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Abstract: In this paper, several characterizations for exponential distribution are derived from a new
relative hazard rate measure. This measure is closely related to the concept of remaining lifetime
at a random time. It considers the random times specified by the order statistics of a sample, the
convolution of random variables, and the record values of a sequence of random variables. The
concept of completeness in functional analysis provides the technical background to obtain the
main results.
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1. Introduction and Preliminaries

The characterization of distributions has long been an important problem in connection
with probability and statistics. The property of characterizing a distribution arises from
certain relationships between statistical and probabilistic quantities such as the moment of
a particular statistic derived from samples or the probability to have it in certain intervals
(see, e.g., Shanbhag [1], Kotz and Shanbhag [2], Rao and Shanbhag [3], and Galambos and
Kotz [4]). In reliability and survival analysis, lifetime distributions play an essential role
in detecting various trends in lifetime data (see, for instance, Lai and Xie [5] and Marshall
and Olkin [6]). The aging process of a lifetime unit is considered informative. There are
many aspects of aging of a lifetime unit. Exponential distribution as a standard distribution
plays a central role among lifetime distributions with different patterns of aging. Namely,
the exponential distribution has a lack of memory property in aging, which means that a
unit with a lifetime that follows the exponential distribution will never show signs of wear.
Therefore, necessary and sufficient conditions for a life unit to detect a random life with the
exponential distribution can be useful in various situations (see Azlarov et al. [7]).

In the context of lifetime science, the hazard rate (HR) function is a measure that
has attracted considerable interest because it characterizes a lifetime distribution. In the
literature, the HR function has been used as a useful quantity for constructing various
models in survival analysis, including the well-known proportional hazard rate model.
The behavior of the graph of an HR function of a unit’s lifespan with respect to time, when
it ranges from zero to infinity, can uniquely describe the aging process of that unit. This has
been widely used in research papers in recent decades, as researchers usually intend to find
novel lifetime distributions with an HR function that have different shapes to provide more
flexibility. The HR function is defined for unrepairable populations as the (instantaneous)
failure rate of survivors at time t during the next time instant. The detection of HR refers to
the entire time interval. However, it may also be of interest to define the failure probability
of a device directly according to specific times at which certain events occur, for example,
the probability of failure of a coherent system that fails with the successive failures of its
components (which turn out to be order statistics of the lifetime of the components in the
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system) when its components fail may be an informative quantity. In addition, events that
represent records, such as the magnitude of earthquakes or new records set by an athlete in
a sport, may also be of interest. Thus, the probability that future values represent a new
record may be of interest as well.

The goal of the current study is to find some new characterizations of the exponential
distribution using a new relative hazard rate measure. This measure adjusts the instan-
taneous risks of failure of a device in a random time. The random time is considered as
an order statistic of a sample or a record statistic of a sequence of random variables. The
results of the characterization are regularly proven as an application of the concept of
completeness in functional analysis, which gives more tractability to the problem from a
mathematical point of view.

Here, a number of preliminary concepts and also technical notions used throughout
the paper are given. We also introduce some useful notions that are utilized in subsequent
sections. The concept of completeness in mathematical analysis and functional analysis has
been frequently applied in different contexts, including probability and statistics.

Definition 1. The sequence φ1, φ2, · · · in a given Hilbert space H is complete if the only member
in H that is orthogonal to every φn is the null member, that is

〈 f , φn〉 = 0, ∀ n ≥ 1⇒ f = 0,

where 0 signifies the zero member in H.

The notation 〈·, ·〉 is used to represent the inner product of H. In what follows, the
Hilbert space L2[a, b] is considered to have an inner product as

〈m1, m2〉 =
∫ b

a
m1(x)m2(x)dx,

in which m1 and m2 are two real-valued square integrable functions in [a, b]. It is notice-
able that if φ1, φ2, · · · is a complete sequence in the Hilbert space H, then ∑ anφn with
an = 〈m, φn〉 converges in H, provided that ∑ |an|2 < ∞, and the limit corresponds with m.
For example, Higgins [8] discussed further details in this context.

