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Abstract: Approximation of piecewise linear and generalized functions is an important and difficult 

problem. These functions are widely used in mathematical modeling of various processes and 

systems, such as: automatic control theory, electrical engineering, radio engineering, information 

theory and transmission of signals and images, equations of mathematical physics, oscillation 

theory, differential equations and many others. The widespread use of such functions is explained 

by their positive properties. For example, piecewise linear functions are characterized by a simple 

structure over segments. However, these features also have disadvantages. For example, in the case 

of using piecewise linear functions, solutions have to be built in segments. In this case, the problem 

of matching the obtained solutions at the boundaries of the segments arises, which leads to the 

complication of the research results. The use of generic functions has similar disadvantages. To 

eliminate shortcomings in practice, one resorts to the approximation of these functions. There are a 

large number of well-known methods for approximating piecewise linear and generalized 

functions. Recently, new methods for their approximation have been developed. In this study, an 

attempt was made to generalize and discuss the existing methods for approximating the considered 

functions. Particular emphasis is placed on the description of new approximation methods and their 

applications in various fields of science and technology. The publication-based review discusses the 

strengths and weaknesses of each method, compares them, and considers suitable application 

examples. The review will undoubtedly be interesting not only for mathematicians, but also for 

specialists and scientists working in various applied fields of research. 
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1. Introduction 

In many areas of mathematics and its applications, a problem often arises related to 

replacing functions that are complex or inconvenient in one sense or other with simpler 

ones, but close to the original ones. This problem is called the approximation of functions. 

In many areas of mathematics and its applications, the problem often arises of replacing 

functions that are complex or inconvenient in one sense or other with simpler ones, but 

close to the original ones. A number of studies have been devoted to solving this problem, 

and a large amount of scientific and educational literature has been published. As an 

example, one can point to the fundamental books [1–4] and many others. 
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The review considers methods of approximation of piecewise linear and generalized 

functions [5–17], which are universal and find wide application for solving a variety of 

problems related to mathematical modeling of systems, processes and phenomena 

described using such functions.  

Piecewise linear and generalized functions are widely used in various fields of 

scientific research. Their traditional fields of application are technical and mathematical 

disciplines, for example, automatic control theory, electrical engineering, radio 

engineering, information theory and transmission of signals and images, equations of 

mathematical physics, oscillation theory, differential equations and many others [18–24]. 

Using such functions, for example, they describe the dynamics of mechanical systems 

with nonlinear elasticities, elastic-dissipative characteristics of vehicle suspensions, 

systems with loads of the “dry friction” type, impulse transformations during 

transmission and reception of signals, distributed and concentrated loads, and many other 

processes. 

The widespread use of piecewise linear functions is explained by the simplicity of 

their structure, especially by areas. At each site, these functions are straight lines and their 

segments, which in many cases allows one to obtain solutions using the methods of the 

theory of linear systems. At the same time, problems often arise when constructing 

solutions over the entire domain of definition of piecewise-linear functions, linking 

solutions for sections with the need to use special mathematical methods. Systems with 

piecewise linear characteristics and functions are referred to as essentially nonlinear 

structures, emphasizing the complexity of obtaining solutions for such structures. Despite 

the simplicity of piecewise linear functions over sections, the construction of solutions in 

problems with piecewise linear functions over the entire domain of definition requires the 

use of special mathematical methods, for example, the matching method [25], with the 

need to match solutions over sections and switching surfaces. So, when constructing 

periodic solutions, it is necessary to monitor the fulfillment of the conditions for the 

transition of the system from section to section, fixing the values of the variables at the 

end of the previous section and taking these values as the initial conditions for the next 

section. The need to match the values of the variables over the sections, as well as at the 

beginning and end of the cycle, leads to a cumbersome system of transcendental 

equations. Therefore, the application of the fitting method often requires overcoming 

significant mathematical difficulties, and even if the periodic solution can be found in 

analytical form, it is usually obtained in the form of complex expressions. In addition, the 

derivatives of piecewise linear functions are not continuous, which in some cases also 

complicates research. To simplify calculations, one often resorts to approximating 

piecewise linear functions. The existing approximation methods have their drawbacks.  

Generalized functions were introduced in connection with the problems of physics 

and mathematics that appeared in the twentieth century and required a new 

understanding of the concept of a function. Such problems include the problems of 

determining the density of a point mass, the intensity of a point charge and a point dipole, 

problems of quantum theory and many others. Generalized functions are now widely 

used in a wide variety of research areas. For example, generalized functions and their 

derivatives represent a very convenient mathematical tool for developing control systems. 

The use of impulse controls significantly increases the control capabilities of various 

systems. An example of a generalized function is the δ-function or the Dirac function. 

Generalized singular functions are very different from regular functions. In many 

practical applications, these unusual functions are used as purely abstract mathematical 

constructions, completely divorced from their physical understanding. This approach 

does not seem to be correct. For a better understanding of generalized functions and a 

conscious decision on their basis of practical problems, you can use the approximations 

of these functions. Some of these possible approximations are suggested in this review. 

The content of the new methods is explained by a number of practical examples. The 

examples given are taken from a wide variety of fields: structural mechanics, medicine, 
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quantum theory, signal theory, semiconductor theory, mechanical engineering, heat 

engineering, and others. The variety of the considered examples emphasizes the rather 

broad possibilities of practical application of the conceded approximation methods. 

Therefore, the review will undoubtedly be interesting not only for mathematicians, but 

also for specialists and scientists working in various applied fields of research. 

2. Basic Provisions and Methods of Approximation Theory 

This section of the review introduces the basic concepts of approximation theory, 

discusses the canonical methods of approximation of continuous and discontinuous 

functions [26–29]. The considered methods are illustrated with examples, the positive and 

negative sides of these methods are noted. 

2.1. The Main Idea of the Approximation of the Original Function: Basic Concepts 

Let 𝑀  be some point set in 𝑛 -ddimensional space and let 𝑓(𝐴), 𝐴 ∈ 𝑀 be some 

function defined on this set. This function 𝑓(𝐴), due to some considerations that we will 

talk about below, we want to replace with other, the so-called approximation function 

𝜑(𝐴, 𝐵1,𝐵2,… , 𝐵𝑘) , also defined on the set 𝑀 , where  𝐵1,𝐵2,… , 𝐵𝑘  are parameters. It is 

necessary to determine the parameters so that the deviation of the function 

𝜑(𝐴, 𝐵1,𝐵2,… , 𝐵𝑘) from the original function 𝑓(𝐴) would be the least according to some 

criteria.  

It is clear that the meaning of such a replacement will be only when the original 

function does not suit us in some way, and therefore we want to go to a function as close 

to the original, as possible, but devoid of shortcomings of the original function. For 

example, dissimilar to the original function 𝑓(𝐴),  the approximation function 

𝜑(𝐴, 𝐵1,𝐵2,… , 𝐵𝑘) can have a simpler structure, be continuous, differentiable, analytical, 

allow the use of any mathematical methods and so on. The approximation function must 

belong to a certain type of function, which has these advantages over the original function 

and the properties of functions of this type are well studied in mathematics. For example, 

an algebraic polynomial, a fractional rational function, a trigonometric sum, a spline 

function, and so on can act as an approximation function.  

When constructing an approximating function, the question arises: what is to be 

understood by the deviation, or, in other words, by the proximity of functions, to 

determine the approximation error. To solve this issue, the concepts of metric and metric 

space are introduced in functional analysis. 

Definition 1. A set 𝑌 is called a metric space if each pair of its elements 𝑓1 and 𝑓2 is associated 

with a real number 𝜌(𝑓1, 𝑓2) ≥ 0, for which the following axioms hold: 

1. Identity axiom: 𝜌(𝑓1, 𝑓2) = 0 if and only if 𝑓1 = 𝑓2; 

2. Symmetry axiom: 𝜌(𝑓1, 𝑓2) = 𝜌(𝑓2, 𝑓1); 

3. Triangle axiom: 𝜌(𝑓1, 𝑓2) + 𝜌(𝑓2, 𝑓3) ≥ 𝜌(𝑓1, 𝑓3), for ∀𝑓3 ∈ 𝑌. 

This number 𝜌(𝑓1, 𝑓2) is called the metric of the set 𝑌 or the distance between the 

elements 𝑓1 and 𝑓2. 

Within the framework of this monograph, we mainly consider the issues of 

approximation of such mathematical objects as functions. In this case, the elements 

(points) of the sets under consideration are functions. Therefore, we will often denote 

points of sets and spaces by the letter symbol 𝑓, as is conducted in the above definition of 

a metric space. 

Consider examples of metrics and metric spaces that are important from the point of 

view of approximation of functions. 

1. Let 𝑌 be the set of all continuous functions on the segment [𝑎, 𝑏]. As a metric, we can 

take the maximum modulus of the difference 𝜌(𝑓1, 𝑓2) = max
𝑥∈[𝑎,𝑏]

|𝑓1(𝑥) − 𝑓2(𝑥)|.  

Without losing the generality of reasoning, the segment [𝑎, 𝑏] with the introduction 

of a new variable can always be reduced to the segment [0,1]. Therefore, the set of all 
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continuous functions defined on a closed interval with the metric introduced in this way 

is called the space of all continuous functions and is denoted by 𝐶[0,1]; 

2. Let 𝑌 be a set of all real bounded functions on the interval [0,1]. In this case, as a 

metric, we can take the supremum of the modulus of the difference 𝜌(𝑓1, 𝑓2) =

sup
𝑥∈[0,1]

|𝑓1(𝑥) − 𝑓2(𝑥)|. 

The set of all real bounded functions with the metric introduced in this way is called 

the space 𝑀[0,1]. It is clear that 𝐶[0,1]⊂𝑀[0,1]; 

3. Let 𝑌 be the set of all measurable functions defined on the interval [0,1]. Two 

functions that differ only on a set of measure zero (coinciding almost everywhere) will be 

considered identical. As a metric, we can take the equality 𝜌(𝑓1, 𝑓2) = ∫
|𝑓1(𝑥)−𝑓2(𝑥)|

1+|𝑓1(𝑥)−𝑓2(𝑥)|
𝑑𝑥.

1

0
 

Such a space is called the space 𝑆[0,1] . Convergence in this space is convergence in 

measure, that is, a sequence of elements 𝑓𝑛 → 𝑓, if 𝜌(𝑓𝑛, 𝑓)
n→∞
→   0; 

4. Let 𝑌 be the set of all functions with integrable 𝑝-th power on the interval [0,1]. 

Recall that a function 𝑓(𝑥) is called a function with integrable 𝑝-th power on the interval 

[𝑎, 𝑏], if ∫ |𝑓(𝑥)|𝑝𝑑𝑥 < ∞.
𝑏

𝑎
 The integral is considered in the sense of Lebesgue. As in the 

previous case, we will consider two functions that differ only on a set of measure zero to 

be identical. In this case, as a metric, we can take the integral 𝜌(𝑓1, 𝑓2) = (∫ |𝑓1(𝑥) −
𝑏

𝑎

𝑓2(𝑥)|
𝑝𝑑𝑥)

1
𝑝⁄
. Such a space is called the space 𝐿𝑝[0,1]. For 𝑝 = 2 we obtain the so-called 

functional Hilbert space. 

In the further description, we need concepts such as norm and linear normed space. 

