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Abstract: Narrowband Internet of Things (NB-IoT) is one of the low-power wide-area network
technologies that aim to support enormous connection, deep coverage, low power consumption,
and low cost. Therefore, low cost of implementation and maintenance is one of the key challenges
of NB-IoT terminals. This paper presents a low-complexity formulation for narrowband secondary
synchronization signal (NSSS) detection in the NB-IoT system, supported by a coherent algorithm
that requires a priori knowledge of the channel. By exploiting a symmetric conjugate feature of
the NSSS sequence, a joint physical cell ID and radio frame number detection method with low
complexity is proposed for coherent detection. The probability of erroneous detection of the presented
NSSS detection method is computed, and the analytical model is verified by means of simulation.
Numerical experiments will demonstrate that the proposed detection scheme remarkably reduces
the computational complexity with almost the same detection ability compared to the existing
detection scheme.

Keywords: Narrowband Internet of Things; secondary synchronization signal; physical cell ID; radio
frame number

MSC: 94A13

1. Introduction

Recently, ultra-low-end Internet of Things (IoT) applications have been gaining great
attention in areas such as smart home automation, industrial process automation, remote
manufacturing, unmanned aerial system, and intelligent transportation systems [1–4]. To
satisfy the requirements of IoT, many low-power wide-area (LPWA) techniques working
in licensed frequency bands were developed [5–7]. Among various LPWA standards,
narrowband IoT (NB-IoT) is the most popular technique due to its ability to have massive
connections as it is inherited from long-term evolution (LTE). Thus, one of the key challeng-
ing concerns of NB-IoT is the low cost of implementation, deployment, and maintenance
because they can be cheap, widely dispersed, and even disposable [8,9]. Moreover, similar
to LTE, every device must be synchronized with an enhanced base station (eNodeB) to
connect the network. Typically, user equipment (UE) needs to continuously obtain timing
information and search for physical cell ID (PCID) at power-up [10–12]. The process of
performing network synchronization and identifying any available eNodeB by a NB-IoT
UE is termed as the initial cell search. To assist such a task, the UE needs to detect two
specific signals broadcasted from the eNodeB: narrowband primary synchronization signal
(NPSS) and narrowband secondary synchronization signal (NSSS).
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In order to reliably maintain a connection between UE and serving eNodeB, the NB-
IoT device has to perform a series of tasks of finding the symbol timing offset (STO) and
estimating the carrier frequency offset (CFO) in a pre-discrete Fourier transform (DFT)
stage. To perform these tasks, autocorrelation and cross-correlation have been proved to be
an efficient solution [11–13]. Once time and frequency uncertainties have been resolved by
exploiting the NPSS, a cyclic prefix (CP) can be removed, and the NB-IoT UE performs a
DFT to convert the CP-removed signal to the frequency domain. In a post-DFT step, the
NB-IoT device attempts to detect the PCID and radio frame number (RFN) by observing
multiple NSSS preambles. If the NB-IoT device fails to identify the NSSS, it has to fully
scan the available frequency band, significantly increasing power consumption [11].

Most NB-IoT UEs are usually implemented with less expensive crystal oscillators
resulting in CFO of as much as 20 ppm [12]. Therefore, there exist non-negligible time and
frequency offsets between the NB-IoT UE and the network, and such uncertainties may
cause difficulty in establishing an initial connection. Despite the large uncertainties, an
NB-IoT UE needs to be able to a perform reliable cell search at a very low signal-to-noise
ratio (SNR). Recently, a significant number of detection methods have been developed to
identify the NSSS [12–20]. An exhaustive maximum likelihood (ML) method proposed
in [12] attains optimal detection performance at the expense of the computational burden.
By exploiting the property that the complementary Walsh sequences composing the NSSS
are binary-modulated, several simplifications have been suggested in [13–15]. However,
the simplified methods no longer take advantage of NSSS properties in spite of decreasing
the computational burden. By using inherent features of an NSSS sequence, the authors
of [16–18] proposed suboptimal alternatives to significantly reduce the complexity without
relying on a priori knowledge of the channel. Since such non-coherent methods are
originally developed assuming flat-fading conditions, the detection performance is severely
degraded in the presence of the frequency selectivity. A differential correlation strategy can
be used to remove the effects of the channel fading [19]. However, the differential detection
approach developed in the LTE system is not directly applied to the NB-IoT system due to
the loss of the autocorrelation property of the NSSS. In [20], a DFT-based coherent NSSS
detector has been developed, which is based on algorithms for fast computations of DFTs
to perform the cross-correlation, thereby reducing the complexity of the NSSS detector.
However, when considering other computational complexities together to estimate the
channel, the DFT-based detection method is too computationally expensive since NB-IoT
needs to compare 4032 potential NSSS candidates. Therefore, the NB-IoT device has to
provide a complexity-effective and robust NSSS detection method that guarantees battery
lifetimes greater than 10 years for low data-rate IoT applications.

This paper proposes an effective coherent joint PCID and RFN detection scheme in
the cellular NB-IoT system. The basic idea is to decouple the joint search space of the
NSSS detection into a small number of hypotheses, which contributes to reducing the
processing burden. To do so, the symmetric conjugate property of the NSSS sequence
is explored. To validate the effectiveness of the proposed NSSS detection method, the
probability of erroneous detection (PED) is analytically computed. The numerical analysis
is verified by simulation results and proven to be very accurate. Simulations demonstrate
that the proposed coherent detection method obtains the PCID and RFN with reduced
computational complexity while achieving almost a similar performance to the existing
coherent detection method. If an average estimation is adopted to improve detection
performance of NB-IoT UEs in a poor coverage area, the proposed coherent detector
requires only half the complexity of the conventional coherent detector to maintain a target
error rate at the cost of a slight increase in the processing delay.

The remaining part of this paper is structured as follows. The related work in NSSS
detection is reviewed in Section 2. Section 3 presents the signal model and synchronization
signal in the cellular NB-IoT system. In Section 4, we propose an improved coherent NSSS
detection method and the PED of the proposed detection method is numerically derived.



Mathematics 2022, 10, 3024 3 of 18

Section 5 presents the comprehensive simulation result to assess the usefulness of the
proposed NSSS detection method. The paper is concluded in Section 6.