Lemma 1 (Hwang [9]). Suppose that ψ is an absolutely continuous function defined on [a, b] with
ψ(a)ψ(b) ≥ 0, and let its derivative satisfy ψ

′
(x) 6= 0 a.e. on (a, b). Then, under the assumption

∞

∑
k=1

λ−1
k = ∞, where 1 ≤ λ1 < λ2 < · · · ,

the sequence ψλ1 , ψλ2 , · · · is complete on (a, b) if and only if the function ψ is monotone on (a, b).

In the rest of the paper, we assume that X is a lifetime random variable with cumulative
distribution function (CDF) F and survival function (SF) F̄ ≡ 1− F. If F is absolutely
continuous, the probability density function (PDF) of X exists and we denote it by f . One of
the important reliability measures is the hazard rate (HR) function, which is closely related
to the probability of instantaneous failure of an aging item. The age of lifetime units is a
quantity of time. To recognize an aging item at different ages, the residual lifetime of the
item after different ages is a useful quantity. The RV Xt := (X− t|X > t) for all t : F̄(t) > 0
is called the residual life of X after time t, where t is the current age of an item. The hazard
rate of X is then defined as

hX(t) := lim
δ→0+

1
δ

P(Xt ≤ δ) =
f (t)
F̄(t)

.
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Note that Xt has PDF ft(x) = f (t+x)
F̄(t) , x ≥ 0. It can be observed that hX(t) = ft(0) for

all t > 0, which shows that the HR is connected to the instantaneous failure of an item with
age t. This observation will become an aid in this paper to construct random hazard rates
as a more flexible measure. The HR uniquely determines the underlying distribution as the
following recursive relation confirms:

F̄(t) = P(X > t) = exp
(
−
∫ t

0
hX(x)dx

)
, t > 0, (1)

from which it follows that, if hX(x) = hY(x) for all x > 0, then P(X > t) = P(Y > t) for
all t ≥ 0, which means that the nonnegative RVs X and Y with HR functions hX and hY,
respectively, are equal in distribution. From the lack of memory property of the exponential
distribution, it follows that X is exponential if and only if Xt for all t > 0 is equal in
distribution with X. The HR function is a unique characteristic of a distribution. From (1),
one may thus realize that X is exponential with SF function F̄(t) = exp(−λt) if and only if
it has a constant HR that is not tied up with t, that is hX(t) = 1

λ , for all t > 0.
Let X be a non-negative random variable representing the lifetime of a unit or a device.

The random variable XT := [X − T|X > T], which is called residual life at random time
(RLRT), plays an important role in the study of the lifetime of the unit with random lifetime
X relative to a unit with random life T. Suppose X and T have CDF’s F and G and PDF’s f
and g, respectively. Let us also assume that T is the lifetime of another lifetime unit and
assume for simplicity that X and T are statistically independent. Then, XT has CDF

FT(x) =

∫ +∞
0 [F(x + t)− F(t)]dG(t)

P(X > T)
, (2)

and PDF

fT(x) =

∫ +∞
0 f (x + t)dG(t)

P(X > T)
. (3)

The concept of RLRT has been considered by many researchers in recent decades
(see, e.g., Dequan and Jinhua [10], Li and Zuo [11], Misra et al. [12], Cai and Zheng [13],
Kundu and Patra [14], Misra and Naqvi [15], Patra and Kundu [16], Patra and Kundu [17],
and Patra and Kundu [18]). This measure has been applied in different contexts such as
reliability theory, actuarial studies and queueing theory. Some authors used the RLRT
for stochastic comparisons of lifetime units such as coherent systems (see, for instance,
Eryilmaz and Tutuncu [19] and Amini-Seresht et al. [20]).

The remainder of the paper is organized as follows. In Section 2, we introduce a new
reliability measure and state a characterization property based on it for the exponential
distribution. In Section 3, we apply the characterization result in Section 2 to characterize the
exponential distribution based on the relative hazard rate for order statistics. In Section 4,
we develop the characterization based on the hazard rate with respect to the convolution
of random variables. In Section 5, the exponential distribution is characterized based on
the hazard rate relative to the record values. In Section 6, we conclude the paper with
additional remarks on the current investigation and give some explanations of future
materials that can be studied in this direction.