Definition 2. A set 𝐸 is called a linear space if the operations of adding elements and multiplying 

an element by a number are defined in this set, and for any elements 𝑓1, 𝑓2, 𝑓3 ∈ 𝐸 and for any 

numbers 𝛼, 𝛽 the conditions are met: 

1. 𝑓1 + 𝑓2 = 𝑓2 + 𝑓1; 

2. (𝑓1 + 𝑓2) + 𝑓3 = 𝑓1 + (𝑓2 + 𝑓3));  

3. 𝑓1 + 0 = 𝑓1;  

4. 𝑓1 + (−𝑓1) = 0; 

5. 𝛼(𝑓1 + 𝑓2) = 𝛼𝑓1 + 𝛼𝑓2;  

6. (𝛼 + 𝛽)𝑓1 = 𝛼𝑓1 + 𝛽𝑓2;  

7. 𝛼(𝛽𝑓1) = (𝛼𝛽)𝑓1;  

8. 1 ∙ 𝑓1 = 𝑓1. 

Definition 3. The norm of an arbitrary element 𝑓 of the set 𝐸 is a nonnegative number, which is 

denoted by ‖𝑓‖, for which the conditions are met: 

1. ‖𝑓‖ = 0 ⟺ 𝑓 = 0; 
2. ‖𝛼 ∙ 𝑓‖ =  |𝛼| ∙ ‖𝑓‖; 

3. ‖𝑓1 + 𝑓2‖  ≤  ‖𝑓1‖ + ‖𝑓2‖. 

Definition 4. The linear space 𝐸 with the introduced norm is called a normed linear space. 

A metric in a normed linear space can be introduced using the equality 𝜌(𝑓1, 𝑓2) =

 ‖𝑓1 − 𝑓2‖. Convergence in a normed linear space is convergence in the norm, that is, a 

sequence of elements 𝑓𝑛 → 𝑓, if ‖𝑓𝑛 − 𝑓‖
n→∞
→   0. 

Let us give examples of some normed linear spaces that are of great importance from 

the point of view of approximation theory. 

1. The space of all continuous functions 𝐶[0,1] with operations of addition and 

multiplication by a number, defined in the usual way. The norm is introduced by the 

relation ‖𝑓‖ = max
𝑥
|𝑓(𝑥)|;  

2. The space 𝐿𝑝[0,1] of all functions with integrable 𝑝-th power on the interval [0,1] 

with operations of addition and multiplication by a number, defined in the usual way. We 
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introduce a norm in the space of such functions using the equality ‖𝑓‖ =

(∫ |𝑓(𝑥)|𝑝𝑑𝑥
𝑏

𝑎
)
1
𝑝⁄
; 

3. The space of all continuous functions on the segment [0,1] with derivatives 

continuous on this segment up to the 𝑘-th order inclusive. The notation for such a space 

is 𝐶𝑘 [0,1]. As a norm in this space, one usually takes the relation  ‖𝑓‖ =

max {max
𝑥
|𝑓(𝑥)| ,max

𝑥
|𝑓′(𝑥)| , … , max

𝑥
|𝑓(𝑘)(𝑥)|}.  

The basic idea of approximation in a normed linear space can be expressed by the 

following theorem. 

Theorem 1. Let 𝐸 be some normed linear space in which the elements 𝑓1, 𝑓2, … , 𝑓𝑛 are linearly 

independent. Let some element 𝑓 ∈ 𝐸 be given. For the element 𝑓 one can choose such numbers 

𝜆1, 𝜆2, … , 𝜆𝑛 , that the value 𝛥(𝜆1, 𝜆2, … , 𝜆𝑛) =  ‖𝑓 − (𝜆1𝑓1 + 𝜆2𝑓2 +⋯+ 𝜆𝑛𝑓𝑛)‖  obtains the 

smallest value. 

Let us present the proof of the theorem [22]. 

Let 𝜆1
∗ , 𝜆2

,∗, … , 𝜆𝑛
∗  be an arbitrary set of numbers 

Using the reverse triangle inequality, we estimate the modulus of the difference 

|Δ(𝜆1
∗ , 𝜆2

,∗, … , 𝜆𝑛
∗ ) − Δ(𝜆1, 𝜆2, … , 𝜆𝑛)| =  |‖𝑓 −∑𝜆𝑘

∗𝑓𝑘

𝑛

𝑘=1

‖ − ‖𝑓 −∑𝜆𝑘𝑓𝑘

𝑛

𝑘=1

‖| ≤ ‖∑(𝜆𝑘
∗ − 𝜆𝑘)𝑓𝑘

𝑛

𝑘=1

‖ ≤∑|𝜆𝑘
∗ − 𝜆𝑘|‖𝑓𝑘‖

𝑛

𝑘=1

≤ max
𝑘
|𝜆𝑘
∗ − 𝜆𝑘| ∙∑‖𝑓𝑘‖

𝑛

𝑘=1

. 

 

Therefore, for ( 𝜆1
∗ , 𝜆2

,∗, … , 𝜆𝑛
∗ ) →  ( 𝜆1, 𝜆2, … , 𝜆𝑛 ) we obtain that  (𝜆1

∗ , 𝜆2
,∗, … , 𝜆𝑛

∗ )

→ Δ(𝜆1, 𝜆2, … , 𝜆𝑛). Therefore, the function Δ(𝜆1
∗ , 𝜆2

,∗, … , 𝜆𝑛
∗ ) is continuous. 

Consider a continuous function Ω(𝜆1, 𝜆2, … , 𝜆𝑛) = ‖𝜆1𝑓1 + 𝜆2𝑓2 +⋯+ 𝜆𝑛𝑓𝑛‖. 

The continuity of the function Ω(𝜆1, 𝜆2, … , 𝜆𝑛) can be proved similarly to the proof of 

the continuity of the function Δ(𝜆1
∗ , 𝜆2

,∗, … , 𝜆𝑛
∗ ). 

The sphere ∑ |𝜆𝑘|
2𝑛

𝑘=1  is a bounded closed set in a finite-dimensional Euclidean space, 

therefore, based on the well-known Weierstrass theorem, the function Ω(𝜆1, 𝜆2, … , 𝜆𝑛) 

attains its minimum on this set, which we denote by 𝑚. Note that 𝑚 > 0, since the function 

Ω(𝜆1, 𝜆2, … , 𝜆𝑛) is a norm, and the elements 𝑓1, 𝑓2, … , 𝑓𝑛 are linearly independent. 

Let Ω ̅≥ 0 be some lower bound for the set of values of the function Ω(𝜆1, 𝜆2, … , 𝜆𝑛).  

If √∑ |𝜆𝑘|
2𝑛

𝑘=1 >
1

𝑚
(Ω̅ + 1 + ‖𝑓‖) = R, then, it is easy to obtain 

 Δ(𝜆1, 𝜆2, … , 𝜆𝑛) ≥ ‖𝜆1𝑓1 + 𝜆2𝑓2 +⋯+ 𝜆𝑛𝑓𝑛‖ − ‖𝑓‖ ≥ √∑ |𝜆𝑘|
2𝑛

𝑘=1 𝑚 − ‖𝑓‖ > Ω̅ + 1,   

therefore, to find the minimum, we can consider the function (𝜆1, 𝜆2, … , 𝜆𝑛) only in a 

closed bounded domain ∑ |𝜆𝑘|
2𝑛

𝑘=1 < 𝑅2. According to the well−known Weierstrass 

theorem, a continuous function reaches its minimum in such a domain. Therefore, there 

are numbers 𝜆1, 𝜆2, … , 𝜆𝑛 , that provide the best approximation of the element 𝑓 by the 

linear combination 𝜆1𝑓1 + 𝜆2𝑓2 +⋯+ 𝜆𝑛𝑓𝑛.  

2.2. Contraction Mapping Principle  

The contraction mapping principle is one of the most important mathematical 

achievements and is widely used to prove existence and uniqueness theorems, find 

solutions to equations of various types by the method of successive approximations, and 

prove the convergence of iterative procedures used, for example, in approximation 

theory. The contraction mapping principle was formulated by the Polish mathematician 

S. Banach [30–34]. 

First, we give the following definition. 
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Let 𝑌 be some metric space and {𝑓𝑛} ─a sequence of elements of this space. 

Definition 5. A sequence {𝑓𝑛} is called Cauchy sequence, if for any positive number 𝜀 there is a 

number 𝑁0 , depending on ε, such that for any numbers 𝑛  and 𝑚  it follows from the 

condition 𝑛,𝑚 ≥ 𝑁0 than 𝜌(𝑓𝑛, 𝑓𝑚) < 𝜀. 

In quantifiers, this definition will be written as follows 

∀𝜀 > 0 ∃𝑁0 = 𝑁0(𝜀) ∈ 𝑁 ∀𝑛,𝑚 ∈ 𝑁: 𝑛,𝑚 > 𝑁0 ⇒ 𝜌(𝑓𝑛, 𝑓𝑚) < 𝜀.  

A space 𝑌 is called complete, if any Cauchy sequence converges to some limit that is 

an element of the same space. 

Theorem 2. (Principle of contraction mappings). Let 𝑌 be a complete metric space, in which 

some operator 𝐴, s given, transforming elements of a given space into elements of the same space, 

i.e., 𝐴: 𝑌 → 𝑌. Let, for any 𝑓, 𝜑 ∈ 𝑌, there exist a number 𝛼 < 1, independent of 𝑓 and 𝜑, such 

that the condition 𝜌(𝐴𝑓, 𝐴𝜑) ≤  𝛼𝜌(𝑓, 𝜑)  is satisfied. Then, there is a single element (point) 

𝑓0: 𝐴𝑓0 = 𝑓0. This point is called the fixed point of the operator 𝐴.  

Proof. Let 𝑓 be an arbitrary fixed element of the set 𝑌.  

Let us create a sequence 𝑓1 = 𝐴𝑓, 𝑓2 = 𝐴𝑓1, … , 𝑓𝑛 = 𝐴𝑓𝑛−1, …, which is fundamental. 

Really, 

𝜌(𝑓1, 𝑓2) =  𝜌(𝐴𝑓, 𝐴𝑓1) ≤  𝛼𝜌(𝑓, 𝐴𝑓), 

𝜌(𝑓2, 𝑓3) =  𝜌(𝐴𝑓1, 𝐴𝑓2) ≤  𝛼𝜌(𝑓1, 𝑓2) ≤  𝛼
2𝛼𝜌(𝑓, 𝐴𝑓) and so on. 

 

We obtain, 𝜌(𝑓𝑛, 𝑓𝑛+1) ≤  𝛼
𝑛𝛼𝜌(𝑓, 𝐴𝑓). 

By the triangle axiom for the metric, we write 

𝜌(𝑓𝑛, 𝑓𝑛+𝑝) ≤ 𝜌(𝑓𝑛, 𝑓𝑛+1) + 𝜌(𝑓𝑛+1, 𝑓𝑛+2) + ⋯+ 𝜌(𝑓𝑛+𝑝−1, 𝑓𝑛+𝑝) 

≤ (𝛼𝑛 + 𝛼𝑛+1 +⋯+ 𝛼𝑛+𝑝−1) 𝜌(𝑓, 𝐴𝑓) =
𝛼𝑛−𝛼𝑛+𝑝

1−𝛼
𝜌(𝑓, 𝐴𝑓), 𝑝 ∈ 𝑁. 

 

Taking into account that α < 1, we obtain 𝜌(𝑓𝑛, 𝑓𝑛+𝑝) ≤
𝛼𝑛

1−𝛼
𝜌(𝑓, 𝐴𝑓).  

Therefore, 𝜌(𝑓𝑛, 𝑓𝑛+𝑝)
𝑛→∞
→   0. Therefore, the sequence {𝑓𝑛} is fundamental, and since, 

by the hypothesis of the theorem, the space 𝑌 is complete, there is an element 𝑓0 ∈

𝑌: lim
𝑛⟶∞

𝑓𝑛 =𝑓0. 

Let us show that this element 𝑓0 is a fixed point.  