Notations: The operators E{·} and b·c are used to represent the expected value and
rounding-down operation of the enclosed variable, respectively. The superscripts X∗, X I ,
and XQ represent the complex conjugation, real part, and imaginary part of a complex
variable X, respectively. The magnitude and argument of a complex number X are denoted
by |X| and ∠{X}, respectively, leading to X = |X|ej∠{X}. The notation G ∼ G(µ, σ2) means
that G is the real-valued normal distribution with mean µ and variance σ2. Finally, cosh(x)
is the hyperbolic cosine function, Q(x) is the Q-function, I0(x) is the zeroth-order modified
Bessel function of the first kind, and mod(x, y) is the modulus operation that returns the
integer remainder of x/y. Table 1 summarizes the variables used in the paper.

Table 1. Main variables used in this paper.

Notation Description

x∗ Complex conjugation of a complex number x
|x| Magnitude of a complex number x

∠{x} Argument of a complex number x
xI Real part of a complex variable x
xQ Imaginary part of a complex variable x
bxc Rounding-down operation of variable x
E{x} Expected value of variable x

x̂ Estimate of variable x
mod(x, y) Modulus operation which returns the integer remainder of x/y

(ε, ε) (CFO, residual CFO)
(θ, ϑ) (STO, residual STO)
(v, nr) (PCID, RFN)

m Index for deciding the RFN in which the NSSS is transmitted
n Cell specific parameter given by n = bv/126c
u Cyclic shift given by u = mod(nr/8, 4)
w Root sequence given by w = mod(v, 126) + 3

(a, b, c, d) Hypothesized number for (m, n, u, w)
Bl,k(n) Hadamard–Walsh sequence derived from cn(g′)
Cl,k(u) Sequence derived from e−j2πug

Dl,k(w) Zadoff–Chu sequence derived from e−jπwg′′(g′′+1)/131

El,k(n, u, w) NSSS sequence derived from Bl,k(n), Cl,k(u), and Dl,k(w)
S Set of NSSS subcarrier index

2. Related Works

The NSSS detection method can be categorized into two major groups: non-coherent
approach and coherent approach. The former has been considered as an effective ap-
proach to detect the NSSS without resorting to the channel information in flat-fading
condition [12–18]. Full-search-based ML strategy developed in [12] gives an optimal solu-
tion at the cost of implementation burden because all the possible realizations of Zadoff–
Chu (ZC) and Hadamard–Walsh sequences have to be compared to the received NSSS
observation. In particular, the NB-IoT receiver needs to hypothesize 4032 possible candi-
dates of the NSSS sequence to simultaneously detect both PCID and RFN, which enforces
high computational complexity in the initial cell search procedure. To tackle this challenge,
reduced-complexity solutions have been proposed exploiting the feature that some com-
ponents of NSSS sequences can be implemented without multiplication operation [13–15].
By using inherent properties of the NSSS sequence, these methods give suboptimal solu-
tions with a remarkable reduction in computational burden when compared to an optimal
full-search-based ML method. Based on the property that complementary Walsh sequences
are binary-modulated and ZC sequences are repeated in the frequency domain, the works
in [13,14] significantly save the computational burden in the NSSS detection. To decouple
the joint detection task of the PCID and RFN, a sequential detection method without fully
performing hypothesis testing on NSSS candidates was proposed in [15]. Despite reducing
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their complexity, such cross-correlation-based approaches no longer take advantage of
NSSS properties to perform the NSSS detection, inevitably leading to considerable per-
formance degradation. In spite of the investigation in [13–15], such suboptimal detectors
would still become impractical since their structural complexity is proportional to the
number of hypothesis testing. Authors in [16–18] developed near-ML but low complexity
NSSS detection methods. In [16], a near-ML method was presented using autocorrela-
tion of the NSSS instead of cross-correlation. This approach is based on the symmetric
property of the ZC sequence, which leads to a reduced-complexity NSSS detector. In [17],
the NSSS detection is performed by detecting the ZC and Hadamard–Walsh sequences in
two steps, which contributes to decreasing the arithmetic operation. However, such an
advantage is obtained at the price of a slight degradation in detection accuracy. Another
simplification was proposed in [18], which is based on an NSSS subcarrier grouping algo-
rithm to detect the NSSS with reduced computational burden. Compared to ML detection,
this alternative solution greatly reduces the computational complexity without sacrificing
detection capability at the expense of slightly increased processing latency. Since such
non-coherent methods in [16–18] are originally developed to achieve near-ML performance
in a flat-fading condition, they do not overcome the effect of the frequency-selective fading
of the channel despite reducing the computational complexity. To cope with the effect
of the channel fading distortion, a differential correlation-based non-coherent approach
and channel-estimation-based coherent approach can be used [19,20]. The authors of [19]
proposed a differential correlation-based joint detection of synchronization signals in the
LTE system, and suboptimal performance is achieved with reduced complexity in a de-
coupled manner. Unfortunately, this detection method is not directly applicable to the
NB-IoT system due to poor autocorrelation characteristics of the NSSS sequence. In [20], a
DFT-based NSSS detection approach was proposed for both situations where the channel is
unknown and has to be estimated. In the case of the flat-fading channel, this method can be
designed using DFT operations with a comparable complexity to the approach in [14]. On
the other hand, applying this coherent detection approach to combat frequency-selective
fading requires a significant increase in the complexity of channel estimation, as this task
has to be performed for 4032 possible hypotheses. Accordingly, NSSS detection plays a key
role in the initial synchronization procedure of NB-IoT because the NSSS is associated with
both PCID and RFN.

