ} be a family of probability distributions on X parametrized
by λ = [λ1, . . . , λn] ∈ Λ satisfying the following:

(P1)Λ ⊂ Rn is a domain.
(P2) p(x; λ) is smooth with respect to λ.
(P3) The operations of integration with respect to x and differentiation with respect to

λi are commutative.
One denotes by lλ = l(x; λ) = log p(x; λ) and by Eλ the expectation with respect to

pλ = p(x; λ).
Define

gij(λ) = Eλ

[
∂lλ
∂λi

∂lλ
∂λj

]
=
∫

x

∂l(x; λ)

∂λi
∂l(x; λ)

∂λj p(x; λ)dx.

The matrix g = [gij(λ)] is said to be the Fisher information matrix. We assume
(P4) The Fisher information matrix g = [gij(λ)] for a family of probability distributions

P = {p(x, λ)|λ ∈ Λ} is positive definite.
Then, g may be regarded as a Riemannian metric on Λ.
Let Γi

jk be the Christoffel symbols of the Levi-Civita connection.
Denote

Tijk =
1
2

Eλ

[
∂lλ
∂λi

∂lλ
∂λj

∂lλ
∂λk

]
,
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Γ(t)kij = Γkij − tTkij,

Γ(t)i
jk = gisΓ(t)sjk.

It is easily seen that the Tijk(t) are symmetric. Then, they define a torsion-free connec-
tion ∇(t).

We point-out the following property:

Xg(Y, Z) = g(∇(t)XY, Z) + g(Y,∇(−t)XZ),

i.e., ∇(t) and ∇(−t) are dual connections with respect to the Fisher information metric g.

2. Hessian Manifolds and Their Submanifolds

S. Amari [2] started the use of differential geometric methods in statistics and defined
statistical structures on Riemannian manifolds. Because the geometry of such manifolds is
based on dual connections, it is obviously closely related to affine differential geometry;
the dual connections are also named conjugate connections (see [3]). Moreover, a statistical
structure is a generalization of a Hessian one.

A statistical manifold is a Riemannian manifold (M̃m, g̃) of dimension m, endowed with
a pair of torsion-free affine connections ∇̃ and ∇̃∗ satisfying

Zg̃(X, Y) = g̃
(
∇̃ZX, Y

)
+ g̃
(
X, ∇̃∗ZY

)
,

for any X, Y and Z ∈ Γ
(
TM̃m).

It is always possible to find the dual connection ∇̃∗ of any torsion-free affine connection
∇̃; they are related by

∇̃+ ∇̃∗ = 2∇̃0,

where ∇̃0 is the Levi-Civita connection on M̃m.
We denote by R̃ and R̃∗ the curvature tensor fields; they satisfy

g̃(R̃∗(X, Y)Z, W) = −g̃(Z, R̃(X, Y)W).

We say that a statistical manifold is of constant curvature ε ∈ R if

R̃(X, Y)Z = ε[g̃(Y, Z)X− g̃(X, Z)Y],

for any X, Y, Z ∈ Γ(TM̃m). In this case, the curvature tensor field R̃∗ has the same expression.
A Hessian manifold is a statistical manifold of constant curvature zero. On a Hessian

manifold (M̃m, ∇̃), let γ = ∇̃ − ∇̃0. One defines the tensor field Q̃ of type (1,3) by
Q̃(X, Y) = [γX , γY], X, Y ∈ Γ(TM̃m) and it is called the Hessian curvature tensor for ∇̃. We
refer to H. Shima [1] and B. Opozda [4].

The following relation holds:

R̃(X, Y) + R̃∗(X, Y) = 2R̃0(X, Y) + 2Q̃(X, Y).

A Hessian sectional curvature can be defined on a Hessian manifold by using the
Hessian curvature tensor Q̃ as follows.

Let p ∈ M̃m and π a plane in Tp M̃m. Take an orthonormal basis {X, Y} of π and set

K̃(π) = g̃(Q̃(X, Y)Y, X).

The number K̃(π) is called the Hessian sectional curvature (it is independent of the
choice of an orthonormal basis).