Really,  

𝜌(𝑓0, 𝐴𝑓0) ≤ 𝜌(𝑓0, 𝑓𝑛) + 𝜌(𝑓𝑛, 𝐴𝑓0) = 𝜌(𝑓0, 𝑓𝑛) + 𝜌(𝐴𝑓𝑛−1, 𝐴𝑓0) ≤ 𝜌(𝑓0, 𝑓𝑛) + 𝛼𝜌(𝑓𝑛−1, 𝑓0).  

Take an arbitrary number 𝜀 > 0. Since the sequence {𝑓𝑛} converges to the element 

𝑓0, then, there is a number 𝑁1, for which for any 𝑛 ≥ 𝑁1 the condition 𝜌(𝑓0, 𝑓𝑛) <
𝜀

2
, will 

be satisfied, and there is a number 𝑁2 , for which for any 𝑛 ≥ 𝑁2  the condition 

𝛼𝜌(𝑓𝑛−1, 𝑓0) <
𝜀

2
 is satisfied. 

Then, we obtain 

∀𝜀 > 0 ∃𝑁(𝜀) = max{𝑁1, 𝑁2} ∀𝑛: 𝑛 > 𝑁 ⇒ 𝜌(𝑓0, 𝐴𝑓0) ≤ 𝜌(𝑓0, 𝑓𝑛) + 𝛼𝜌(𝑓𝑛−1, 𝑓0) <
𝜀

2
+
𝜀

2
= 𝜀.  

Since the number 𝜀 is arbitrary, then 𝜌(𝑓0, 𝐴𝑓0) = 0, whence we obtain 𝐴𝑓0 = 𝑓0, that 

is, the element 𝑓0 is a fixed point. 

Suppose that along with the fixed point 𝑓0 there is one more, belonging to 𝑌, which 

we denote by 𝑓0
∗. By the definition of a fixed point, we write 𝐴𝑓0 = 𝑓0 and 𝐴𝑓0

∗ = 𝑓0
∗. In 

this case 𝜌(𝑓0, 𝑓0
∗) = 𝜌(𝐴𝑓0, 𝐴𝑓0

∗) <  𝛼𝜌(𝑓0, 𝑓0
∗) and 𝛼 > 1, if the fixed points are different. 

The obtained value of 𝛼 contradicts the hypothesis of the theorem; therefore, the fixed 

point is the only one. □  
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2.3. Weierstrass Theorems on the Convergence of a Sequence of Approximating Functions 

Let us define the concept of uniform convergence of a sequence {𝑓𝑛(𝑥)} of elements 

of a metric space. 

Let 𝑌 be a metric space. 

Definition 6. A sequence {𝑓𝑛(𝑥)}  of elements of this space 𝑌  converges uniformly on the 

segment [0,1] to an element 𝑓(𝑥) ∈ 𝑌, if 

∀𝜀 > 0 ∃𝑁0(𝜀) ∈ 𝑁 ∀𝑛 ∈ 𝑁: 𝑛 ≥ 𝑁0⟹  𝜌(𝑓𝑛(𝑥), 𝑓(𝑥)) < 𝜀 ∀𝑥.  

Theorem 3. Weierstrass’ First Theorem. If the function 𝑓(𝑥) is continuous on the interval 

[0,1], then ∀𝜀 > 0 ∃𝑛(𝜀) ∈ 𝑁 , that there is a sequence of polynomials 𝑃𝑛(𝑥) of degree 𝑛, for 

which the relation holds: 

|𝑓(𝑥) − 𝑃𝑛(𝑥)| <  𝜀, ∀𝑥 ∈ [0,1].  

In other words, one can construct a sequence of polynomials  {𝑃𝑛(𝑥)} , uniformly 

converging to the original function 𝑓(𝑥) on the segment [0,1]. The polynomials of this 

sequence can be used to approximate the function 𝑓(𝑥). 

Proof of Theorem. Consider a sequence of polynomials 𝐴𝑛(𝑥) = ∑ 𝐶𝑛
𝑘 ∙ 𝑥𝑘(1 −𝑛

𝑘=0

𝑥)𝑛−𝑘𝑓 (
𝑘

𝑛
). where 𝐶𝑛

𝑘 are binomial coefficients. 

Differentiating the binomial relation 

∑𝐶𝑛
𝑘 ∙ 𝑝𝑘𝑞𝑛−𝑘

𝑛

𝑘=0

= (𝑝 + 𝑞)𝑛  

in 𝑝 twice and carrying out simple transformations, we write down the relations 

∑
𝑘

𝑛
𝐶𝑛
𝑘 ∙ 𝑥𝑘(1 − 𝑥)𝑛−𝑘 = 𝑥𝑛

𝑘=0 ; 

∑
𝑘2

𝑛2
𝐶𝑛
𝑘 ∙ 𝑥𝑘(1 − 𝑥)𝑛−𝑘 = (1 −

1

𝑛
) 𝑥2 +

1

𝑛
𝑥.

𝑛

𝑘=0

 

 

Taking into account the identity ∑ 𝐶𝑛
𝑘 ∙ 𝑥𝑘(1 − 𝑥)𝑛−𝑘𝑛

𝑘=0 = 1, the obtained relations 

allow us to find ∑ (
𝑘

𝑛
− 𝑥)

2

𝐶𝑛
𝑘 ∙ 𝑥𝑘(1 − 𝑥)𝑛−𝑘 =

𝑥(1−𝑥)

𝑛
.𝑛

𝑘=0  

Let’s write the expression 

𝑓(𝑥) − 𝐴𝑛(𝑥) = ∑(𝑓(𝑥) − 𝑓 (
𝑘

𝑛
))𝐶𝑛

𝑘 ∙ 𝑥𝑘(1 − 𝑥)𝑛−𝑘 = 𝐵1 + 𝐵2,

𝑛

𝑘=0

  

where 𝐵1 corresponds to terms for which |
𝑘

𝑛
− 𝑥| ≤ 𝑛−1 4⁄ . 𝐵2 matches all other terms. 

We set 𝜆𝑛 = max
|
𝑘

𝑛
−𝑥|≤𝑛−1 4⁄

|𝑓(𝑥) − 𝑓 (
𝑘

𝑛
)| . Then, we obtain |𝐵1| ≤ 𝜆𝑛 ∑ 𝐶𝑛

𝑘 ∙ 𝑥𝑘(1 −𝑛
𝑘=0

𝑥)𝑛−𝑘= 𝜆𝑛. Note that 𝜆𝑛
𝑛→∞
→    0. 

By the conditions of the theorem, the function 𝑓(𝑥)  is continuous on a closed 

segment and, therefore, is bounded. Therefore, 𝑓(𝑥) ≤ 𝑀 on this segment. Where we can 

obtain 
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( ) ( )

( ) ( )

2

2 2 2 2

2
2

2 3/ 2 3/ 2

3/ 2

0

( )
2 1 2 1

( )

( ) 1
2 1 2 ( ) 1

1
2 (1 ) .

2

n k n kk k k k
n n

n
n k n kk k k k

n n
k

k nx
B MB C x x MB C x x

k nx

k nx
MB C x x M k nx C x x

n n

M
M nx x

n n

− −

− −

=

−
 − = − 

−

−
 −  − − =

= − 


 

 

We will finally write down 

|𝑓(𝑥) − 𝐴𝑛(𝑥)| = |𝐵1 + 𝐵2| ≤ |𝐵1| + |𝐵2| ≤ 𝜆𝑛 +
𝑀

2√𝑛
.  

It is easy to see that 𝜆𝑛 +
𝑀

2√𝑛
 → 0.  

Whence it follows that the sequence of polynomials 𝐴𝑛(𝑥) tends uniformly to the 

function 𝑓(𝑥) on a given interval. □  

Theorem 4. Weierstrass’ Second Theorem. If a periodic function 𝑓(𝑥) with period 2π is 

continuous, then ∀𝜀 > 0 ∃𝑛(𝜀) ∈ 𝑁 , there is a trigonometric sum 𝑆𝑛(𝑥) =
𝑎0

2
+

∑ (𝑎𝑘 𝑠𝑖𝑛 𝑘𝑥 + 𝑏𝑘 𝑐𝑜𝑠 𝑘𝑥)
𝑛
𝑘=1 , for which the relation |𝑓(𝑥) − 𝑆𝑛(𝑥)| < 𝜀 ∀𝑥 holds. 

Proof. We introduce two even continuous functions with period 2π using the relations 

𝜇(𝑥) =
𝑓(𝑥)+𝑓(−𝑥)

2
  and 𝜈(𝑥) =

𝑓(𝑥)−𝑓(−𝑥)

2
sin 𝑥.  

Let 𝑡 = cos 𝑥. Then, if 𝑥 ∈ [0, 𝜋], then 𝑡 ∈ [−1,1]. Note that due to the parity and 

periodicity of the functions under consideration, all conclusions that are valid for 𝑥 ∈
[0, 𝜋], will be valid for any 𝑥. 

Let us introduce the functions 𝜑(𝑡) = 𝜇(𝑥) and 𝜓(𝑡) =  𝜈(𝑥), which are continuous 

for 𝑡 ∈ [−1,1]. Based on the first Weierstrass theorem, for any number ε > 0 there are 

polynomials 𝑃(𝑡) and 𝑄(𝑡), for which the conditions |𝜇(𝑥) − 𝑃(cos 𝑥)| <
ε

4 
 and |𝜈(𝑥) −

𝑄(cos 𝑥)| <
ε

4
. 

Since the relation 𝑓(𝑥) sin 𝑥 = 𝜇(𝑥) sin 𝑥 +𝜈(𝑥) holds, there is a trigonometric sum 

𝐴(𝑥) = 𝑄(cos 𝑥) + 𝑃(cos 𝑥) sin 𝑥, for which, for all 𝑥 the relation holds 

|𝑓(𝑥) sin 𝑥 − 𝐴(𝑥)| = |𝜇(𝑥) − 𝑃(cos 𝑥) sin 𝑥 + 𝜈(𝑥) − 𝑄(cos 𝑥)| 

≤ |𝜇(𝑥) − 𝑃(cos 𝑥) sin 𝑥| +  |𝜈(𝑥) − 𝑄(cos 𝑥)| <
ε

4
+
ε

4
= ε.  

 

Similarly, for the function 𝑓 (
𝜋

2
− 𝑥)  there is a trigonometric function 𝐵(𝑥) , for 

which |𝑓 (
𝜋

2
− 𝑥) sin 𝑥 − 𝐵(𝑥)| <

ε

2
.  

Making the substitution 
𝜋

2
− 𝑥 = 𝑥 , we rewrite the last inequality in the form 

|𝑓(𝑥) cos x−𝐵 (
𝜋

2
− 𝑥)| <

ε

2
. 

From the inequalities obtained, we find 

|𝑓(𝑥)sin2(𝑥) − 𝐴(𝑥) sin 𝑥| <
ε

2
; |𝑓(𝑥)cos2(𝑥) − 𝐵 (

𝜋

2
− 𝑥) cos 𝑥| <

ε

2
.  

where do we obtain 

|𝑓(𝑥) − 𝐴(𝑥) sin 𝑥 − 𝐵 (
𝜋

2
− 𝑥) cos 𝑥| = |𝑓(𝑥)sin2(𝑥) − 𝐴(𝑥) sin 𝑥 + 𝑓(𝑥)cos2(𝑥) − 𝐵 (

𝜋

2
− 𝑥) cos 𝑥| 

≤ |𝑓(𝑥)sin2(𝑥) − 𝐴(𝑥) sin 𝑥|+|𝑓(𝑥)cos2(𝑥) − 𝐵 (
𝜋

2
− 𝑥) cos 𝑥| <

ε

2
+
ε

2
= ε. 
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Since ε can be any positive number, including arbitrarily small, it can be concluded 

that the trigonometric sum is uniformly convergent 𝑆(𝑥) = 𝐴(𝑥) sin 𝑥 + 𝐵 (
𝜋

2
− 𝑥) cos 𝑥 to 

the function 𝑓(𝑥). □ 

Note that the considered Weierstrass theorems can be generalized to the case of the 

space 𝐿𝑝[0,1]. 