3. System Description
3.1. Signal Model

For an orthogonal frequency division multiplexing (OFDM) system using N equi-
spaced subcarriers, a complex data symbol inserted on the k-th subcarrier of the l-th
symbol is represented by Xl,k. An OFDM symbol is generated by performing N-point
inverse DFT (IDFT) to produce N complex time-domain samples. To maintain inter-symbol
orthogonality and remove inter-carrier interference (ICI), a CP is appended to each symbol
before transmitting duration Tg sec such that an effective OFDM symbol of duration
Tu = (N + Ng)Ts = (1 + Ng/N)/∆ f is created, where Ts denotes the sampling time
period at the transmitter, Ng is the length of CP, and ∆ f is the minimum subcarrier spacing.
Therefore, the time-domain sample of the OFDM symbol during the l-th symbol period is
given as

xl,q =
N−1

∑
k=0

Xl,kej2πkq/N , q = −Ng,−Ng + 1, · · · , N − 1 (1)

The transmitted signal is subject to multipath fading and additive noise pollution
introduced by the channel. After passing through a multipath fading channel, the radio
frequency signal with central carrier frequency fc is down-converted to an OFDM baseband
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with an oscillator frequency f
′
c . Then, the time-domain sampled signal at a rate of 1/Ts can

be obtained as

yl,q = ej2πlερ1 ej2πε(q−θ)/N
L

∑
p=1

hl,pxl,q−τp−θ + zl,q (2)

where ρ1 = (N + Ng)/N = Nt/N, q = −Ng,−Ng + 1, · · · , N− 1, hl,p denotes the discrete-
time impulse response of the channel with L resolvable multipaths, τp denotes the relative
delay of the p-th path, zl,q denotes the zero-mean additive white Gaussian noise (AWGN)
with variance σ2

z , ε = ( fc − f
′
c)/∆ f is the normalized CFO, and θ denotes the initial STO.

Since any fractional STO is incorporated into hl,p, θ can be treated to be integer-valued.
Based on the received signal yl,q, the NB-IoT device tries to find a coarse STO estimate

θ̂ and CFO estimate ε̂, which have to be removed from yl,q in the time domain [13,14]. Even
after these initial ambiguities have been removed, residual CFO ε = ε− ε̂ and residual STO
ϑ = θ − θ̂ possibly remain. Based on the estimates in the pre-DFT step, the CP is extracted
from the received signal, and a DFT process is performed. Afterward, the DFT output at
the k-th subcarrier of the l-th symbol can be written as [21,22]

Yl,k ≈ Hl,kXl,ke−j2πkϑ/Nej2πε(lρ1+ρ2) + Il,k + Zl,k (3)

where ρ2 = Ng/N, Hl(k) denotes the channel frequency response with variance σ2
H , Il,k

denotes the ICI component with variance σ2
I ≈ E{|Xl,k|2}σ2

Hε2π2/3, and Zl,k denotes
an identically distributed circularly symmetric complex Gaussian random process with
variance σ2

Z. For practical values of ε, σ2
I is negligible compared to the noise power, and

thus, the ICI component can be neglected during the post-DFT step [21].

3.2. Synchronization Signal

In the NB-IoT downlink, each frame is 10 ms in length in the time domain and consists
of 10 subframes. A subframe is divided into 2 slots each, including 7 OFDM symbols.
There are two kinds of dedicated signals such as narrowband reference signals (NRS) and
synchronization signals in NB-IoT. The NRS is dedicated to channel estimation, whereas
the synchronization signals that include the NPSS and the NSSS are mainly used to perform
an initial cell search. For this purpose, the NPSS is periodically transmitted in subframe
5 in every 10 ms frame, whereas the NSSS is transmitted in subframe 9 in frames with
20 ms periodicity. After the power is turned on, the NB-IoT UE performs the time and
frequency estimation procedure by synchronizing to NPSS. Since the NPSS is common in
every subframe for all eNodeBs, the NB-IoT UE needs to search for only one NPSS sequence.
On the other hand, the NSSS is dedicated to performing full downlink synchronization by
detecting the PCID and acquiring the timing information within an 80 ms block.

Both NPSS and NSSS sequences are generated from the frequency-domain ZC
sequences [23]. The NPSS is formulated to be robust to the presence of a large CFO
and is derived from length-11 ZC sequence of root index 5, thus taking the form

Pl,k = Ale−j5πk(k+1)/11, 0 ≤ k < 11, 3 ≤ l < 14 (4)

where Al = {1, 1, 1, 1,−1,−1, 1, 1, 1,−1, 1} is the binary cover code. In every fifth sub-
frame, Pl,k is located in the last 11 consecutive OFDM symbols, each of which consists
of 12 subcarriers. Each of 11 OFDM symbols in an NPSS subframe carries a copy of the
base sequence based on Al ∈ {−1, 1}. Therefore, NB-IoT supports 504 unique PCIDs
indicated by NSSS, which can be transmitted in every even-numbered frame. The NSSS is
derived by element-wise multiplication between a ZC sequence and a Hadamard–Walsh
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sequence. Specifically, the NSSS is scrambled with a frame-dependent sequence code and
takes the form

Eg = cn,g′ e
−j2πuge−jπwg′′(g′′+1)/(Ns−1), 0 ≤ g < Ns (5)

where Ns = 132 denotes the length of the NSSS sequence, n = bv/126c, v ∈ {0, 1, 2, · · · , 503}
denotes the PCID, g′ = mod(g, 128), g′′ = mod(g, 131), w = mod(v, 126) + 3,
u = mod(nr/8, 4) is decided by the RFN nr, and cn,g′ is based on length-128 Hadamard–
Walsh sequences with the first four components cyclically suffixed to form a length-132
sequence [7].

To simplify the notation, Eg is grouped into 11 equally-sized successive blocks, which
are sequentially allocated to 11 OFDM symbols. Accordingly, the transmission bandwidth
of the NPSS and NSSS is only one resource block (RB) consisting of 12 subcarriers. Based
on this notation, the l-th symbol at the k-th subcarrier is symbolized as El,k(n, u, w) for
3 ≤ l ≤ 13 and 0 ≤ k < 12. Mapping from Eg to El,k(n, u, w) is performed in increasing
order of first the index k and then the index l. Let Bl,k(n), Cl,k(u) and Dl,k(w) be sequences
generated from cn(g′), e−j2πug and e−jπwg′′(g′′+1)/131, respectively. For the purpose of
brevity, let the NSSS be composed of three concatenated sequences so that

El,k(n, u, w) = Bl,k(n)Cl,k(u)Dl,k(w) (6)

where n ∈ {0, 1, 2, 3}, u ∈ {0, 1/4, 2/4, 3/4}, and w ∈ {3, 4, · · · , 128}.

4. Proposed Joint Detection Scheme

In this section, a complexity-efficient NSSS detector in the NB-IoT communication
system is presented. For this aim, the joint detection task of the PCID and RFN is decoupled
in a sequential manner. Based on the sequential detection strategy, a low-complexity NSSS
detector is designed, and the detection performance of the proposed scheme is evaluated
in terms of the PED.