2. Random Hazard Rate Measure

In this section, we introduce a new reliability measure that is closely related to the
hazard rate function. As seen in Section 1, the HR function hX at the specific time t is related
to the residual lifetime of X after time point t, i.e., the conditional RV Xt. The time point t
is considered the current age of an item with lifetime X, which is constant. However, to
entertain random ages at which one can evaluate the probabilities of instantaneous risks
for failure of the item, a new measure can be introduced.
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The probability of failure of an item with lifetime X with the random age T to be occur
promptly after T can be given a rate. In this regard, the following quantity may be useful

h̄(X, T) := lim
δ→0+

1
δ

P(XT ≤ δ). (4)

By appealing Equations (2) and (4), it is found that h̄(X, T) is the derivative of FT(x)
with respect to x, at x = 0; that is, h̄(X, T) := fT(0) since

F′T(0) = lim
δ→0+

FT(δ)− FT(0)
δ

= lim
δ→0+

1
δ

P(XT ≤ δ).

Therefore, we can consider the following relative measure as the random hazard rate
of X relative to T,

h̄(X, T) :=

∫ +∞
0 f (t)dG(t)

P(X > T)
. (5)

It is acknowledged that when T is equal with t > 0 with probability one, i.e., when T
is degenerate at t, then h̄(X, T) corresponds with the ordinary hazard rate function of X at
time t. However, otherwise, there is a link between the random hazard rate of X with the
usual hazard rate of X. In fact, the random hazard rate of X is the average amount of the
ordinary hazard rate measured at a random time. Let us observe that

h̄(X, T) =

∫ +∞
0 f (t)dG(t)

P(X > T)

=
∫ +∞

0

f (t)
F̄(t)

F̄(t)∫ ∞
0 F̄(t)dG(t)

dG(t) (6)

= E[hX(T∗)],

where hX is the HR function of X and T∗ is a non-negative RV with PDF

g∗(t) =
F̄(t)g(t)∫ ∞

0 F̄(t)dG(t)
. (7)

Let us consider a random sequence of times instead of T at which the random hazard
rate is measured and a representation for the random hazard rate is obtained as (6). g∗

in (7) is also modified.
We suppose that, for k = 1, 2, . . ., the random time T(k) has PDF

g[k](t) =
w(t)φλk (t)∫ +∞

0 w(t)φλk (t)dt
, (8)

in which w and φ are two positive functions such that
∫ +∞

0 w(t)φλk (t)dt < +∞. The special
case where λk = k for k = 1, 2, . . . fulfills the result of Lemma 1, as it is known that
∑+∞

k=1
1
k = +∞. Therefore, when φ is absolutely continuous and monotone, as a result

φ(x), φ2(x), · · · is a complete sequence of functions.
We prove that the only probability distribution for which the random hazard rate (5)

when it is measured at {T(k), k = 1, 2, . . .} in place of T is constant, in the sense that it does
not depend on k, is the exponential distribution.

Formally, we present a useful lemma here to characterize the exponential distribution.

Lemma 2. Let T(k), k = 1, 2, . . . be a sequence of RVs that are independent of X. Then, X has
exponential distribution if and only if h̄(X, T(k)) = c, for all k = 1, 2, . . . in which T(k) is an RV
with PDF (8) with a monotone function φ, so that ∑+∞

k=1 λ−1
k = +∞ where 1 ≤ λ1 < λ2 < · · · .
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Proof. Note that T(k) has PDF (8) and that X has PDF f , SF F̄, and HR function hX . By (5),
we have

h̄(X, T(k)) =
∫ +∞

0

f (t)g[k](t)
P(X > T(k))

dt

=
∫ +∞

0
hX(t)

F̄(t)g[k](t)
P(X > T(k))

dt.

Therefore, h̄(X, T(k)) = c for all k = 1, 2, · · · if and only if E[hX(T∗(k))] = c for

all k = 1, 2, · · · , where T∗(k) is a nonnegative RV with PDF g∗[k](t) =
F̄(t)g[k](t)

P(X>T(k)) , which
equivalently holds if

∫ +∞

0
(hX(t)− c)

F̄(t)g[k](t)
P(X > T(k))

dt = 0, for all k = 1, 2, · · · .

Since P(X > T(k)) > 0 for all k = 1, 2, · · · , thus, the above identity holds if and only if∫ +∞

0
(hX(t)− c)F̄(t)g[k](t) dt = 0, for all k = 1, 2, · · · .