2.4. Approximation by Algebraic Polynomials 

The approximation by algebraic polynomials of functions [35–39], in particular, 

piecewise-linear ones, is often performed using algebraic polynomials in the system of 

polynomials 1, 𝑥, 𝑥2, … . These polynomials are simple and well-studied mathematical 

constructions, with the possibility of simple differentiation, and the derivative is again a 

polynomial. 

Let the function 𝑓: 𝑅 ⟶ 𝑅 be subject to approximation. Let 𝑥 ∈ [𝑎, 𝑏] and the values 

of the function 𝑓𝑘 = 𝑓(𝑥𝑘) are known at the points 𝑥𝑘 , 𝑘 = 0,1, … , 𝑛. We approximate our 

function by the algebraic polynomial 𝑃𝑛(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 +⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛,𝑎0 ≠ 0, for 

which the condition  𝑃𝑛(𝑥𝑘) =  𝑓(𝑥𝑘). Such a polynomial exists and is unique. 

The approximating polynomial can be found by the Lagrange formula 

𝐿𝑛(𝑥) = ∑
∏ (𝑥 − 𝑥𝑘)𝑓(𝑥𝑘)
𝑛
𝑘=0

(𝑥 − 𝑥𝑘)∏ (𝑥𝑘 − 𝑥𝑖)
𝑛
𝑖=0(𝑖≠𝑘)

.

𝑛

𝑘=0

  

Example. Approximate the piecewise linear function on the segment [0,7] 

𝑓(𝑥) = {
2𝑥, ∀𝑥 ∈ [0,2];

6 − 𝑥, ∀𝑥 ∈ (2,7].
  

Let’s calculate the values of the function at several points 

𝑓(0) = 0, 𝑓(1) = 2, 𝑓(2) = 4, 𝑓(3) = 3, 𝑓(5) = 1, 𝑓(7) = −1.  

Using the calculated values, we construct an approximating polynomial in the 

Lagrange form 

𝐿5(𝑥) =
𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 5)(𝑥 − 7) ∙ 0

−210𝑥
+
𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 5)(𝑥 − 7)2

48(𝑥 − 1)
 

+
𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 5)(𝑥 − 7)4

−30(𝑥 − 2)
+
𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 5)(𝑥 − 7)3

48(𝑥 − 3)

+
𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 5)(𝑥 − 7)1

−240(𝑥 − 5)
+
𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 5)(𝑥 − 7)(−1)

1680(𝑥 − 7)
.  

 

After transformations, we find 

𝐿5(𝑥) = −0,034𝑥
5 + 0,548𝑥4 − 2,941𝑥3 +5,495𝑥2 − 1,068𝑥.  

Figure 1 shows the graphs of the original function (thickened line) and the 

approximating function (thin line). As you can see, despite the relatively high degree of 

the approximating polynomial, the approximation error is large. 

The approximation error can be found by the relation [35] 

|𝑓(𝑥) − 𝐿𝑛(𝑥)| ≤
𝑀𝑛+1|∏ (𝑥−𝑥𝑘)

𝑛
𝑘=0 |

(𝑛+1)!
, where  𝑀𝑛+1 = sup

𝑥∈[𝑎,𝑏]
|𝑓(𝑛+1(𝑥)|.  

This assessment should be carefully considered. It may not be valid for all continuous 

functions due to the appearance of a derivative of order n + 1. Convergence issues are 

considered in the works [1–4]. 

Since the expression for the error includes the product ∏ (𝑥 − 𝑥𝑘)
𝑛
𝑘=0 , the error 

depends on the choice of points 𝑥𝑘. The approximation error reaches the smallest value 

on the interval [–1,1] if the points 𝑥𝑘  are the roots of the Chebyshev polynomial 
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𝐺𝑛+1(𝑥) =
cos((𝑛+1)arccos𝑥)

2𝑛
, which are calculated by the formula 𝑥𝑘 = cos

2𝑘+1

2(𝑛+1)
, 𝑘 =

0,1, … , 𝑛. 

 

Figure 1. Graphs of the original and approximating functions. 

In the case 𝑥 ∈ [𝑎, 𝑏], there are optimal points as follows 

𝑥𝑘 =
𝑎 + 𝑏

2
+
𝑏 − 𝑎

2
cos (

2𝑘 + 1

2(𝑛 + 1)
) .   

Moreover, max
𝑥∈[𝑎,𝑏]

|∏ (𝑥 − 𝑥𝑘)
𝑛
𝑘=0 | =

(𝑏−𝑎)𝑛+1

22𝑛+1
, and the approximation error estimate 

takes the form |𝑓(𝑥) − 𝐿𝑛(𝑥)| ≤
𝑀𝑛+1(𝑏−𝑎)

𝑛+1

22𝑛+1(𝑛+1)!
. 

The approximation accuracy can be improved by increasing the points (nodes) of the 

approximation. 

To approximate the function, you can apply a polynomial in the Newtonian form 

𝑁𝑛(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓(𝑥0, 𝑥1) + (𝑥 − 𝑥0)(𝑥 − 𝑥1)𝑓(𝑥0, 𝑥1, 𝑥2) + ⋯ 

+(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1)𝑓(𝑥0, 𝑥1, … , 𝑥𝑛), 
 

where  𝑓(𝑥𝑖 , 𝑥𝑗) =
𝑓(𝑥𝑗)−𝑓(𝑥𝑖)

𝑥𝑗−𝑥𝑖
, 𝑖, 𝑗 = 0,1, … , 𝑛, (𝑖 ≠ 𝑗) are separated first-order differences, 

𝑓(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) =
𝑓(𝑥𝑗,𝑥𝑘)−𝑓(𝑥𝑖,𝑥𝑗)

𝑥𝑘−𝑥𝑖
, 𝑖, 𝑗, 𝑘 = 0,1, … , 𝑛, (𝑖 ≠ 𝑗 ≠ 𝑘) are separated second-order 

differences, 𝑓(𝑥𝑖 , 𝑥𝑖+1, … . 𝑥𝑖+𝑘) =
𝑓(𝑥𝑖+1,𝑥𝑖+2,…,𝑥𝑖+𝑘)−𝑓(𝑥𝑖,𝑥𝑖+1,…,𝑥𝑖+𝑘−1)

𝑥𝑖+𝑘−𝑥𝑖
 are separated k-th-order 

differences. 

Newton’s formula is applied at equidistant points at which the values of the original 

function are calculated. The advantage of Newton’s formula over Lagrange’s formula is 

that when adding new approximation points, all the coefficients in the Lagrange’s formula 

have to be recalculated, whereas only new terms are added in Newton’s formula, while 

the old ones remain unchanged. 

Newton’s formula is a difference analogue of Taylor’s formula, which is used in the 

case of approximation by algebraic polynomials of an analytic function in a neighborhood 

of some point 𝑥0, and which has the form 

𝑓(𝑥) = 𝑓(𝑥0) + ∑
𝑓(𝑘)(𝑥0)

𝑘!

𝑛
𝑘=1 (𝑥 − 𝑥0) +

𝑓(𝑛+1)(𝑥0+𝜃(𝑥−𝑥0))

(𝑛+1)!
(𝑥 − 𝑥0)

𝑛+1, 𝜃 ∈ [0,1],  

where the remainder 
𝑓(𝑛+1)(𝑥0+𝜃(𝑥−𝑥0))

(𝑛+1)!
(𝑥 − 𝑥0)

𝑛+1 is written in Lagrange form. 

In some cases, the original function cannot be approximated with the required 

accuracy by algebraic polynomials. Sometimes such an approximation is possible, but the 

sequence of polynomials converges very slowly. In these cases, rational fractions or 

fractional rational functions representing the ratio of polynomials are used to approximate 

the function [1–3]. 
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2.5. Approximation of Piecewise Linear Functions by Fourier Series 

This paragraph is based on the publications [40–44]. 

Let 𝑌 be a linear space. Let us introduce the scalar product operation on this space, 

which is defined as follows. 

Definition 7. To each pair of elements 𝑓1, 𝑓2 ∈ 𝑌 we associate some (generally complex) number 
(𝑓1, 𝑓2), satisfying the conditions: 

1. (𝑓1, 𝑓1) ≥ 0, and (𝑓1, 𝑓1) = 0 ⟺ 𝑓1 = 0; 

2. (𝑓1, 𝑓2)= (𝑓2, 𝑓1)̅̅ ̅̅ ̅̅ ̅̅ ̅; 

3. (𝑓1 + 𝑓2, 𝑓3) = (𝑓1, 𝑓3) + (𝑓2, 𝑓3), ∀𝑓3 ∈ 𝑌; 
4. (𝜆𝑓1, 𝑓2) = 𝜆(𝑓1, 𝑓2) for any complex number λ. 

So, the entered number is called the dot product of the elements 𝑓1 and 𝑓2. 

The norm of an element 𝑓 ∈ 𝑌 can be introduced using the relation ‖𝑓‖ = √(𝑓, 𝑓), 

and the metric in this space can be defined by the relation 𝜌(𝑓1, 𝑓2) = ‖𝑓1 − 𝑓2‖. It is easy 

to verify that all the axioms of the norm and metrics are satisfied. 

Elements 𝑓1, 𝑓2 are called orthogonal if (𝑓1, 𝑓2) = 0. 

A system of elements 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ 𝑌 is called orthonormal if for any elements 𝑓𝑖 , 𝑓𝑗  

of this system the condition (𝑓𝑖 , 𝑓𝑗 ) = 𝛿𝑖,𝑗 is satisfied, where 𝛿𝑖,𝑗 is the Kronecker symbol 

equal to one for 𝑖 = 𝑗 and zero for 𝑖 ≠ 𝑗. 

Let the system of functions {𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥), … } be orthogonal on the segment 
[𝑎, 𝑏]. A series of the form ∑ 𝑐𝑘𝑓𝑘(𝑥)

∞
𝑘=1 , in which the coefficients 𝑐𝑘  are found by the 

formulas 𝑐𝑘 =
1

‖𝑓𝑘(𝑥)‖
2 ∫ 𝑓(𝑥)𝑓𝑘(𝑥)𝑑𝑥 

𝑏

𝑎
, is called the Fourier series in the orthogonal system 

{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥), … } for the function 𝑓(𝑥). For the orthonormal system of functions 
{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥), … } the coefficients of the Fourier series can be found by the 

formulas 𝑐𝑘 = ∫ 𝑓(𝑥)𝑓𝑘(𝑥)𝑑𝑥.
𝑏

𝑎
 

There are various orthogonal systems of functions. Often the trigonometric system is 
{1, sin 𝑥, cos 𝑥, sin 2𝑥, cos 2𝑥, … , sin 𝑘𝑥, cos 𝑘𝑥, …}, for which the scalar product is defined by 

the relation (𝑓𝑖 , 𝑓𝑗) = ∫ 𝑓𝑖(𝑥)
𝑏

𝑎
𝑓𝑗(𝑥). 

If the functions in this system are normalized, then we obtain the orthonormal system 

of functions 

{
1

√2𝜋
,
sin 𝑥

√𝜋
,
cos 𝑥

√𝜋
.
sin 2𝑥

√𝜋
,
cos2 𝑥

√𝜋
,… ,

sin 𝑘𝑥

√𝜋
,
cos 𝑘𝑥

√𝜋
,… }.  