It is easily seen [1] that a Hessian manifold of constant Hessian sectional curvature c is
a Riemannian space form of constant sectional curvature −c.
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Let Mn be a submanifold of M̃m of dimension n. Then, the Gauss formulae are

∇̃XY = ∇XY + h(X, Y),

∇̃∗XY = ∇∗XY + h∗(X, Y),

for any X, Y ∈ Γ(TMn), where h and h∗ are the imbedding curvature tensor of Mn in M̃m

for ∇̃ and the imbedding curvature tensor of Mn in M̃m for ∇̃∗, respectively.
Because h and h∗ are bilinear and symmetric, there exist linear transformations Aξ

and A∗ξ given by
g
(

Aξ X, Y
)
= g̃(h(X, Y), ξ),

g
(

A∗ξ X, Y
)
= g̃(h∗(X, Y), ξ),

for any ξ ∈ Γ
(
T⊥Mn) and X, Y ∈ Γ(TMn).

The Weingarten formulae are

∇̃Xξ = −A∗ξ X +∇⊥X ξ,

∇̃∗Xξ = −Aξ X +∇∗⊥X ξ,

for any ξ ∈ Γ
(
T⊥Mn) and X ∈ Γ(TMn). With respect to the induced metric on Γ

(
T⊥Mn),

the normal connections ∇⊥ and ∇∗⊥ are Riemannian dual connections.
The Gauss, Codazzi and Ricci equations are given by [5].

g̃
(

R̃(X, Y)Z, W
)
= g(R(X, Y)Z, W) + g̃(h(X, Z), h∗(Y, W))

−g̃(h∗(X, W), h(Y, Z)),(
R̃(X, Y)Z

)⊥
= ∇⊥X h(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

−
{
∇⊥Y h(X, Z)− h(∇YX, Z)− h(X,∇YZ)

}
,

g̃
(

R⊥(X, Y)ξ, η
)
= g̃

(
R̃(X, Y)ξ, η

)
+ g
([

A∗ξ , Aη

]
X, Y

)
,

where R, R∗ and R⊥ are the curvature tensors of ∇, ∇∗ and ∇⊥, respectively, ξ, η ∈
Γ
(
T⊥Mn) and

[
A∗ξ , Aη

]
= A∗ξ Aη − Aη A∗ξ .

Let p ∈ Mn and {e1, . . . , en} and {en+1, . . . , em} be orthonormal bases of Tp Mn and
T⊥p Mn, respectively. Then, the mean curvature vector fields are defined by

H =
1
n

n

∑
i=1

h(ei, ei) =
1
n

m

∑
α=n+1

(
n

∑
i=1

hα
ii

)
eα, hα

ij = g̃(h(ei, ej), eα),

and

H∗ =
1
n

n

∑
i=1

h∗(ei, ei) =
1
n

m

∑
α=n+1

(
n

∑
i=1

h∗αii

)
eα, h∗αij = g̃(h∗(ei, ej), eα),

for 1 ≤ i, j ≤ n and n + 1 ≤ α ≤ m.

3. Chen’s Invariants

The main Riemannian invariants are the curvature invariants. They play important
roles in physics and biology; for example, by applying the laws of Newton, one shows that
the magnitude of a necessary force to move an object with constant speed is a multiple
(constant) of the curvature of the trajectory. Furthermore, the general theory of relativity of
Einstein says that the motion of a body in a gravitational field is given by the curvature of
spacetime. All kinds of shapes (red cells, soap bubbles, etc.) are precisely determined by
certain curvatures.
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The sectional curvature, the scalar curvature and the Ricci curvature are the most
(natural) studied curvature invariants.

B.-Y. Chen [6,7] introduced new Riemannian invariants, which were different in nature
from the classical ones. They are known as Chen invariants or δ-invariants.

Let Mn be a Riemannian manifold of dimension n. Denote by τ the scalar curvature
of Mn, i.e., τ(p) = ∑1≤i<j≤n K(ei ∧ ej), for any p ∈ Mn and {e1, . . . , en} an orthonormal
basis of Tp Mn, where K(ei ∧ ej) is the sectional curvature of the plane section spanned by
ei and ej. If L ⊂ Tp Mn is an r-dimensional subspace, then its scalar curvature is given by
τ(L) = ∑1≤α<β≤r K(eα ∧ eβ), where {e1, . . . , er} ⊂ L is an orthonormal basis.