By substituting g[k] from (8) in the above integral, it follows that h̄(X, T(k)) = c for all
k = 1, 2, · · · if and only if∫ +∞

0
(hX(t)− c)F̄(t)w(t)φλk (t) dt = 0, for all k = 1, 2, · · · ,

which holds if, and only if

〈ψ, ψk〉 =
∫ +∞

0
ψ(t)ψk(t) dt = 0, for all k = 1, 2, · · · , (9)

where ψ(t) = (hX(t)− c)F̄(t)w(t) and ψk(t) = φk(t). From Lemma 1, we deduce that the
sequence ψk fulfills the completeness property on the domain (0, ∞). It thus follows from
(9) that ψ(t) = 0 for all t > 0, from which we infer that hX(t) = c for all t ≥ 0. This means
that X has exponential distribution.

In the subsequent sections, the residual life is developed in some typical random
sequence of random variables. Suppose that T1, T2, . . . are a sequence of independent
random variables that are also independent of X. We want to measure the residual life
length of X after a time that is function of Ti, µ(Ti1 , Ti2 , . . . , Tin) where (i1, i2, . . . , in) is an
increasing arrangement of natural numbers. Let µ : Rn

+ 7→ R+ be an n-variate function.
The random times Ti1 , Ti2 , . . . , Tin may be the time of occurrence of some consecutive events,
for example, times of arriving shocks to a system in reliability or a sequence of drought
occurrence in aerology. The residual life of X after the random time µ(Ti1 , Ti2 , . . . , Tin), i.e.,

Xµ(Ti1
,Ti2 ,...,Tin )

:= (X− µ(Ti1 , Ti2 , . . . , Tin)|X > µ(Ti1 , Ti2 , . . . , Tin))

may be an interesting variable for measurement. For several typical functions µ, including
different order statistics of T1, T2, . . . and upper and lower record values arising out of this
sequence of random variables, we will adopt the sequence {Xµ(Ti1

,Ti2 ,...,Tin )
: n ∈ N} to

present some characterizations for the exponential distribution. In the following sections,
we make use of Lemma 2 to present characterizations of exponential distribution.

3. Characterizations Based on Random Hazard Rate Relative to Order Statistics

We assume that T1, T2, · · · is a sequence of independent and identically distributed
(IID) nonnegative RVs with PDF g, CDF G, and SF Ḡ. In addition, assume throughout that
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the lifetime RV X is independent of this sequence. Let T(1) ≤ T(2) ≤ · · · ≤ T(i) be the order
statistics from the first i elements of the sequence of Tis. For i = 1, 2, · · · n, the PDF of the
ith order statistic T(i) is given by

g(i)(t) =
n!

(i− 1)!(n− i)!
Gi−1(t) Ḡn−i(t) g(t), for all t > 0. (10)

In the sequel, for any i ∈ N and for any n = i, i + 1, . . ., we consider XT(i) = (X− T(i) |
X > T(i)), which is the additional lifetime of X after T(i), known as the residual lifetime
of a lifespan with original lifetime X relative to the lifetime of an (n − i + 1)-out-of-n
system, provided that the lifespan survives the system’s lifetime. This is because the RV
T(i) represents the lifetime of an (n− i + 1)-out-of-n system in reliability engineering. A
coherent system fails with the consecutive failure of its components. Eryilmaz [19] used the
concept of residual life at random time to study the relative behavior of a coherent system
with respect to a system. For example, in the assembly of a system of components, it is
useful to know what the relative residual lifetime of a coherent system with lifetime TS
with respect to a series system is, given that the coherent system lifetime is greater than the
lifetime of the series system. The RV (TS − T(1) | TS > T(1)) studies the relative behavior.
For j > i, the RV (T(j) − T(i) | T(j) > T(i)) is identical with Di,j:n = T(j) − T(i) in distribution
and therefore the spacings are at the disposal of the residual life at random time. The recent
difference provides the spacings between order statistics of a sample, and has found many
applications in statistics and life testing (see, e.g., Pledger and Proschan [21]).

Kayid and Izadkhah [22], in Theorem 3.1 of their paper, proved that X has exponential
distribution if and only if E[X − T(i) | X > T(i)] = E[X] for all n = i, i + 1, . . . when i is a
positive fixed integer. Note that T(i) is the ith order statistic among a random sample of
size n, which can increase from i to infinity. That is, T(i) for any fixed i ∈ N is a sequence in
terms of n. Here, a new characterization of the exponential distribution based on random
hazard rate (5) is derived. Note that Ti:j denotes the ith order statistic among j IID random
variables T1, T2, · · · , Tj. However, when j = n, then Ti:n is denoted by T(i), as before.