4.1. Detection Algorithm

To focus on the NSSS detection, suppose the channel is constant during one subframe,
which is suitable for the situation where the NB-IoT device moves at low speed. Within
one subframe, the estimated channel at the k-th subcarrier can be given as

Ĥk(a, b, c, d) =
1

11EX

aN f +13

∑
l=aN f +3

Yl,kE∗l,k(b, c, d), k ∈ S (7)

where EX = |El,k(b, c, d)|2, S = {k|0 ≤ k < 12} denotes the full set of the NSSS subcarrier
index, a ∈ {0, 1} denotes the hypothesized number for deciding the RFN in which the NSSS
is transmitted, b ∈ {0, 1, 2, 3} denotes the hypothesized number for n, c ∈ {0, 1/4, 2/4, 3/4}
is the hypothesized number for u, d ∈ {3, 4, · · · , 128} denotes the hypothesized number
for w, and N f denotes the number of OFDM blocks in a radio frame. The average estimate
over one subframe can improve estimation accuracy by mitigating the effect of noise on the
estimated channel.

Once the channel fading has been compensated using (7), we obtain the objective
function given by

Ω(a, b, c, d) = ∑
k∈S

aN f +13

∑
l=aN f +3

Ỹl,k(a, b, c, d)E∗l,k(b, c, d) (8)

where Ỹl,k(a, b, c, d) = Yl,k Ĥ∗k (a, b, c, d). Due to the use of the estimated channel, the pro-
posed NSSS detection method falls into the category of a coherent approach. For conve-
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nience, we hereafter omit the notation (a, b, c, d) in Ỹl,k(a, b, c, d) and Ĥk(a, b, c, d), assuming
perfect channel knowledge. When hypothesized numbers exactly match corresponding
actual numbers, i.e., (a, b, c, d) = (m, n, u, w), substituting (3) into (8) gives

Ω(a, b, c, d) = ∑
k∈S

Hl,k Ĥ∗k EX

aN f +13

∑
l=aN f +3

ej2π(ε(lρ1+ρ2)−kϑ/N)

+ ∑
k∈S

aN f +13

∑
l=aN f +3

Zl,k Ĥ∗k (a, b, c, d)E∗l,k(b, c, d)

(9)

In this case, when (a, b, c, d) = (m, n, u, w), (7) takes the form

Ĥk =
Hl,k

11

aN f +13

∑
l=aN f +3

ej2π(ε(lρ1+ρ2)−kϑ/N) +
1

11EX

aN f +13

∑
l=aN f +3

Zl,kE∗l,k(b, c, d) (10)

which is further derived as

Ĥk =
Hl,kS(ε)

11
ej2π(ε(5ρ1+(aN f +3)ρ1+ρ2)−kϑ/N) +

1
11EX

aN f +13

∑
l=aN f +3

Zl,kE∗l,k(b, c, d) (11)

where S(ε) = sin(22περ1)/sin(2περ1) ≈ 11 for sufficiently small values of ε. It is worthy
of mentioning that the phase rotation due to ε and ϑ is incorporated into the estimated
channel (11), and can thus be compensated from (9).

Since the choice of d and 131− d produces ZC sequences, which are complex-conjugates
of each other so that D∗l,k(d) = Dl,k(131− d), the real part of (8) is in the form

ΩI(a, b, c, d) = ∑
k∈S

aN f +13

∑
l=aN f +3

Ỹ I
l,kEI

l,k(b, c, d′) + (−1)λ ∑
k∈S

aN f +13

∑
l=aN f +3

ỸQ
l,kEQ

l,k(b, c, d′) (12)

where λ is defined as

λ =

{
0, for 3 ≤ d ≤ 65
1, for 66 ≤ d ≤ 128

(13)

and d′ = d− λ(2d− 131) ∈ {3, 4, · · · , 65}. It should be noted from (12) that the uncertainty
related with two ZC root indices d and 131− d is only the sign in the second component of
the right-hand side (RHS). Thus, the objective functions for d and 131− d can be derived
from combinations of identical observation. Using this property, the objective function with
reduced search space is formulated as

ΨI(a, b, c, d′) = ∑
k∈S

aN f +13

∑
l=aN f +3

Ỹ I
l,kEI

l,k(b, c, d′) +

∣∣∣∣∣∣∑k∈S
aN f +13

∑
l=aN f +3

ỸQ
l,kEQ

l,k(b, c, d′)

∣∣∣∣∣∣ (14)

where d′ ∈ {3, 4, · · · , 65} denotes the hypothesized number for w′ and the quantity (−1)λ

that is a function of ZC root index d is eliminated by taking the absolute value of the second
term of the RHS in (12).

We focus on the case where Ĥk = Hl,k in all subsequent derivations. However, the
effect of channel estimation error on the system performance will be evaluated in the
simulations. By substituting Ỹl,k to (14), ΨI(a, b, c, d′) takes the expression
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ΨI(a, b, c, d′) = ∑
k∈S

aN f +13

∑
l=aN f +3

|Hl,k|2X I
l,kEI

l,k(b, c, d′) +Z I

+

∣∣∣∣∣∣∑k∈S
aN f +13

∑
l=aN f +3

|Hl,k|2XQ
l,kEQ

l,k(b, c, d′) +ZQ

∣∣∣∣∣∣
(15)

with

Z I/Q = ∑
k∈S

aN f +13

∑
l=aN f +3

Z̃I/Q
l,k EI/Q

l,k (b, c, d′) (16)

where Z̃l,k = Zl,k Ĥ∗k and I/Q notation stands for the corresponding term-wise pair. Under
hypothesis H1 that the NSSS signal is correctly detected, i.e., (a, b, c, d′) = (m, n, u, w′), it
follows that X I/Q

l,k EI/Q
l,k (b, c, d′) = |EI/Q

l,k (b, c, d′)|2. Based on this observation, ΨI(a, b, c, d′)
is given by

ΨI(a, b, c, d′) = ∑
k∈S

aN f +13

∑
l=aN f +3

|Hl,k|2EX/2 +Z I +

∣∣∣∣∣∣∑k∈S
aN f +13

∑
l=aN f +3

|Hl,k|2EX/2 +ZQ

∣∣∣∣∣∣ (17)

Under hypothesis H0 that (a, b, c, d′) 6= (m, n, u, w′), it follows that X I/Q
l,k EI/Q

l,k (b, c, d′)
are random sequences since Xl,k is treated as a random complex number in a downlink
shared channel or a downlink control channel. Therefore, a central limit theorem invokes
that ∑k∈S ∑

aN f +13
l=aN f +3 |Hl,k|2X I

l,kEI
l,k(b, c, d′) +Z I in (15) is zero-mean Gaussian distributed.