Let k ∈ N∗ and n1, . . . , nk ≥ 2 be integers such that n1 < n and n1 + · · ·+ nk ≤ n. For
any p ∈ Mn, the Chen invariant δ(n1, . . . , nk) at p is defined by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)},

where L1, . . . , Lk are mutually orthogonal subspaces of Tp Mn of dim Lj = nj, ∀j = 1, . . . , k.
In particular, δ(2) = τ − inf K is the Chen first invariant.
B.-Y. Chen [7] established sharp estimates of the squared mean curvature ‖H‖2 in

terms of Chen invariants for submanifolds Mn in Riemannian space forms M̃m(c).

δ(n1, . . . , nk) ≤
n2(n + k−∑k

j=1 nj − 1)

2(n + k−∑k
j=1 nj)

||H||2 + 1
2
[n(n− 1)−

k

∑
j=1

nj(nj − 1)]c.

These inequalities are known as Chen inequalities (see also [8]).
After that, Chen inequalities for special classes of submanifolds in various space forms

were obtained by several researchers.
Particular cases of Chen inequalities were also proven in statistical settings. The aim of

this article is to prove the general Chen inequalities for statistical submanifolds in Hessian
manifolds of constant Hessian curvature.

4. An Algebraic Lemma

We prove the main result by using an algebraic lemma.

Lemma 1. Let n ≥ 3, k ≥ 1 be two integers and n1, . . . , nk ≥ 2 integers such that n1 < n,
n1 + · · ·+ nk ≤ n. Denote N0 = 0, Nj = n1 + · · ·+ nj and j = 1, . . . , k. Then, for any real
numbers a1, . . . , an, we have

∑
1≤i<j≤n

aiaj −
k

∑
j=1

∑
Nj−1+1≤αj<β j≤Nj

aαj aβ j ≤
n + k−∑k

j=1 nj − 1

2(n + k−∑k
j=1 nj)

(
n

∑
i=1

ai

)2

.

Moreover, the equality holds if and only if

Nj

∑
αj=Nj−1+1

aαj = aNk+1 = · · · = an, ∀j = 1, . . . , k.

Proof. We use the Cauchy–Schwarz inequality.

(
n

∑
i=1

ai

)2

=

 k

∑
j=1

Nj

∑
αj=Nj−1+1

aαj + aNk+1 + · · ·+ an

2

≤ (n + k−
k

∑
j=1

nj)

 k

∑
j=1

 Nj

∑
αj=Nj−1+1

aαj

2

+ a2
Nk+1 + · · ·+ a2

n
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= (n + k−
k

∑
j=1

nj)

 k

∑
j=1

 Nj

∑
αj=Nj−1+1

a2
αj
+ 2 ∑

Nj−1+1≤αj<β j≤Nj

aαj aβ j

+ a2
Nk+1 + · · ·+ a2

n


= (n + k−

k

∑
j=1

nj)

( n

∑
i=1

ai

)2

− 2 ∑
1≤i<j≤n

aiaj + 2
k

∑
j=1

∑
Nj−1+1≤αj<β j≤Nj

aαj aβ j

,

which implies the inequality to prove.
We have the equality if and only if the equality holds in the Cauchy–Schwarz inequality, i.e.,

Nj

∑
αj=Nj−1+1

aαj = aNk+1 = · · · = an, ∀j = 1, . . . , k.

5. General Chen Inequalities

In [9], the first author of the present paper et al. obtained geometric inequalities for
statistical submanifolds in statistical manifolds with a constant curvature. The study of
Chen invariants on statistical submanifolds was started by B.-Y. Chen et al. [10]. After that,
particular cases of Chen inequalities in statistical settings were obtained (see [11–18]).

In [16], we recently proved a Chen inequality involving the Chen invariant δ(k) for
submanifolds in Riemannian space forms, from where we derived the Chen first inequality
and Chen–Ricci inequality. In addition, we established a corresponding inequality for
statistical submanifolds. In that paper, we used a new algebraic lemma.

In the present paper, we establish the general Chen inequalities for statistical submani-
folds in Hessian manifolds of constant Hessian curvature. In the proof of the main result,
we use Lemma 1 from Section 4, which can be regarded as a generalization of the algebraic
lemma from [16].