Theorem 1. Let T1, T2, · · · constitute a sequence of IID nonnegative RVs with PDF g. Then, the
RV X that is independent of Ti’s has exponential distribution if and only if h̄(X, Ti:i+k−1) = c for
all k = 1, 2, · · · for a fixed integer i ∈ N where c does not depend on k.

Proof. To make use of Lemma 2, we take T(k) := Ti:i+k−1 in that lemma. From the PDF
given in (10), observe that T(k) follows the PDF

g[k](t) =
(i + k− 1)!

(i− 1)!(k− 1)!
Gi−1(t)Ḡk−1(t)g(t)

=
(i + k− 1)!

(i− 1)!(k− 1)!
g(t)Gi−1(t)

Ḡ(t)
Ḡk(t),

which coincides with PDF (8) with w(t) = g(t)Gi−1(t)
Ḡ(t) and φ(t) = Ḡ(t). It is trivial that φ is a

decreasing function. Thus, Lemma (2) is applied and provides the proof.

It is to be mentioned that c in the previous theorem, as well as in the residual theorem,
is the reciprocal of the mean of distribution X, i.e., when we write hX(t) = c, it turns out
that hX(t) = 1

E(X)
. In Theorem 1, the random time is considered to be the ith order statistic

with i fixed, among partial sets of the sequence of Ti. However, the maximum order statistic
cannot be entertained since the size of the partial sets of the sequence is going up, and thus
it cannot be fixed. Let us assume that T(k) = max{T1, T2, · · · , Tk} is the order statistic that
has the largest amount among T1, T2, · · · , Tk. Next, we provide another characterization
property of the exponential distribution.
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Theorem 2. Let T1, T2, · · · be a set of IID nonnegative RVs with PDF g. Then, the RV X which
is independent of Ti’s, follows the exponential distribution if, and only if, h̄(X, Tk:k) = c for all
k = 1, 2, · · · , where c is free of k.

Proof. To make Lemma 2 applicable, one takes T(k) := Tk:k in the lemma. From the PDF
given in (10), one can see that T(k) follows the PDF

g[k](t) = kGk−1(t)g(t)

= k
g(t)
G(t)

Gk(t),

which coincides with PDF (8) with w(t) = g(t)
G(t) and φ(t) = G(t). It is obvious that φ is an

increasing function. Thus, Lemma 2 applies and gives the proof.

Suppose T0 be a nonnegative RV with CDF G and PDF g. Then, T with CDF Gη , η > 0
is said to have a proportional reversed hazard rate (PRHR) model, since h̃T(t) = ηh̃T0(t)
where h̃T is the reversed hazard rate (RHR) function of T and h̃T0 is the RHR function of

T0 given by h̃T0(t) = g(t)
G(t) , which is valid for all t ≥ 0 for which G(t) > 0. For further

discussion on the PRHR model, we refer the reader to Gupta et al. [23]. In parallel, if
the RV T has SF Ḡθ , θ > 0, then it is said that T satisfies the proportional hazard rate
(PHR) model where hT(t) = θhT0(t), in which hT and hT0 are the HR function of T and T0,
respectively. For further details on the PHR model in our context, we refer the reader to
Kochar and Xu [24].

The results of Theorems 1 and 2 are based on IID random times. In the context of the
PRHR model and the PHR model, we characterize the exponential distribution in terms of
non-identical independent random times as follows:

Theorem 3. Let T1, T2, . . . be nonnegative independent RVs that are independent of X, such that

(a) Ti follows the SF Ḡθi , i = 1, 2, . . . , k where θ1 ≥ 1 and θi > 0, i = 2, 3, . . .. If we assume

further ∑+∞
k=1

(
∑k

i=1 θi

)−1
= +∞, then X has exponential distribution if and only if h̄(X, T1:k) = c

for all k = 1, 2, · · · , where c does not depend on k.