Similarly, this distribution also applies to the quantity ∑k∈S ∑
aN f +13
l=aN f +3 |Hl,k|2XQ

l,kEQ
l,k(b, c, d′)+

ZQ. Hence, |∑k∈S ∑
aN f +13
l=aN f +3 |Hl,k|2XQ

l,kEQ
l,k(b, c, d′) +ZQ| is treated as a folded normal ran-

dom variable under hypothesis H0.
The proposed NSSS detector comprises two steps. Specifically, a joint detection of the

PCID and RFN can be decoupled into two sequential detection tasks for each parameter. In
the first step, the estimates of (m, n, u, w′) are obtained by finding a global maximum of
ΨI(a, b, c, d′) over (a, b, c, d′)

(m̂, n̂, û, ŵ′) = arg max
(a,b,c,d′)

ΨI(a, b, c, d′) (18)

A close look at (18) indicates that the search space of d′ can be reduced by half
since d′ ∈ {3, 4, · · · , 65}, which allows a decrease in the computational burden of the
proposed NSSS detection scheme. In this step, the estimate of the RFN can be obtained
from combining m̂ and û, and it is tentatively decided that the NSSS with ZC root index
ŵ′ or 131− ŵ′ was transmitted from the eNodeB. Based on the estimates (m̂, n̂, û, ŵ′), the
NB-IoT UE attempts to determine which NSSS was actually transmitted during the second
step. To end this, the NB-IoT UE performs the task given by

ŵ′′ = arg max
w′′

ΩI(m̂, n̂, û, w′′) (19)

where w′′ ∈ {ŵ′, 131 − ŵ′} is the possible candidate for w that is tentatively selected
from the first step. Due to only two hypothesized numbers of w, (19) is equivalently
formulated by

ΩI(m̂, n̂, û, ŵ′)
ŵ′
≷

131−ŵ′
ΩI(m̂, n̂, û, 131− ŵ′) (20)
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Using (12), the decision statistic can be rewritten as

ΩI(m̂, n̂, û, ŵ′)−ΩI(m̂, n̂, û, 131− ŵ′) = 2 ∑
k∈S

m̂N f +13

∑
l=m̂N f +3

ỸQ
l,kEQ

l,k(n̂, û, ŵ′) (21)

which is based on the second term of the RHS in (12). Then, the decision rule of (20) is
equivalently represented as

∑
k∈S

m̂N f +13

∑
l=m̂N f +3

ỸQ
l,kEQ

l,k(n̂, û, ŵ′)
ŵ′
≷

131−ŵ′
0 (22)

which does not involve additional complexity since it has been already computed in (14) and

it can be performed only by checking the sign of ∑k∈S ∑
m̂N f +13
l=m̂N f +3 ỸQ

l,kEQ
l,k(n̂, û, ŵ′). Based on

this observation, w is estimated by ŵ′′ = ŵ′ or 131− ŵ′ according to the decision rule (22).
As a result, the estimate of v can be given by v̂ = 126n̂ + ŵ′′ − 3 after obtaining n̂ and ŵ′′

from (18) and (22), respectively.

4.2. Detection Performance

We derive the PED as a performance measure assuming a flat-fading channel. Un-
der hypothesis H1, conditioned on α = |Hl,k|2, it can be effortlessly seen that the deci-

sion variable ∑k∈S ∑
aN f +13
l=aN f +3 Ỹ I/Q

l,k EI/Q
l,k (b, c, d′) ∼ G(µ f 1, σ2

f 1) with µ f 1 = αNsEX/2 and

σ2
f 1 = αNsEXσ2

Z/4. Thus, it is observed that |∑k∈S ∑
aN f +13
l=aN f +3 ỸQ

l,kEQ
l,k(b, c, d′)| has a folded

normal probability density function (PDF) denoted as

f (x|H1) =

√
2

πσ2
f 2

e
−

x2+µ2
f 2

2σ2
f 2 cosh

(
xµ f 2

σ2
f 2

)
, x ≥ 0 (23)

where µ f 2 = σf 1
√

2/πe−µ2
f 1/2σ2

f 1 + µ f 1[1− 2Q(µ f 1/σf 1)] and σ2
f 2 = µ2

f 1 + σ2
f 1 − µ2

f 2. For

Ns � 1, we can safely say that ΨI(a, b, c, d′) ∼ G(µh1, σ2
h1) with µh1 = µ f 1 + µ f 2 and

σ2
h1 = σ2

f 1 + σ2
f 2 = µ2

f 1 + 2σ2
f 1 − µ2

f 2. Denote the PDF of ΨI(a, b, c, d′) under hypothesis H1

as f (x|H1). On the other hand, ∑k∈S ∑
aN f +13
l=aN f +3 Ỹ I/Q

l,k EI/Q
l,k (b, c, d′) ∼ G(0, σ2

h0) with σ2
h0 =

α2NsE2
X/4 + αNsEXσ2

Z/4 in the case of hypothesis H0. Accordingly, ΨI(a, b, c, d′) under
hypothesis H0 obeys a skew normal distribution with PDF and cumulative distribution
function written, respectively, as [24]

f (x|H0) =
1√

πσ2
h0

e
− x2

4σ2
h0

[
1−Q

(
x√
2σh0

)]
(24)

and

F(x|H0) =

[
1−Q

(
x√
2σh0

+
µh1√
2σh0

)]2
(25)

In the first stage, we write the PED of (18) as Pf 1 = Prob{(m̂, n̂, û, ŵ′) 6= (m, n, u, w′)}.
Using a folded normal and a skew normal distributions under hypothesis H1 and hypothe-
sis H0, respectively, Pf 1(α) conditioned on α is obtained as