A trigonometric series is a series of the form 

𝑓(𝑥) =
𝑎0
2
+∑(𝑎𝑘 sin 𝑘𝑥 + 𝑏𝑘 cos 𝑘𝑥)

∞

𝑘=1

,   

where 𝑎0, 𝑎𝑘 , 𝑏𝑘 (𝑘 = 1,2, . . ) are the coefficients of the trigonometric series. 

The sum of a converging trigonometric series is a periodic function with a period of 

2π, since the functions sin 𝑘𝑥 and cos 𝑘𝑥 are periodic with a period 2π. 

If the coefficients of the trigonometric series are found by the formulas 

𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥; 𝑎𝑘 = 

𝜋

−𝜋

1

𝜋
∫ 𝑓(𝑥) sin 𝑘𝑥𝑑𝑥; 

𝜋

−𝜋

𝑏𝑘 =
1

𝜋
∫𝑓(𝑥) cos 𝑘𝑥𝑑𝑥,

𝜋

−𝜋

  

Then, the trigonometric series is called the Fourier series in the orthogonal system 
{1, sin 𝑥, cos 𝑥, sin 2𝑥, cos 2𝑥, … , sin 𝑘𝑥, cos 𝑘𝑥, …}.  

Theorem 5. Dirichlet’s Theorem. If the original function 𝑓(𝑥) is periodic with period 2π, 

piecewise monotone and bounded on the interval [−π,π], then the Fourier series for this function 

converges at all points. At the points of continuity of the function, the sum of the series is equal to 
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the value of the function at these points. If 𝑥0 is the point of discontinuity of the original function, 

then the sum of the series at this point is equal to the half-sum of the one-sided limits, i.e., 

(𝑓(𝑥0 − 0) + 𝑓(𝑥0 − 0)) 2.⁄   

The proof of the theorem is omitted. 

Example. Let a periodic function 𝑓(𝑥) with period 2π be defined as 

𝑓(𝑥) = {
0, ∀𝑥 ∈ (−𝜋, 0];

 𝑥, ∀𝑥 ∈ (0,0 = 𝜋].
  

Find the coefficients of the Fourier series 

𝑎0 =
1

𝜋
∫
𝑓(𝑥)𝑑𝑥 =

1

𝜋
( ∫0𝑑𝑥 +

0

−𝜋

∫𝑥𝑑𝑥

𝜋

0

) =
1

𝜋
∙
𝜋2

2
=
𝜋

2
;

𝜋

−𝜋

 

𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑘𝑥𝑑𝑥 =

1

𝜋
∫𝑥 sin 𝑘𝑥𝑑𝑥 =

1

𝜋
(−

𝑥 cos 𝑘𝑥

𝑘
I0
π +∫ cos 𝑘𝑥 𝑑𝑥

π

0

)

𝜋

0

= −
1

𝑘
cos 𝑘𝑥 ; 

𝜋

−𝜋

 

𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑘𝑥𝑑𝑥 =

1

𝜋
∫ 𝑥 cos 𝑘𝑥𝑑𝑥 =

1

𝜋
(
𝑥 sin 𝑘𝑥

𝑘
I0
π −

1

𝑘
∫ sin 𝑘𝑥 𝑑𝑥

π

0

)

𝜋

0

=
1

𝜋𝑘2
(cos 𝑘𝑥 − 1) .

𝜋

−𝜋

 

 

Then, the Fourier series for the original function will be written as follows 

𝑓(𝑥) =
𝜋

4
+ sin 𝑥 −

2

𝜋
cos 𝑥 −

1

2
sin 2𝑥 +

1

3
sin 3𝑥 −

2

9𝜋
cos 3𝑥 +⋯ .  

The graphs of the original piecewise linear function (thickened line) and its 

approximations by several successive partial sums of the Fourier series (thin lines) on the 

segment [−π,π] are shown in Figure 2. 

 

Figure 2. Graphs of the original function and its approximations. 

As you can see in Figure 2, the approximation error is large enough and, as will be 

shown in the next chapter, in the vicinity of the discontinuity points, even with an infinite 

increase in the number of terms in the Fourier series; the error, understood as the 

difference between the values of the original function and its approximation, does not 

tend to zero. 

For an odd function, the coefficients of the Fourier series are found by the formulas 

𝑎0 = 0; 𝑎𝑘 =
2

𝜋
∫ 𝑓(𝑥) sin 𝑘𝑥 𝑑𝑥; 

𝜋

0

𝑏𝑘 = 0.  

for an even function, these coefficients can be found as follows 
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𝑎0 =
2

𝜋
∫ 𝑓(𝑥)𝑑𝑥; 𝑎𝑘 = 0; 𝑏𝑘 =

2

𝜋
∫ 𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥.

𝜋

0

𝜋

0

  

In the case of a periodic function with a period of 2𝑙 by changing the variable, one 

can always go to a function with a period of 2π. In this case, the Fourier series for a 

function with a period 2𝑙 will have the form 

𝑓(𝑥) =
𝑎0
2
+∑(𝑎𝑘 sin

𝑘𝜋

𝑙
+𝑏𝑘 cos

𝑘𝜋

𝑙
)

∞

𝑘=1

,  

where the coefficients are found by the formulas 

𝑎0 =
1

𝑙
∫𝑓(𝑥)𝑑𝑥; 

𝑙

−𝑙

𝑎𝑘 =
1

𝑙
∫𝑓(𝑥) sin

𝑘𝜋

𝑙
𝑥 𝑑𝑥; 

𝑙

−𝑙

𝑏𝑘 =
1

𝑙
∫𝑓(𝑥) cos

𝑘𝜋

𝑙
𝑥 𝑑𝑥.

𝑙

−𝑙

  

If a piecewise-monotone non-periodic function is given, the values of which are of 

interest to us only on a certain interval [𝑎, 𝑏], then to expand this function in a Fourier 

series, we can use a periodic function with a period 2𝑙 ≥ 𝑏 − 𝑎, which coincides with the 

original function on the interval [𝑎, 𝑏]. 

2.6. Function Approximation Using Splines 

A spline is a function composed of parts of polynomials that form a basis [45–49]. 

The polynomials 1, 𝑥, 𝑥2, … are usually taken as a basis. In the general case, the functions 

forming the basis may not be polynomials, but in the overwhelming majority of cases, so-

called polynomial splines are constructed, the basic functions of which are precisely 

polynomials. 

Some advantages of approximating the original function using splines can be pointed 

out: 

1. Stability of splines with respect to outliers and bursts; 

2. Good convergence of the approximation method; 

3. Ease of implementation on computers using well-developed mathematical methods 

such as the sweep method. 

There are other advantages to this kind of approximation. 

Let’s consider the basic idea of spline-function approximation. 

Let the segment [𝑎, 𝑏]  by points 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛−1, 𝑥𝑛 , be divided into 

partial segments, so that 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑖 < 𝑥𝑖+1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏.   

It is said that a grid is given on the segment [𝑎, 𝑏]. In addition, let 𝑃𝑘 be the set of all 

polynomials of degree at most  𝑘, and  𝐶(𝑘)[𝑎, 𝑏] is the set of all continuous functions 

defined on the segment [𝑎, 𝑏] and having continuous derivatives on this segment up to 

the 𝑘-th order inclusive. 

Definition 8. The function 𝑆𝑘(𝑥) is called a spline of degree 𝑘 of a defect 𝑑 with a given grid if 

the following conditions are met: 

1. 𝑆𝑘(𝑥) ∈ 𝑃𝑘 , ∀𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1], 𝑖 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; 

2. 𝑆𝑘(𝑥) ∈ 𝐶
(𝑘−𝑑)[𝑎, 𝑏]. 

Let some initial function 𝑓(𝑥) defined on the segment [𝑎, 𝑏] be given. A spline can 

be used to approximate this function by putting 𝑆𝑘(𝑥𝑖) = 𝑓(𝑥𝑖), ∀𝑖. In this case, the grid 

nodes are called approximation nodes. 

Consider an example of drawing up a parabolic spline, that is, a spline of second 

degree. 
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Let there be a function  𝑦(𝑥) , which at the nodes 𝑥 = 0,1,2 has the values 5, 2,3, 

respectively. 

For this function on the segment [0,2] we construct a spline of the form 

𝑆2(𝑥) = {
𝑎1𝑥

2 + 𝑏1𝑥 + 𝑐1, ∀𝑥 ∈ [0,1);

𝑎2𝑥
2 + 𝑏2𝑥 + 𝑐2, ∀𝑥 ∈ [1,2].

  

From the condition 𝑆2(𝑥𝑖) = 𝑦(𝑥𝑖) we obtain 

{

𝑐1 = 5;
𝑎1 + 𝑏1 + 𝑐1 = 2;
𝑎2 + 𝑏2 + 𝑐2 = 2;
4𝑎2 + 2𝑏2 + 𝑐2 = 3.

  

From the continuity condition for the first derivative, we find  

2𝑎1 + 𝑏1 = 2𝑎2 + 𝑏2.  

In total, we obtained five equations, but we also have six unknowns. Additional 

necessary equations are usually derived from some considerations, most often associated 

with boundary conditions. Putting, for example, 𝑆2
′′(0) = 0, we obtain the missing 

condition 𝑏1 = 0. 

Solving all the obtained equations in the system, we find the values of all coefficients 
𝑎1 = −3, 𝑎2 = 7, 𝑏1 = 0, 𝑏2 = −20, 𝑐1 = 5, 𝑐2 = 15. 

The desired spline will be written as follows 

𝑆2(𝑥) = {
−3𝑥2 + 5, ∀𝑥 ∈ [0,1);

7𝑥2 − 20𝑥 + 15, ∀𝑥 ∈ [1,2].
  

The spline plot is shown in Figure 3. 

 

Figure 3. Parabolic spline plot. 

Many practical examples, especially those related to mechanics, consider cubic 

splines, that is, splines of the third degree. Such splines allow not only the first derivative 

to be continuous, but also the second order derivative. In this case, it is possible to simulate 

the laws of motion with continuous speeds and accelerations. However, since we are 

primarily interested in piecewise linear functions, we will consider splines of the first 

degree, or, in other words, linear splines. The graphs of such splines will be continuous 

broken lines. For such splines, the following conditions will be met: 

1. 𝑆1(𝑥) ∈ 𝑃1, ∀𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1], 𝑖 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; 
2. 𝑆1(𝑥) ∈ 𝐶[𝑎, 𝑏]; 
3. 𝑆1(𝑥𝑖) = 𝑦(𝑥𝑖), ∀𝑖. 

Example. The original function on the segment [0,10] is defined by the expression 

𝑦 =
5 sin 𝑥

√2 + exp (3𝑥)
17

.  

Taking the points at which 𝑥 = 0,1,2, … ,10, as the nodes of the approximation, we 

construct a linear spline, which will have the form 
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𝑆(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

3.507𝑥, 𝑥 ∈ [0,1);

−0.314𝑥 + 3.821, 𝑥 ∈ [1,2);

−2.778𝑥 + 8.749, 𝑥 ∈ [2,3); 

−2.284𝑥 + 7.266, 𝑥 ∈ [3,4);

−0.116𝑥 − 1.404, 𝑥 ∈ [4,5);

1.499𝑥 − 9.123, 𝑥 ∈ [5,6);

1.44𝑥 − 9.123, 𝑥 ∈ [6,7);

0.251𝑥 − 0.798, 𝑥 ∈ [7,8);

−0.785𝑥 + 7.483, 𝑥 ∈ [8,9);

−0.8787𝑥 + 8.402, 𝑥 ∈ [9,10].

  

The graphs of the original function (solid line) and its approximating linear spline 

(dashed line) are shown in Figure 4. 

 

Figure 4. An example of approximating a function by a linear spline. 