(b) Ti follows the CDF Gηi , i = 1, 2, . . . , k so that η1 ≥ 1 and ηi > 0, i = 2, 3, . . .. If

we suppose that ∑+∞
k=1

(
∑k

i=1 ηi

)−1
= +∞ then X has exponential distribution, if and only if,

h̄(X, Tk:k) = c for all k = 1, 2, · · · where c does not depend on k.

Proof. To establish the result in assertion (a), we make an application of Lemma 2 by taking
T(k) := T1:k. Note that T(k) follows the PDF

g[k](t) = (
k

∑
i=1

θi)g(t)Ḡ∑k
i=1 θi−1(t).

= (
k

∑
i=1

θi)
g(t)
Ḡ(t)

Ḡ∑k
i=1 θi (t),

which matches with PDF (8) with w(t) = g(t)
Ḡ(t) and φ(t) = Ḡ(t), so that λk = ∑k

i=1 θi. It is
evidently seen that φ is a decreasing function. Therefore, Lemma (2) completes the proof of
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(a). We now prove the assertion (b). In this case, we make another application of Lemma 2
by taking T(k) := Tk:k. We observe that T(k) follows the PDF

g[k](t) = (
k

∑
i=1

ηi)g(t)G∑k
i=1 ηi−1(t).

= (
k

∑
i=1

ηi)
g(t)
G(t)

G∑k
i=1 ηi (t),

which matches with PDF (8) with w(t) = g(t)
G(t) and φ(t) = G(t) where λk = ∑k

i=1 ηi. Since
φ is increasing, Lemma (2) is applicable and completes the proof of (b).

4. Characterizations Based on Random Hazard Rate Relative to Convolution of
Random Variables

Here, convolution of random variables is regarded as the random times. The considera-
tion of convolution of random lifetimes has been frequently used in the context of reliability
analysis and stochastic comparisons (see Bon, J. L. and Pãltãnea [25] and Shaked and Suarez-
Llorens [26]). The convolution of independent RVs is indeed the lifetime of a standby
system, which has been found to be useful to allocate a spare in a system in order to stochas-
tically optimize the lifetime of the resulting system (cf. Boland et al. [27]). Stochastic order-
ings of a residual lifetime of convolutions have been considered in Amiripour et al. [28],
where some applications in reliability and queuing systems were also presented.

In this context, convolutions of heterogenous gamma RVs with different shape pa-
rameters but a common scale parameter have been considered in some research work for
multiple purposes, including stochastic comparisons. The tail behavior has also been stud-
ied (see, e.g., Kochar and Xu [29], Zhao [30], Amiri et al. [31] and Roosta-Khorasani [32]).
Let us consider T1, T2, · · · to be a sequence of independent RVs having gamma distribution
with shape parameters α1, α2, · · · , respectively, and a common scale parameter β. The PDF
of Ti, i = 1, 2, · · · is given by

g(t, αi, β) =
tαi−1βαi e−βt

Γ(αi)
, t > 0,

in which αi > 0 and β > 0. Let X be the length of a device. Denote by Sk = ∑k
i=1 Ti

the partial sum of the gamma sequence. In probability theory, it is known that Sk =
T1 + T2 + · · ·+ Tk follows a gamma distribution with PDF

gk(t) =
β

λk t
λk−1

e−βt

Γ(λk)
, for all t > 0, (11)

in which λk = ∑k
i=1 αi whenever k ∈ N. We will utilize the following measure

h̄(X, Sk) = lim
δ→0+

1
δ

P(XSk ≤ δ), k ∈ N.

The following result presents another characterization result for the exponential
distribution.

Theorem 4. Let T1, T2, . . . be independent heterogenous gamma RVs that are independent of X,
such that Ti follows a gamma distribution with shape parameter αi > 0 and β > 0 for i = 1, 2, . . .

where α ≥ 1. If ∑+∞
k=1

(
∑k

i=1 αi

)−1
= +∞, then X is exponential if and only if h̄(X, Sk) = c for

all k = 1, 2, · · · , where c is independent of k.
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Proof. We apply Lemma 2 once again. Let us take T(k) := Sk in Lemma 2. From the PDF
given in (11), we see that T(k) follows the PDF

g[k](t) =
β

λk t
λk−1

e−βt

Γ(λk)

=
β

λk

Γ(λk)

e−βt

t
t

λk ,

where λk = ∑k
i=1 αi, which coincides with PDF (8) with w(t) = eβt

t and φ(t) = t. It is
obvious that φ is an increasing function. Thus, Lemma 2 applies in this case and completes
the proof.