Pf 1(α) ≈ 1−
4030

∑
z=0

(−β0)
z
(

4030
z

)
1√

1 + zβ2σ2
h1/σ2

h0

e
− µ2

h1
4σ2

h0 e
1
4

(
µh1
σh0
−zβ1

σh1
σh0

)2
/
√

1+zβ2σ2
h1/σ2

h0 (26)
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with

σ2
h1

σ2
h0

=
Nsγ + 2

γ + 1
− 1

γ + 1

(√
2
π

e−
Nsγ

2 +
√

Nsγ
[
1− 2Q

(√
Nsγ

)])2

(27)

and

µ2
h1

σ2
h0

=
1

γ + 1

(√
2
π

e−
Nsγ

2 +
√

Nsγ
[
1−Q

(√
Nsγ

)])2

(28)

where γ = α2EX/σ2
Z denotes the SNR. The detail of the derivation of (26) is provided in

Appendix A.
In the second step, denote the PED of (19) by Pf 2 = Prob{ŵ′′ 6= w}. Similarly,

ΩI(a, b, c, d) ∼ G(µh1, σ2
h1) under hypothesis H1, while ΩI(a, b, c, d) ∼ G(0, 2σ2

h0) under
hypothesis H0. Thus, Pf 2(α) is given in an identical form to (A2) with 4030 replaced by 1,
which has a closed-form solution

Pf 2(α) = Q

 µh1√
2σ2

h0 + σ2
h1

 (29)

To obtain unconditional probability expression, one averages over the distribution
of α expressed as fα(x) = (1/σ2

H)e
−x/σ2

H , leading to Pf i =
∫ ∞

0 Pf i(x) fα(x)dx (i = 1, 2). As
a consequence, the proposed method erroneously detects the NSSS with a probability of
Pf = Pf 1 × Pf 2.

5. Simulation Results and Discussions

This section provides analysis and simulation results to demonstrate the performance
of the coherent NSSS detection algorithm in the NB-IoT system. Matlab software was used
as a simulation platform to verify the proposed algorithm.

5.1. Simulation Environment

Let us consider the NB-IoT system with a system bandwidth of 180 kHz and 15 kHz
minimum subcarrier spacing at the 900 MHz band. In the following, the DFT size is equal
to N = 128, and the CP size is equal to Ng = 10. The 128-point DFT includes 12 NSSS
subcarriers and 58 guard-band subcarriers. The sampling time period is Ts = 0.52 µs, and
the length of the NSSS sequence is Ns = 132. Table 2 shows the system parameters used in
the simulation. Based on the simulation parameters, the processing frequency is 1.92 MHz,
and a 128-point DFT transforms the time-domain signals into frequency-domain signals [25].
For simulation, we consider two representative channels such as Pedestrian and Vehicular
models to verify the capability of the presented NSSS detectors [26]. Since most of the
NB-IoT terminals move slowly, we assume that a maximum Doppler frequency is equal to
1 Hz for the Pedestrian channel model [14,25]. On the other hand, the Doppler frequency
of 55 Hz is considered in the Vehicular channel, which corresponds to a maximum mobile
speed of 60 km/h [27]. For multipath channels, the magnitude of each tap is Rayleigh
distributed and the Doppler power spectrum for each tap is characterized by a classical
Jakes model. Table 3 shows the channel profile used for simulation. As for residual CFO
and STO, we set ε = 0.02, and ϑ is uniformly generated from [0, Ng/2]. Simulations have
been conducted over 106 radio frames for independent channel realizations.



Mathematics 2022, 10, 3024 11 of 18

Table 2. Simulation parameters.

Parameters Values

Carrier frequency 900 MHz
Transmission bandwidth 180 kHz

DFT size N = 128
Number of CP samples Ng = 10

Number of samples in one OFDM symbol Nt = 138
Sampling time period Ts = 0.52 µs

Subcarrier spacing ∆ f = 15 kHz
Length of NSSS sequence Ns = 132

Table 3. Channel models.

Channel Model Maximum Delay Spread

Pedestrian A (PedA) 0.41 µs
Pedestrian B (PedB) 3.7 µs
Vehicular A (VehA) 2.15 µs
Vehicular B (VehB) 19.8 µs

5.2. Benchmark Method

For comparison, we introduce three conventional NSSS detectors. The first one is a
low-complexity PCID and RFN detection (LPRD) scheme developed in [14], which is based
on the non-coherent objective function

Λ1(a, b, c, d) = ∑
k∈S

aN f +13

∑
l=aN f +3

Yl,kE∗l,k(b, c, d) (30)

In the LRPD method, (n, u, w, m) are detected by maximizing |Λ1(a, b, c, d)| over hy-
pothesized numbers (a, b, c, d), and this method has been proposed assuming a frequency-
flat fading channel. Under hypothesis H1, |Λ1(a, b, c, d)| follows a Rician distribution with
mean µ = 2µ f 1 and variance σ2

1 = 4σ2
f 1, while |Λ1(a, b, c, d)| follows a Rayleigh distribution

with variance σ2
0 = 4σ2

h0 in the case of hypothesis H0. Identically, the PED of the LPRD
method can be obtained as

Pf (α) = 1−
∫ ∞

0
2x(γ + 1)e−(γ+1)x2−Nsγ I0

(
2x
√

Nsγ(γ + 1)
)[

1− e−x2
]4031

dx (31)

The second benchmark benchmark is a sequential PCID and RFN detection (SPRD)
scheme, which decouples the detection of Bl,k(n) and Cl,k(u)Dl,k(w) [17]. Based on the
observation that n = 2n′ + n′′ ∈ {0, 1, 2, 3} for n′ ∈ {0, 1} and n′′ ∈ {0, 1}, the PCID and
RFN are detected by searching for maximum of two objective functions, respectively

Λ2(a, b′, c, d) = ∑
k∈S

aN f +13

∑
l=aN f +3

Yl,k

1

∑
b′′=0

B∗l,k(2b′ + b′′)C∗l,k(c)D∗l,k(d) (32)

and

Λ3(b′′) = ∑
k∈S

m̂N f +13

∑
l=m̂N f +3

Yl,kB∗l,k(2n̂′ + b′′)C∗l,k(û)D∗l,k(ŵ) (33)

where b′ ∈ {0, 1} and b′′ ∈ {0, 1} denote the possible combinations of n′ and n′′, re-
spectively [17]. Consequently, (m̂, û, ŵ) are estimated by maximizing |Λ2(a, b′, c, d)| sub-
ject to (a, b′, c, d), while n̂′ and n̂′′ are obtained by finding the maximum argument of
|Λ2(a, b′, c, d)| and |Λ3(b′′)|, respectively, leading to n̂ = 2n̂′ + n̂′′. The last benchmark is
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a DFT-based PCID and RFN detection (DPRD) scheme proposed in [20]. Denoting the
channel coefficient as Hl,k = |Hl,k|ejθk , the estimate of θk is obtained by