Theorem 1. Let Mn be an n-dimensional statistical submanifold of a Hessian manifold M̃m(c) of
constant Hessian curvature. Then, for any integers k ∈ N∗ and n1, . . . , nk ≥ 2 such that n1 < n,
n1 + · · ·+ nk ≤ n, we have:

τ −
k

∑
j=1

τ(Lj) ≥ τ0 −
k

∑
j=1

τ0(Lj) + [n(n− 1)−
k

∑
j=1

nj(nj − 1)]c

−
n2(n + k−∑k

j=1 nj − 1)

4(n + k−∑k
j=1 nj)

[||H||2 + ||H∗||2],

where L1, . . . , Lk are mutually orthogonal subspaces of Tp Mn with dim Lj = nj, ∀j = 1, . . . , k.
Moreover, the equality holds at a point p ∈ Mn, if and only if there exist orthonormal

bases {e1, . . . , en} in Tp Mn and {en+1, . . . , em} in T⊥p Mn such that the shape operators take the
following form:

Aer =


Ar

1 · · · 0
...

. . .
... 0

0 · · · Ar
k

0 µr I

, A∗er =


A∗r1 · · · 0

...
. . .

... 0
0 · · · A∗rk

0 µ∗r I

; r = n + 1, . . . , m,

where I is the identity matrix and Ar
j and A∗rj are symmetric nj × nj submatrices with trace

Ar
j = µr, trace A∗rj = µ∗r , for all j = 1, . . . , k.

Proof. Let p ∈ Mn and {e1, . . . , en} and {en+1, . . . , em} be orthonormal bases of Tp Mn and
T⊥p Mn, respectively.
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The Gauss equation implies

τ =
1
2 ∑

1≤i<j≤n
[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)− 2g(R0(ei, ej)ej, ei)]

=
1
2 ∑

1≤i<j≤n
[g(h∗(ei, ei), h(ej, ej)) + g(h(ei, ei), h∗(ej, ej))

− 2g(h(ei, ej), h∗(ei, ej))]− τ0

=
1
2

m

∑
r=n+1

∑
1≤i<j<n

(h∗rii hr
jj + hr

iih
∗r
jj − 2hr

ijh
∗r
ij )− τ0.

(1)

It is known that the components of the second fundamental form h0 (with respect
to the Levi-Civita connection ∇̃0) satisfy 2h0r

ij = hr
ij + h∗rij , i, j = 1, . . . , n, r = n + 1, . . . , m.

Then,

τ =
1
2

m

∑
r=n+1

∑
1≤i<j≤n

[(hr
ii + h∗rii )(h

r
jj + h∗rjj )− hr

iih
r
jj − h∗rii h∗rjj

− (hr
ij + h∗rij )

2 + (hr
ij)

2 + (h∗rij )
2]− τ0

=
m

∑
r=n+1

∑
1≤i<j≤n

{
2[h0r

ii h0r
jj − (h0r

ij )
2]− 1

2
[hr

iih
r
jj − (hr

ij)
2]

− 1
2
[h∗rii h∗rjj − (h∗rij )

2]
}
− τ0.

(2)

Recall that M̃m(c) is a Riemannian space form of constant sectional curvature −c.
Then, the Gauss equation with respect to the Levi-Civita connection gives

τ0 = −n(n− 1)
c
2
+

m

∑
r=n+1

∑
1≤i<j≤n

[h0r
ii h0r

jj − (h0r
ij )

2]. (3)

Substituting Equation (3) in (2), we get

τ = τ0 + n(n− 1)c

− 1
2

m

∑
r=n+1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]− 1

2

m

∑
r=n+1

∑
1≤i<j≤n

[h∗rii h∗rjj − (h∗rij )
2].

(4)

For any j = 1, . . . , k, by using the Gauss equation, we have

τ(Lj) =
1
2 ∑

Nj−1+1≤αj<β j≤Nj

[g(R(eαj , eβ j)eβ j , eαj) + g(R∗(eαj , eβ j)eβ j , eαj)

− 2g(R0(eαj , eβ j)eβ j , eαj)]

=
1
2 ∑

Nj−1+1≤αj<β j≤Nj

[g(h∗(eαj , eαj), h(eβ j , eβ j)) + g(h(eαj , eαj), h∗(eβ j , eβ j))

− 2g(h(eαj , eβ j), h∗(eαj , eβ j))]− τ0(Lj),



Mathematics 2022, 10, 3061 7 of 9

which implies

τ(Lj) =
1
2

m

∑
r=n+1

∑
Nj−1+1≤αj<β j≤Nj

(h∗rαjαj
hr

β j β j
+ hr

αjαj
h∗rβ j β j

− 2hr
αj β j

h∗rαj β j
)− τ0(Lj)