The error in approximating the original functions using linear splines can be quite 

large. Nevertheless, in some cases, approximation by linear splines may be more 

preferable than approximation by splines of higher degrees, for example, due to simpler 

expressions for linear splines. In addition, the monotonicity of the values of the origin of 

the specified function for a linear spline is preserved, which may not be the case for splines 

of higher degrees. 

To reduce the error, the number of nodal points can be increased, but at the same 

time, having a simple structure at each partial section, the linear spline acquires a 

cumbersome appearance as a whole, which is clearly seen in the example considered. In 

addition, already the first derivative for a linear spline is not continuous. This drawback 

often prevents linear spline functions from being used to solve practical problems. For 

example, the study of the dynamics of motion of various objects involves the use of 

velocities and accelerations, which are derivatives of the angles of rotation and 

displacement. Discontinuities in the functions for velocities and accelerations create 

uncertainties and inconsistencies between mathematical models and real processes. A 

way out of the situation can be the methods of approximation of piecewise linear splines, 

considered in the subsequent chapters and paragraphs of the review. 

2.7. Least Squares Method: Linear Regression 

The approximating function 𝐹(𝑥) by the least squares method [50,51] is determined 

from the condition of the minimum sum of squared deviations (𝜉
𝑖
) of the calculated 

approximating function from a given array of experimental data. This criterion of the least 

squares method is written as the following expression: 

∑𝜉𝑖
2 =∑(𝐹(𝑥𝑖) − 𝑦𝑖)

2  → 𝑚𝑖𝑛,

𝑁

𝑖=1

𝑁

𝑖=1

  

where 𝐹(𝑥𝑖) are the values of the calculated approximating function 𝐹(𝑥) at the nodal 

points 𝑥𝑖; 𝑦𝑖  is a given array of experimental data at nodal points 𝑥𝑖. 
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This method can be useful when dealing with a large amount of information.  

As an example, consider the method for determining the approximating function, 

which is given as a linear relationship [52]. In accordance with the least squares method, 

the condition for the minimum sum of squared deviations is written as follows: 

𝑆 =∑𝜉𝑖
2

𝑁

𝑖=1

=∑(𝑎0 + 𝑎1 ∙ 𝑥𝑖 − 𝑦𝑖)
2° → 𝑚𝑖𝑛,

𝑁

𝑖=1

  

where 𝑥𝑖 , 𝑦𝑖  are coordinates of nodal points of the table; 𝑎0, 𝑎1 are unknown coefficients 

of the approximating function, which is given as a linear dependence. 

The necessary condition for the existence of a minimum of a function is the equality 

to zero of its partial derivatives with respect to unknown variables. Then, we obtain: 

{
 
 

 
 𝜕𝑆

𝜕𝑎0
= 2 ∙∑(𝑎0 + 𝑎1 ∙ 𝑥𝑖 − 𝑦𝑖) = 0;

𝑁

𝑖=1

𝜕𝑆

𝜕𝑎1
= 2 ∙∑(𝑎0 + 𝑎1 ∙ 𝑥𝑖 − 𝑦𝑖) ∙ 𝑥𝑖 = 0.

𝑁

𝑖=1

  

After some transformations we have: 

{
 
 

 
 𝑎0 ∙ 𝑁 + 𝑎1 ∙∑𝑥𝑖

𝑁

𝑖=1

=∑𝑦𝑖 ;

𝑁

𝑖=1

𝑎0 ∙∑𝑥𝑖

𝑁

𝑖=1

+ 𝑎1 ∙∑𝑥𝑖
2

𝑁

𝑖=1

=∑𝑦𝑖 ∙ 𝑥𝑖 .

𝑁

𝑖=1

  

Solving the resulting system of linear equations, we find the coefficients of the 

approximating function:  

{
 
 

 
 𝑎0 =

∑ 𝑦𝑖
𝑁
𝑖=1 ∙ ∑ 𝑥𝑖

2𝑁
𝑖=1 − ∑ (𝑦𝑖 ∙ 𝑥𝑖) ∙ ∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
𝑖=1

𝑁 ∙ ∑ 𝑥𝑖
2𝑁

𝑖=1 − (∑ 𝑥𝑖
𝑁
𝑖=1 )2

;

𝑎1 =
𝑁 ∙ ∑ (𝑦𝑖 ∙ 𝑥𝑖)

𝑁
𝑖=1 − ∑ 𝑦𝑖

𝑁
𝑖=1 ∙ ∑ 𝑥𝑖

𝑁
𝑖=1

𝑁 ∙ ∑ 𝑥𝑖
2𝑁

𝑖=1 − (∑ 𝑥𝑖
𝑁
𝑖=1 )2

.

  

These coefficients are used to construct a linear approximating function according to 

the criterion of the minimum sum of squares of the approximating function from the given 

tabular values representing the experimental data. 

Example. Suppose we have initial data (Table 1). 

Table 1. Initial data. 

𝑥𝑖 17.28 17.05 18.30 18.80 19.20 18.50 

𝑦𝑖  537 534 550 555 560 552 

Using the above formulas, we find the pair of regression coefficients: 𝑎0 =
328.3, 𝑎1 = 12.078. 

Then, the regression equation will take the form  

𝑦 = 12.078 ∙ 𝑥 + 328.3.  

2.8. Hermite Interpolation 

When constructing the Hermite interpolation polynomial, it is required that not only 

that its values coincide with the tabular data in the nodes, but also the values of its 

derivatives are in a certain order [53,54]. 
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Let us now look at the nodes 𝑥𝑖 ∈ [𝑎, 𝑏], 𝑖 = 0,1, … ,𝑚, among which there are no 

coinciding ones, the values of the function 𝑓(𝑥𝑖)  and its derivatives 𝑓(𝑗)(𝑥𝑖), 𝑗 =

1,2, … , 𝑁𝑖 − 1 up to 𝑁𝑖 − 1 order are given. In this case, the numbers 𝑁𝑖  are called the 

multiplicity of the node 𝑥𝑖 . At each point 𝑥𝑖 , thus, the following values 𝑁𝑖 are given: 

𝑓(𝑥𝑖), 𝑓
′(𝑥𝑖), 𝑓

′′(𝑥𝑖), … , 𝑓
(𝑁𝑖 −1)(𝑥𝑖). In total, the values 𝑁0 + 𝑁1 +⋯+ 𝑁𝑚  are known on 

the entire set of nodes 𝑥0 + 𝑥1 +⋯+ 𝑥𝑚, which makes it possible to raise the question of 

constructing a polynomial 𝐻𝑛(𝑥)  of order  n = N0 +⋯+ Nm -1,  satisfying the 

requirements: 

𝐻𝑛
(𝑗)
(𝑥𝑖) = 𝑓

(𝑗)(𝑥𝑖), 𝑖 = 0,1, … ,𝑚, 𝑗 = 1,2, … , 𝑁𝑖 − 1.  

Such a polynomial is called the Hermite interpolation polynomial for the function 

𝑓(𝑥). It is proved [] that the Hermite interpolation polynomial exists and is unique. 

The construction of the Hermite polynomial in the general case for an arbitrary 

number of nodes and their multiplicity leads to rather cumbersome expressions and is 

rarely used. Therefore, we confine ourselves to one example. 

Example. Construct the Hermite interpolation polynomial for the function 𝑓(𝑥) in 

the case when at all interpolation nodes 𝑥𝑖 ∈ [𝑎, 𝑏], 𝑖 = 0,1, … ,𝑚,  the values of the 

function 𝑓(𝑥𝑖) = 𝑓𝑖 and its first derivative 𝑓′(𝑥𝑖) = 𝑓𝑖
′.  

In this case 𝑁𝑖 = 2, 𝑖 = 0,1, … ,𝑚, therefore, the degree of the polynomial 𝐻𝑛(𝑥) is 

2𝑚 + 1. We write the original polynomial in the form: 

𝐻2𝑚+1(𝑥) =∑(𝑓𝑖 + 𝛼𝑖(𝑥 − 𝑥𝑖)) ∙
(𝑥 − 𝑥0)

2 ∙ … ∙ (𝑥 − 𝑥𝑖−1)
2 ∙ (𝑥 − 𝑥𝑖+1)

2 ∙ … ∙ (𝑥 − 𝑥𝑚)
2

(𝑥𝑖 − 𝑥0)
2 ∙ … ∙ (𝑥𝑖 − 𝑥𝑖−1)

2 ∙ (𝑥𝑖 − 𝑥𝑖+1)
2 ∙ … ∙ (𝑥𝑖 − 𝑥𝑚)

2

𝑚

𝑖=0

.  

When calculating the derivative of the polynomial 𝐻2𝑚+1(𝑥)  at the node 𝑥𝑖 , it 

should be taken into account that all terms of the sum, except for the term corresponding 

to the node itself, provide zero contribution to the derivative at this point, so we obtain 

𝐻2𝑚+1
′ (𝑥) = 𝑓𝑖 ∙ (

2

𝑥𝑖 − 𝑥0
+⋯+

2

𝑥𝑖 − 𝑥𝑖−1
+

2

𝑥𝑖 − 𝑥𝑖+1
+

2

𝑥𝑖 − 𝑥𝑚
) + 𝛼𝑖 = 𝑓𝑖

′.  

Therefore, we obtain 𝛼𝑖 = 𝑓𝑖
′ − 2𝑓𝑖𝐴𝑖 , where the numbers 𝐴𝑖 are determined by the 

formula 

𝐴𝑖 =
1

𝑥𝑖 − 𝑥0
+⋯+

1

𝑥𝑖 − 𝑥𝑖−1
+

1

𝑥𝑖 − 𝑥𝑖+1
+

1

𝑥𝑖 − 𝑥𝑚
.  

Thus, the solution to this problem is the Hermite polynomial 

𝐻2𝑚+1(𝑥) =∑(𝑓𝑖 + (𝑓𝑖
′ − 2𝑓𝑖𝐴𝑖) ∙ (𝑥 − 𝑥𝑖)) ∙∙

(𝑥 − 𝑥0)
2 ∙ … ∙ (𝑥 − 𝑥𝑖−1)

2 ∙ (𝑥 − 𝑥𝑖+1)
2 ∙ … ∙ (𝑥 − 𝑥𝑚)

2

(𝑥𝑖 − 𝑥0)
2 ∙ … ∙ (𝑥𝑖 − 𝑥𝑖−1)

2 ∙ (𝑥𝑖 − 𝑥𝑖+1)
2 ∙ … ∙ (𝑥𝑖 − 𝑥𝑚)

2

𝑚

𝑖=0

.  

2.9. Lebesgue Functions and Lebesgue Constant in Polynomial Interpolation 

The Lebesgue constant is a valuable numerical tool for linear interpolation because it 

provides a measure of how close the interpolation of a function is to the best polynomial 

approximation of a function. Many publications [55–59] have been devoted to finding 

optimal interpolation points in the sense that these points lead to the minimum Lebesgue 

constant for interpolation problems on the interval [−1,1]. 

Definition 9. Let 𝛺𝑛 = {𝑥𝑖}𝑖=1
𝑛  be a grid on [𝑎, 𝑏]. 

Function Λ𝑛(𝑥) = Λ𝑛(𝑥, 𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ |𝑙𝑖(𝑥)|
𝑛
𝑖=1  is called the Lebesgue function, 

and the Lebesgue constant is the number 

Λ𝑛 = Λ𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = max
𝑥∈[𝑎,𝑏]

Λ𝑛(𝑥, 𝑥1, 𝑥2, … , 𝑥𝑛).  
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Here 𝑙1(𝑥), 𝑙2(𝑥), … , 𝑙𝑛(𝑥) is some basis in the linear (vector) space of functions of 

dimension 𝑛. 

The statements are true [59]: 

1. 1 ≤ Λ𝑛(𝑥) ≤ Λ𝑛 for any 𝑥 ∈ [𝑎, 𝑏]. 