θ̂k(a, b, c, d) = ∠


aN f +13

∑
l=aN f +3

Yl,kE∗l,k(b, c, d)

, k ∈ S (34)

Based on the estimated channel (34) and the objective function (8) with Ỹl,k(a, b, c, d)
replaced by Yl,ke−jθ̂k(a,b,c,d), the DPRD method obtains the estimates of the PCID and RFN
by maximizing ΩI(a, b, c, d) over (a, b, c, d). Assuming a perfectly known channel, it follows
that ΩI(a, b, c, d) ∼ G(µ, σ2

1 /2) under hypothesis H1 and ΩI(a, b, c, d) ∼ G(0, σ2
0 /2) under

hypothesis H0. In this case, the PED of the DPRD method can be expressed as

Pf (α) = 1−
∫ ∞

−∞

1√
2π

e−
x2
2

[
1−Q

(
x +
√

Nsγ√
γ + 1

)]4031

dx (35)

5.3. Complexity Evaluation

In order to have a fair comparison with benchmark systems, it is assumed that
Bl,k(b)Cl,k(c) produces 16 combined complementary sequences, which only have values of
±1 or ±j [14], and thus, any extra complexity is not required because these sequences are
processed only by sign inversions. Moreover, suppose one complex multiplication (CM) is
equivalent to six real multiplications (RMs) [28].

We first compute the arithmetic complexity of the LPRD method. Let us denote Nv
as the number of average estimates. Since Dl,k(c) is conjugate symmetric with respect
to the origin, |Λ1(a, b, c, d)| requires Ns/2 CMs and the number of hypotheses requiring
CM operation is 252. Applying Nv-times average estimation, the LPRD method obtains
the PCID and RFN with 16632Nv CMs. Next, we compute the number of CMs used in
the SPRD method. Since the SPRD method does not involve any CM for the NSSS sub-
carriers that meet the formulation ∑1

b′′=0 Bl,k(2b′ + b′′) = 0, |Λ2(a, b′, c, d)| and |Λ3(b′′)|
are processed with Ns/4 and Ns/2 CMs for each hypothesis, respectively. Applying all
hypotheses and Nv-times average estimation, 8382Nv CMs are required to sequentially
complete the SPRD. As mentioned earlier, the DPRD method is based on both the observa-
tions (8) and (34). For each hypothesis, (34) requires Ns CMs for computing the quantity

∑
aN f +13
l=aN f +3 Yl,kE∗l,k(b, c, d) and Ns/11 CMs for implementing the argument operation ∠{·},

while 2Ns/11 RMs are used for (8) since some quantities have been already evaluated in
(34). The number of hypotheses requiring CM operation is 252 for computing the quantity

∑
aN f +13
l=aN f +3 Yl,kE∗l,k(b, c, d), 4032 for implementing ∠{·}, and 4032 for (8). This leads to a total

complexity of 97776Nv CMs, which corresponds to the complexity of the DRPD method
that can combat frequency-selective fading. As reported in [20], the DPRD approach can be
processed utilizing DFT operations with almost equal complexity as the LPRD approach if
the channel is considered to be frequency-flat.

Finally, we assess the computational load of the proposed method. For each hypothesis,
(7) and (14) require Ns CMs and 2Ns/11 RMs, respectively. Similar to the DPRD, (7) has to
be hypothesized for 252 combinations, while (14) is hypothesized for only 2016 possible
candidates. Considering all hypotheses associated with (18), 252Ns CMs and 4032Ns/11
RMs are required in the first stage. Recalling from (22) that (19) can be implemented
without any CM in the second stage, the overall number of CMs is equal to 41328Nv.

5.4. Performance Evaluation

In Figure 1, the PED of the benchmark and proposed NSSS detection schemes is
plotted as a function of SNR in the AWGN and flat-fading channel models. To focus
on evaluating the analysis derived in Section 4.2, it is assumed that ε = ϑ = 0 and the
channel is perfectly estimated. The first observation from this figure is that analytical results
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completely agree with simulation results for both AWGN and flat-fading channels. As
expected, an average over multiple NSSS observations can be used to reduce noise impact
on the final estimate. It can be clearly seen that the DPRD method outperforms the LPRD
method regardless of the channel model and Nv, while the PED of the proposed detector is
slightly better than that of the DPRD method. In the case of the coherent approaches such
as the DPRD and proposed methods, it is observed that the performance gain due to the
average estimate is more significant compared to the LPRD method. However, imperfect
channel estimation degrades the detection performance of the coherent methods, which
will be discussed below.
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Figure 1. PED of the NSSS detectors in the AWGN and flat-fading channels: (a) Nv = 1 (b) Nv = 11.

In Figure 2, the PED of the benchmark and proposed NSSS detection algorithms is
plotted versus SNR in the PedA and PedB channel models. For the average estimate, we
set Nv = 11 in the following. From the observations in Figure 2, the channel estimation
error mainly degrades the detection performance for the coherent detection approaches
if ignoring the AWGN. If the channel is perfectly known, the performance of coherent
detection methods is better than that of non-coherent LPRD and SPRD methods regardless
of the channel models. However, using the estimated channel degrades the detection ability
of the coherent detection schemes due to the channel estimation error in the PedA channel.
Therefore, accurate channel estimation is essential for the DPRD and proposed methods to
robustly detect the NSSS. Both coherent approaches differ in the method of estimating the
channel, as described in (7) and (34), which leads to a performance difference. As predicted,
the PED of non-coherent methods is not affected by the knowledge of the channel. In the
PedB channel, an irreducible error floor can be observed for non-coherent approaches as
the SNR increases, which is eventually the dominant performance degrading factor for
the LPRD and SPRD methods. This phenomenon is mainly explained by the fact that the
LPRD and SPRD schemes do not combat the frequency-selective fading because they are
originally developed assuming flat-fading conditions. Since a maximum delay spread of
0.41 µs in the PedA channel is less than the sampling time interval of 0.52 µs, it can be
considered to be a flat-fading channel.
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Figure 2. Performance comparison of the benchmark and proposed methods in the pedestrian
channel models: (a) perfect channel (b) estimated channel.