=
1
2

m

∑
r=n+1

∑
Nj−1+1≤αj<β j≤Nj

[(hr
αjαj

+ h∗rαjαj
)(hr

β j β j
+ h∗rβ j β j

)

− hr
αjαj

hr
β j β j
− h∗rαjαj

h∗rβ j β j
− (hr

αj β j
+ h∗rαj β j

)2 + (hr
αj β j

)2 + (h∗rαj β j
)2]− τ0(Lj)

=
m

∑
r=n+1

∑
Nj−1+1≤αj<β j≤Nj

{
2[h0r

αjαj
h0r

β j β j
− (h0r

αj β j
)2]− 1

2
[hr

αjαj
hr

β j β j
− (hr

αj β j
)2]

− 1
2
[h∗rαjαj

h∗rβ j β j
− (h∗rαj β j

)2]
}
− τ0(Lj).

Therefore,

τ(Lj) = τ0(Lj) + nj(nj − 1)c−

− 1
2

m

∑
r=n+1

∑
Nj−1+1≤αj<β j≤Nj

{
[hr

αjαj
hr

β j β j
− (hr

αj β j
)2] + [h∗rαjαj

h∗rβ j β j
− (h∗rαj β j

)2]
}

. (5)

By summing after j = 1, . . . , k the relations (5) and subtracting from (4), we obtain(
τ −

k

∑
j=1

τ(Lj)

)
−
(

τ0 −
k

∑
j=1

τ0(Lj)

)
≥ [n(n− 1)−

k

∑
j=1

nj(nj − 1)]c

− 1
2

m

∑
r=n+1

 ∑
1≤i<j≤n

hr
iih

r
jj −

k

∑
j=1

∑
Nj−1+1≤αj<β j≤Nj

hr
αjαj

hr
β j β j


+

 ∑
1≤i<j≤n

h∗rii h∗rjj −
k

∑
j=1

∑
Nj−1+1≤αj<β j≤Nj

h∗rαjαj
h∗rβ j β j

.

By using Lemma 1, one has

∑
1≤i<j≤n

hr
iih

r
jj −

k

∑
j=1

∑
Nj−1+1≤αj<β j≤Nj

hr
αjαj

hr
β j β j
≤

n + k−∑k
j=1 nj − 1

2(n + k−∑k
j=1 nj)

(
n

∑
i=1

hr
ii

)2

,

∑
1≤i<j≤n

h∗rii h∗rjj −
k

∑
j=1

∑
Nj−1+1≤αj<β j≤Nj

h∗rαjαj
h∗rβ j β j

≤
n + k−∑k

j=1 nj − 1

2(n + k−∑k
j=1 nj)

(
n

∑
i=1

h∗rii

)2

.

It follows that

τ −
k

∑
j=1

τ(Lj) ≥ τ0 −
k

∑
j=1

τ0(Lj) + [n(n− 1)−
k

∑
j=1

nj(nj − 1)]c

−
n2(n + k−∑k

j=1 nj − 1)

4(n + k−∑k
j=1 nj)

[||H||2 + ||H∗||2].

The equality case follows from the equality case of Lemma 1.
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Corollary 1. Let Mn be an n-dimensional statistical submanifold of a Hessian manifold M̃m(c) of
constant Hessian curvature. If there exists a point p ∈ Mn such that

τ −
k

∑
j=1

τ(Lj) < τ0 −
k

∑
j=1

τ0(Lj) + [n(n− 1)−
k

∑
j=1

nj(nj − 1)]c,

then Mn is nonminimal in M̃m(c), i.e., either H 6= 0 or H∗ 6= 0.

In particular, for k = 1 and n1 = 2, one finds the main result from [10].

Corollary 2. Let Mn be an n-dimensional statistical submanifold of a Hessian manifold M̃m(c) of
constant Hessian curvature. Then, for any p ∈ Mn and any plane section π ⊂ Tp M, we have:

τ − K(π) ≥ τ0 − K0(π) + (n− 2)(n + 1)c− n2(n− 2)
4(n− 1)

[||H||2 + ||H∗||2].

6. Conclusions

The above Lemma 1 allows to obtain Chen inequalities for different classes of subman-
ifolds in various space forms, not only in statistical settings.
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