2. The value of Λ𝑛 does not depend on [𝑎, 𝑏], but depends only on the relative position 

of the nodes on it. 

Let us pose the question: to what extent is the method of interpolation of a function 

by an algebraic polynomial inferior in accuracy to the best possible method of 

approximating a function by an algebraic polynomial of the same degree? 

Let 𝑃𝑛−1  be an algebraic polynomial, an approximation of the function 𝑓, obtained 

by some method. Thus, each method has its own polynomial 𝑃𝑛−1 . The value 
|𝑓(𝑥) − 𝑃𝑛−1(𝑥)| determines the approximation error at a point 𝑥 ∈ [𝑎, 𝑏], and the number 

‖𝑓 − 𝑃𝑛−1‖∞ = max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥) − 𝑃𝑛−1(𝑥)| is the maximum error of this method. 

Definition 10. An algebraic polynomial 𝐿𝑛−1  is called a polynomial of best uniform 

approximation if ‖𝑓 − 𝐿𝑛−1‖∞ = 𝑚𝑖𝑛
𝑃𝑛−1

‖𝑓 − 𝑃𝑛−1‖∞. The solution to this problem exists and is 

uniquely determined. The value 𝐸𝑛(𝑓) = ‖𝑓 − 𝐿𝑛−1‖∞  is called the error of the best uniform 

approximation. 

Let’s make the following remarks: 

1. If 𝐹𝑛−1 is an approximation of 𝑓 obtained by some method (for example, 𝐹𝑛−1 is an 

interpolation polynomial), then ‖𝑓 − 𝐹𝑛−1‖∞ ≥ 𝐸𝑛(𝑥). 

2. 𝐸𝑛(𝑥)  → 0 as 𝑛 → ∞ for any function 𝑓 continuous on [𝑎, 𝑏]. This follows directly 

from the Weierstrass’ theorem. 

Theorem 6. The estimates 𝐸𝑛(𝑓) ≤ ‖𝑓 − 𝑅𝑛−1‖∞ ≤ (1 + 𝛬𝑛)𝐸𝑛(𝑓) are valid.  

Proof. Let 𝐿𝑛−1  be a polynomial of the best uniform approximation of 𝑓 . Since the 

interpolation polynomial is unique, 𝐿𝑛−1 (𝑥) = ∑ 𝐿𝑛−1 (𝑥𝑖)𝑙𝑖(𝑥).
𝑛
𝑖=1  Therefore,  

|𝑓(𝑥) − 𝑅𝑛−1(𝑥)| = |𝑓(𝑥) − 𝐿𝑛−1 (𝑥) + 𝐿𝑛−1 (𝑥) − 𝑅𝑛−1(𝑥)|

≤ |𝑓(𝑥) − 𝐿𝑛−1 (𝑥)| +∑|𝐿𝑛−1 (𝑥𝑖) − 𝑓(𝑥𝑖)|𝑙𝑖(𝑥)

𝑛

𝑖=1

≤ (1 + Λ𝑛(𝑥))‖𝑓 − 𝐿𝑛−1‖∞ ≤ (1 + Λ𝑛)𝐸𝑛(𝑓). 

 

□ 

The lower estimate is valid by the definition of 𝐸𝑛(𝑓). It follows from the upper 

estimate that the interpolation polynomial 𝑅𝑛−1(𝑥) is less accurate than the best uniform 

approximation by a maximum of 1 + Λ𝑛  times in accuracy. 

Let’s pose the second question: how sensitive is the interpolation polynomial to the 

error in setting the function? 

Let the approximate values 𝑓(𝑥𝑖) be known at the interpolation nodes instead of the 

exact values of 𝑓(𝑥𝑖) with an error 𝜖(𝑥𝑖) not exceeding 𝜀: |𝜖(𝑥𝑖)| = |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖)| ≤ 𝜀. 

Thus, instead of 𝑅𝑛−1(𝑥) the perturbed polynomial 𝑅̃𝑛−1(𝑥) will be constructed from the 

values of 𝑓(𝑥𝑖). Of practical interest is the deviation of 𝑅̃𝑛−1 from 𝑓.  

Theorem 7. The estimate is |𝑓(𝑥) − 𝑅̃𝑛−1(𝑥)| ≤ |𝑓(𝑥) − 𝑅𝑛−1(𝑥)| + 𝜀𝛬𝑛.  

Proof. Obviously,  

|𝑅𝑛−1(𝑥) − 𝑅̃𝑛−1(𝑥)| = |∑(𝑓(𝑥𝑖) − 𝑓(𝑥𝑖))

𝑛

𝑖=1

𝑙𝑖(𝑥)| ≤ 𝜀Λ𝑛 .  

Therefore,  
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|𝑓(𝑥) − 𝑅̃𝑛−1(𝑥)| ≤ |𝑓(𝑥) − 𝑅𝑛−1(𝑥)| + |𝑅𝑛−1(𝑥) − 𝑅̃𝑛−1(𝑥)| ≤ |𝑓(𝑥) − 𝑅𝑛−1(𝑥)| + 𝜀Λ𝑛 .   

□ 

It follows from estimate that the larger Λ𝑛 , the more sensitive the interpolation 

procedure to the error in setting the function. 

Important conclusions follow from the estimates obtained [59]: 

1. The smaller the Lebesgue constant Λ𝑛, and the smoother the function, the better 

both in terms of accuracy and the sensitivity of interpolation to the error of setting the 

function; 

2. If the sequence of grids Ω𝑛 = {𝑥𝑖}𝑖=1
𝑛  satisfies the condition Λ𝑛𝐸𝑛(𝑓) → 0 as 𝑛 →

∞, then |𝑓(𝑥) − 𝑅𝑛−1(𝑥)| → 0 as 𝑛 → ∞ uniformly in 𝑥 (in this case one speaks of the 

convergence of the interpolation process); 

3. During calculations, the following picture can be observed: the error |𝑓(𝑥) −

𝑅̃𝑛−1(𝑥)| as 𝑛 increases, it first decreases and then begins to increase. 

The value of Λ𝑛 depends on the choice of nodes Ω𝑛. 

A detailed consideration of issues related to the significance of the Lebesgue constant, 

moduli of smoothness, selection of optimal nodes, weighted polynomial interpolation is 

given in fundamental works [1–4].  

3. New Methods of Approximation of Piecewise-Linear and Generalized Functions  

This section of the review describes new methods for approximating piecewise-linear 

functions, especially, piecewise constant functions, and generalized functions, a 

comparative analysis of the proposed and existing methods for approximating such 

functions by analytical dependences based on Fourier series is carried out. In addition, the 

issues of convergence and error of the proposed methods are studied, numerous examples 

and applications are considered. 

The general idea of using a repeating procedure, which gives a more accurate result 

with each subsequent application, is the basis, for example, of the mathematical theory of 

deep learning. Deep learning is a type of machine learning using multi-layer neural 

networks that learn on their own on a large dataset. Artificial intelligence with deep 

learning itself finds an algorithm for solving the original problem, learns from its 

mistakes, and after each iteration of training gives a more accurate result. 

3.1. Disadvantages of Approximating Piecewise Linear Functions by Fourier Series 

To simplify calculations, when working with piecewise linear and generalized 

functions, in many cases they resort to approximation methods. Replacing piecewise 

linear functions with more regular 𝐶𝑘 functions allows you not to worry about tracking 

and matching the values of process variables at the boundaries of the sections, which 

greatly simplifies the calculations. In some cases, algebraic polynomials are used to 

approximate piecewise linear functions. Another of the most widely used methods for 

approximating piecewise linear functions is the expansion of these functions using Fourier 

series 𝑓 = ∑ 𝑐𝑘𝜑𝑘
∞
𝑘=1 , where {𝜑1, 𝜑2, … , 𝜑𝑛, … }  is orthogonal system in the functional 

Hilbert space 𝐿2[−𝜋, 𝜋] of measurable functions with Lebesgue integrable squares, 𝑓 ∈

𝐿2[−𝜋, 𝜋], 𝑐𝑘 = (𝑓, 𝜑𝑘) ‖𝜑𝑘‖
2⁄ . The trigonometric system of 2π-periodic functions 

{1, sin 𝑛𝑥, cos 𝑛𝑥, 𝑛 ∈ 𝑁} is often taken as the orthogonal system. 

As for the approximation of continuous functions by polynomials or Fourier series, 

we can discuss the uniform convergence of the approximating functions based on the 

Weierstrass theorems. 

However, for discontinuous piecewise linear functions, the Weierstrass theorems do 

not hold. Therefore, when approximating such functions, problems may arise that cause 

negative consequences when solving applied problems. For example, the use of Fourier 

series, along with positive properties, has certain disadvantages. With a relatively small 

number of terms in the Fourier series used for the expansion of piecewise-linear functions, 

the approximating function has a pronounced wavy character even within one rectilinear 
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section of the piecewise-linear function, which leads to a sufficiently large approximation 

error. to approximate continuous functions. Curves 1 and 2 in Figure 5 illustrate this 

drawback. 

 

Figure 5. Approximation errors using Fourier series expansion. 

Moreover, even for a large number of terms in the expansion using the Fourier series, 

there are characteristic jumps of the approximating function in the vicinity of the 

discontinuity points )( 0xO
 of the original function. For such points 

0)()(sup
}/{)( 00

⎯⎯ →⎯−
→

 

AxSxf
nn

xxOx

, where )(xSn  is the partial sum of the Fourier 

series [60]. 

For example, for the function 

)x(sinsign)(0 =xf  (1) 

with rectangular pulses, the point mx /= , where ][],2/)1[(2 Anm +=  is the integer 

part of the number 𝐴 , is the maximum point of the partial sum )( 0fSn
 of the 

trigonometric Fourier series [61], moreover 𝑆𝑛(𝑓0, 𝜋/𝑚) 
 𝑛→∞ 
→       

2

𝜋
∫

sin 𝑡

𝑡
𝑑𝑡 ≈ 1.17898

𝜋

0
. 

That is, the magnitude of the absolute error |𝑓0(𝜋/𝑚) − 𝑙𝑖𝑚
𝑛→∞

𝑆𝑛(𝑓0,  𝜋/𝑚)|  >  0.178, and 

the relative error is more than 17%, regardless of the number of terms in the partial sum 

of the Fourier series. Notice, that 00/ +→=
→n

mx  .  

In Figure 5, curve 3 corresponds to the graph of the approximating function  𝑓𝑛(𝑥) =
∑ 𝑐𝑛𝜑𝑛  
20
𝑛=1  and illustrates the increased approximation error in the vicinity of the 

discontinuity points of the original Function (1). This is the manifestation of the so-called 

Gibbs effect, and with an increase in the number of harmonics, the Gibbs effect does not 

disappear, which leads to extremely negative consequences of using the approximating 

function. Figure 6 shows a graph of the partial sum )( 020 fS  of the trigonometric series 

on the segment [−π,π], illustrating the manifestation of the Gibbs effect. 

 

Figure 6. Manifestation of the Gibbs effect. 
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The most unpleasant thing is that the Gibbs effect is general in nature, it manifests 

itself for any function ],[2 baLf  , that has bounded variation on a segment ],[ ba , with 

an isolated breakpoint ),(0 bax  . For such functions, the following condition is satisfied 

[61] 

,1
sin2

2
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


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
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


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
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

→
dt

t

td
xfmxfSn

n

  

where )0()0( 00 −−+= xfxfd . 

Let us show that the absolute )(x=  and conditional )(x=  approximation 

errors in the vicinity of the discontinuity points can be arbitrarily large. 