Figure 3 displays the PED of the benchmark and proposed NSSS detection methods
versus SNR in the VehA and VehB channel models. We adopt the same simulation setting
as in Figure 2, except for a sufficiently larger delay spread with respect to the pedestrian
channel. It is seen from Figure 3 that the proposed method outperforms the LPRD method
with the increase in SNR, while it shows similar behavior to the DPRD method. When
compared to the PED in the PedA channel, the coherent detection methods have improved
performance regardless of the channel models. On the contrary, non-coherent detection
methods exhibit irreducible error floor due to increased frequency selectivity of the channel.
These observations show the robustness of the proposed detection method under various
channel fading conditions. Such a gain is a consequence of the multipath diversity that
becomes more outstanding in the vehicular channel due to a larger delay spread in com-
parison with the pedestrian channel. Conversely, the effect of the multipath diversity is
diminished in the case of the VehB channel, even though the VehB channel experiences
more frequency-selective fading than the VehA channel. This is basically due to the fact
that the maximum delay spread of 19.8 µs in the VehB channel exceeds the CP duration of
5.2 µs, thus incurring both the inter-symbol interference and ICI.

Figure 4 shows the PED performance of the NSSS detectors when SNR = −5 dB and
SNR = 0 dB. To quantify the performance gap between the detection methods, denote
the number of averaged radio frames required to achieve a target error probability of 10%
as N f . In the case of the VehA channel, N f = 5 is for the LPRD, DPRD, and proposed
methods when NB-IoT UEs are in a poor coverage condition of SNR = −5 dB. However,
the performance gap between the LPRD and proposed approaches becomes larger as N f
increases, with the latter showing a better performance when compared to the former. In
light of the same value of N f , the complexity of the proposed scheme is reduced by 57.7%
and increases 2.5 times compared to that of the DPRD and LPRD methods, respectively.
Generally, power consumption is proportional to the number of floating point operations
(flops) used to design the NSSS detectors [29]. Therefore, it can be expected that a reduced
number of flops of the proposed NSSS detector enhances the power consumption efficiency
if other system parameters determining power consumption are the same. As discussed
earlier, the non-coherent detection method outperforms the coherent detection method in
the PedA channel so that N f = 5 for the LPRD, N f = 10 for the SPRD, and N f = 15 for the
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proposed method. More interestingly, the average effect is marginal in the PedA channel
regardless of detection approaches, which is caused by the flat fading condition, while
the average effect becomes larger in the frequency-selective channel, similar to the VehA
channel. By applying the proposed detection strategy to the NB-IoT system, the arithmetic
complexity of the initial synchronization receiver can be decreased, and it substantially
reduces power consumption, ultimately extending the battery life of NB-IoT UEs.
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Figure 3. Performance comparison of the benchmark and proposed methods versus SNR in the
vehicular channel models: (a) perfect channel (b) estimated channel.
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Figure 4. Performance comparison of the benchmark and proposed methods versus Nv:
(a) SNR = −5 dB (b) SNR = 0 dB.

6. Conclusions

In this study, we have proposed a low-complexity coherent NSSS detection scheme
in the cellular NB-IoT system. To alleviate the computational load associated with the
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conventional coherent detection method, the search space of NSSS hypothesis testing
is reduced by decoupling the detection of the PCID and RFN. Simulation results were
provided not only to show the correctness of numerical analysis but also to validate the
improved performance of the proposed coherent NSSS detection scheme. It has been shown
that the theoretical and simulation results are in excellent agreement. Moreover, we have
compared the proposed NSSS detection method with the conventional NSSS detection
methods in terms of the computational complexity and detection performance. From
simulation results, it has been verified that the proposed solution not only attains nearly the
same performance as the existing NSSS detection method but also significantly reduces the
computational complexity. To achieve a target error rate of 10% in the Pedestrian channel
model, it has been shown that the number of CMs of the proposed method is reduced by
more than 50% in a poor coverage area compared to the DPRD method. Furthermore, it
has been summarized that the presented NSSS detection methods use fewer radio frames
to attain a target detection rate and the effect of the average estimate becomes more
pronounced in the vehicular channel model.
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Appendix A. Derivation of PED

The conditional PED on α is given by

Pf 1(α) = 1−
∫ ∞

−∞
f (x|H1)[F(x|H0)]

2015dx (A1)

After substituting (23) and (25) into (A1) and performing some manipulations, one
readily finds that

Pf 1(α) = 1−
∫ ∞

−∞

1√
2π

e−
x2
2

[
1−Q

(
σh1√
2σh0

x +
µh1√
2σh0

)]4030
dx (A2)

To obtain a closed-form expression of (A2), we adopt an exponential approximation of
Q(x) as follows

Q
(

σh1√
2σh0

x +
µh1√
2σh0

)
≈ β0e

−β1

(
σh1√
2σh0

x+ µh1√
2σh0

)
e
−β2

(
σh1√
2σh0

x+ µh1√
2σh0

)2

(A3)

where β0 = 0.49, β1 = 8/13, and β2 = 1/2 are the fitting parameters [30]. Inserting (A3)
into (A2) and applying binomial expansion, Pf 1(α) can be approximated as

Pf 1(α) ≈ 1−
4030

∑
z=0

(−β0)
z
(

4030
z

)
U(z) (A4)
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where

U(z) =
1√
2π

∫ ∞

−∞
e−

x2
2 e
−zβ1

(
σh1√
2σh0

x+ µh1√
2σh0

)
e
−zβ2

(
σh1√
2σh0

x+ µh1√
2σh0

)2

dx (A5)

We can effortlessly find from [31] that

U(z) =
1√

1 + zβ2σ2
h1/σ2

h0

e
−

µ2
h1

4σ2
h0 e

1
4

(
µh1
σh0
−zβ1

σh1
σh0

)2
/
√

1+zβ2σ2
h1/σ2

h0 (A6)

From (A4)∼(A6), we obtain the final PED expression of (26).
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