5. Characterizations Based on Random Hazard Rate Relative to Record Statistics

In science, nature, and technology, records are important for their content and as
evidence of communications, decisions, actions, and history. As public entities, school
boards are accountable to the public and government. Records support openness and
transparency by documenting and providing evidence of work activities and making them
available to the public. Records support the quality of programs and services, provide
information for decision making, and help achieve organizational goals. In statistics, a
record value or statistic is the largest or smallest value that results from a sequence of
random variables (cf. Arnold et al. [33]).

To be more specific, the RV Ti, when it is observed, is called an upper record if its
value is greater than the value taken by previously recorded observations. Therefore, Tj
is considered to be an upper record if Tj > Ti for every i < j. By the identification of the
record statistics, a random sequence of time points is generated at which the records occur.
We denote the ith element of this sequence by Ui, considered to be the time at which the
ith upper record appears. The initial time U0 is assumed to be zero with probability 1,
and for j ≥ 1, Uj = min{i : Ti > TUi−1}. The upper record values are then identified as
{TUk : k = 0, 1, 2, . . .}. Since Tis are lifetime RVs, we set T0 = 0. The RV TUk , which is the
kth upper record, has the following PDF

gUk (t) =
(− log(Ḡ(t)))k

k!
g(t). (12)

It is of some interest to hold the excess records for future observations. The RV X
used to denote the lifetime of a lifespan is considered to be independent of Tk, k = 1, 2, . . ..
Therefore, X is also independent of TUk . The conditional RV XTUk

= (X− TUk | X > TUk )

is a tool for measurement of the amount of X, provided that X is greater than the kth upper
record of Tis. The RV XTUk

can be used in different contexts; e.g., to evaluate the additional
capacity of a dam, we can measure the water level in record times caused by rainfalls.

Next, another characterization of the exponential distribution is presented.

Theorem 5. Suppose T1, T2, . . . are IID RVs that are independent of X. Then, X is exponential if
and only if h̄(X, TUk ) = c for all k = 1, 2, · · · , where c is not tied to k.

Proof. We utilize Lemma 2 to obtain the result. We can take T(k) := TUk in Lemma 2. From
the PDF given in (12), it is seen that T(k) follows the PDF

g[k](t) =
(− log(Ḡ(t)))k

k!
g(t)

=
g(t)
k!

(− log(Ḡ(t)))k,
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which matches with PDF (8) when w(t) = g(t) and φ(t) = − log(Ḡ(t)). It is clear that
φ is an increasing function. Thus, Lemma 2 applies in this case as well, and provides
the proof.

6. Conclusions

In the study conducted in this paper, new characterizations of the exponential distribu-
tion were developed. We have used a new measure obtained by the hazard rate at random
time points. It has been shown that the new measure is the average of the hazard rate of
the population at an independent random time. Since the population may be exposed to
different environments, different random time points may be considered at which the risks
of failure in the population are quantified by the new hazard measure. The random time
points were defined as order statistics of a sample, convolutions of random time points,
and record statistics. The hazard rate function, when measured at each point in the entire
time interval, i.e., [0,+∞), uniquely determines the distribution, and if the amounts it
takes for different time points in [0,+∞) are all the same, then the underlying distribution
is exponential, and vice versa. However, in this work, we have shown that the strong
condition that the hazard rate function be constant over the entire time interval can be
reduced to a weaker condition. Formally, it has been pointed out in various theorems that
X must be exponential if the average (the mathematical expectation) of the hazard rate in a
sequential random time is a constant, and vice versa.

In future research, the possibility of entertaining dependencies between X and T1, T2, . . .
will be sought. In such a situation, a broader desire for applicability of the characterization
results is expressed. By considering this possibility, we can characterize distributions using
dependent random variables. For example, the sequence of order statistics, the partial
sums (convolution) of random variables, and the sequence of record statistics are each
dependent random variables. The new measure, called the random rate, is of interest in
several contexts. We can use this measure to study the relative behavior of components of a
coherent system or the behavior of two coherent systems with respect to each other. We
can also study stochastic ordering properties of distributions by their random hazard rate
with respect to a reference population.
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