Really, 
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For each 𝑑 there exists a function 𝑓 = 𝑓𝑑  satisfying the previous conditions. The 

property Δ(𝑑)  → +∞ has to be understood in this way. The function )(d  is infinitely 

large since 

Mdt
t

td
ddddMdd M 














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


0

1
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2
)(:0)(0 .  

As d  you can take, for example, 1
sin

2/2

0

+















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









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t
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M . 

For the relative error )(/)()( xfxx =  the proof is similar. Moreover, even with a 

fixed value Rd )0( d  for any 0M  you can choose a function ],[)( 2 baLxf  , for 

which Mxfdxdx ++=+ )0(/),0(),0( 000
. As such a function, for example, one can 

take a function 𝑓, or which 0)0(,/),0()0( 000 +++ xfMdxxf . 

Note that even on the set of continuous functions ],[ −С  the Fourier series, as is 

known [31], does not yet have to converge at every point. 

The existence of the Gibbs effect leads to extremely negative consequences of using a 

partial sum of a trigonometric series as an approximating function for solving problems 

of mathematical modeling, for example, when studying periodic movements of technical 

systems, distortions in signal transmission, etc. 

The approximation error is especially striking when using Fourier series for 

generalized functions, for example, δ—function or, in other words, Dirac function. This 

function is widely used to describe the density of a point mass, the density of a point 

charge, quantum theory, concentrated loads, instantaneous impulse processes, shock 

effects, the intensity of a point heat source, diffusion processes in semiconductors, etc. 

Generalized functions were introduced in connection with the problems of physics 

and mathematics that appeared in the twentieth century and required a new 

understanding of the concept of a function. Generalized singular functions are very 

different from regular functions. It is known that the δ—function is not a function in the 

usual sense of this word; rather, it is determined by a functional, and informally by the 

expression 

, 0,
( )

0, 0,

x
x

x


+ =
= 

 
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moreover 

( ) 1.x dx
+

−

=
 

Generalized functions were introduced in mathematics by Sobolev and Schwartz 

[62–65]. Generalized functions have become a key tool in much of PDE theory and form a 

huge part of analysis.  

Let us provide a mathematically more precise definition of a generalized function.  

Definition 11. A generalized function in the sense of Sobolev-Schwartz is any linear continuous 

functional on the space of basic functions [23]. 

Thus: (1) the generalized function 𝑓 is a functional on the set of basic functions 𝐷 

[23], that is, each support of the piecewise continuous function [23] 𝜑 ∈ 𝐷 is associated 

with a (complex) number (𝑓, 𝜑); (2) a generalized function 𝑓 is a linear functional on 𝐷, 

that is, if 𝜑,𝜓 ∈ 𝐷 and 𝜆, 𝜇 are complex numbers, then (𝑓, 𝜆𝜑 + 𝜇𝜓) = 𝜆(𝑓, 𝜑) + 𝜇(𝑓, 𝜓); 
(3) the generalized function 𝑓 is a continuous functional on 𝐷, that is, if 𝜑𝑘 → 𝜑, 𝑘 → ∞ 

in 𝐷, then (𝑓, 𝜑𝑘) → (𝑓, 𝜑), 𝑘 → ∞. 
A very intuitive graph of δ—function is shown in Figure 7. 

 

Figure 7. A very intuitive graph of δ—function. 

For the convenience of using analytical research methods, the delta function is 

decomposed into a Fourier series. 

We introduce a sequence of step functions of the form 

/ 2, [ 1/ ,1/ ],
( )

0, [ 1/ ,1/ ].
n

n x n n
x

x n n


  −
= 

  −

  

The functions of this sequence have graphs corresponding to the graph of the step 

function shown in Figure 8.  

 

Figure 8. Graph of step function. 

It is easy to see that for any n  the area of the figure under the graph of such a step 

function is equal to one. 

For the function, the graph of which is shown in Figure 8, we find the values of the 

coefficients of the Fourier series on the segment [−π,π]: 
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by virtue of the theorem on the mean value of a definite integral. 

Equalities with 𝛿(𝑥)  have to be meant in the sense of limits of sequences 

distributions. 

The equalities with δ(x) have to be meant in the sense of limits of sequences 

distributions. In the theory of generalized functions, the limit of a sequence of 

distributions is the distribution that sequence approaches. The distance, suitably 

quantified, to the limiting distribution can be made arbitrarily small by selecting a 

distribution sufficiently far along the sequence. This notion generalizes a limit of a 

sequence of functions; a limit as a distribution may exist when a limit of functions does 

not. 

Given a sequence of distributions 𝑓𝑛, its limit 𝑓 is the distribution given by 𝑓(𝜑) =
lim
𝑛→∞

𝑓𝑛(𝜑) for each test function 𝜑, provided that distribution exists. 

Since the delta function ( ) lim ( )n
n

x x 
→

=  and noticing that 0
n

x

→
→ , we find 

1
kb


= . 

Consequently, the expansion of the delta function in a Fourier series on the interval 

[ , ] −  has the form 

1

1 1
( ) cos( ).

2 k

x kx
  =



= +    

For a finite series, we have an approximate relation  

1

1 1
( ) cos( ).

2 k

n

x kx
  =

 +    

This approximate equality is only informal because the point value 𝛿(𝑥) has no 

meaning in Sobolev-Schwartz theory. Generalized function can be considered as set-

theoretical maps (in a non-Archimedean ring of scalars) [24]. 

The graph of the approximation of the delta function by the Fourier series is shown 

in Figure 9. 

 

Figure 9. Partial sum plot of Fourier series. 
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Comparison of the graphs (Figures 7 and 9) shows that even with a significant 

number of harmonics (in our case n = 1000), the approximation error is very large. The 

minimum value of the constructed approximation is negative and is −69.182. Moreover, 

with an infinite increase in the number of terms in the approximating Fourier series, the 

minimum value of its sum tends to −∞ (Figure 10), which fully corresponds to the assertion 

proved in this section about the possible infinitely large error in approximation using the 

Fourier series. 

 

Figure 10. A very intuitive graph of approximation of the delta function by Fourier series. 

The existence of the Gibbs effect in the approximation of functions by trigonometric 

expressions also makes the proof of some important theorems critical. In particular, in the 

theory of signal transmission, the classical sampling Nyquist-Shannon-Kotelnikov 

theorem is widely used. When proving the theorem [66] to approximate functions, it uses 

the so-called integral sine determined by the expression. 

On the basis of the integral sine Kotelnikov V.A. to prove the theorem [66] builds a 

function ))ωSi(T( ω))ωSi(T( ω 11 −−+ , where   is argument, 
1ωT,  are some 

parameters. At the same time, he claims that with increasing T  this function tends to the 

limits shown in Figure 11a, that is, we quote literally, is equal to zero at 
1ωω   and equal 

to π  at 1ωω  .  

 

Figure 11. Limit function graphs in the classical sampling Nyquist-Shannon-Kotelnikov theorem. 

In fact, this is not the case. The graph of the limiting function will have the form 

shown in Figure 11b. That is, for any, even arbitrarily large but finite values of the 

parameter T , there will always be those 
1ωω  , for which the values of the function 

constructed by Kotelnikov will be different from π , and there will always be those 

1ωω  , for which its values will be different from zero. Moreover, it is important to note 

that the indicated difference with increasing T  does not tend to zero, but tends to some 

number other than zero, approximately equal to 0.281, that is, constituting a sufficiently 

large value. Therefore, the classical sampling Nyquist-Shannon-Kotelnikov theorem 

requires a careful revision. 

In the practice of creating images, the noted errors lead to a speckle effect, which 

manifests itself in the spotting of such images, their increased graininess (Figure 12). The 

speckle effect is the result of the interference of many waves of the same frequency, having 

different phases and amplitudes, which add up to the resulting wave, the amplitude and, 
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therefore, the intensity of which changes randomly. It seems to the viewer that the image 

is covered with frequent, small spots, which, of course, degrades the quality of these 

images. Such disadvantages in signal transmission led to signal distortions, which can be 

significant. 

  

Figure 12. Example of speckle effect (https://bigenc.ru/physics/text/4246597 accessed on 17 July 

2022). 

The described shortcomings clearly indicate the need to develop new, more efficient 

methods for approximating piecewise linear functions. 

3.2. Description of New Methods of Approximation of Piecewise-Linear Functions and  

Their Convergence 

To eliminate the noted shortcomings, S. Aliukov [5,6,11,14,16] proposed new 

methods for approximating piecewise-linear functions, based, like the Fourier series, on 

the use of trigonometric expressions, but in the form of recursive functions. 

To explain these methods, consider, for example, step Function (1) in more detail. 

This function is often used for an example of the application of Fourier series and therefore 

it is convenient to take this function for a comparative analysis of the traditional Fourier 

series expansion and the proposed method. 

The expansion of Function (1) in a Fourier series has all the above-described 

disadvantages. To eliminate them, it is proposed to approximate the original step function 

by a sequence of recursive periodic functions 

( )  ],[1;sin)(1,)(1)2/(sin)()(  −−=−= Сnxxfxnfxnf xnf N  (2) 

The graphs of the original function (thickened line) and its five successive 

approximations in this case have the form (Figure 13). 

 

Figure 13. Graphs of the original function and five of its successive approximations. 

As you can see, even with relatively small values when using the iterative procedure 

(2), the graph of the approximating function approximates the original Function (1) quite 

well. In this case, the approximating functions obtained using the proposed method are 
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free from the drawbacks of expansion in Fourier series. The Gibbs effect is completely 

absent. 

Let us note some features of the proposed approximating iteration procedure. 

Note that the functions )(xfn
 and )(0 xf  are odd and periodic with a period 2 . 

The functions )2/( +xfn
 and )2/(0 +xf  are periodic even. Therefore, it is sufficient to 

consider the sequence of approximating functions (2) on an interval  2/,0  . 

Theorem 8. The sequence of functions )(xnf  converges to the original function )(0 xf , and the 

convergence is pointwise, but not uniform. 

Proof. At points 0=x  and 2/π=x  we have N=− n,xfxfn 0)()( 0 . Therefore, at 

these points )()( 0 xfxf
nn ⎯⎯ →⎯

→
.  

Since )2/,0(,)/2(sin  xxx , then the condition 

( ) 0)(1)(1)(1)2/(sin)( −−= xfxnfxnfxnf   is satisfied for any )2/0(   ,x . 

Then, the sequence )2/,0(),( xxnf  is positive, increasing, and bounded, and 

therefore has a finite limit, which we denote by R=
→

Axnf
n

)(lim . We obtain

))2/sin(())(lim)2/sin(())()2/sin((lim 11 AxfxfA -n === −
→→

n
nn

, whence we find that 

0=А  or 1=А . Since the sequence is positive and increasing, then )(1 0 xfА == . Then, 

on the considered interval )()( 0 xfxf
nn ⎯⎯ →⎯

→
. Taking into account the previously 

made conclusion about the convergence of the sequence at the points 0=x  and 2/=x

, we conclude that ]2/,0[),()( 0 ⎯⎯ →⎯
→

xxfxf
nn

. This convergence is only pointwise 

and not uniform since the function )(0 xf  is not continuous on the segment  2/,0  . □ 

Theorem 9. In the space of measurable functions ]2/,0[1 L  and in the Hilbert space ]2/,0[2 L  

the sequence of approximating functions )(xnf  converges in the norm to the original function 

)(0 xf . 

Proof. We introduce a sequence of minorants with respect to a sequence )(xfn
 of 

functions 

  ]2/,0[);arctg()/2()()( = Cnnxηxη nn N .  

It can be shown that ]2/0[)()( π,N  x,n ,xηxf nn
. Note that the measure of 

the set of discontinuity points of the function )(0 xf  is equal to zero. Then, taking into 

account the non-negative sign and boundedness of the functions )(xfn
 and )(xηn

 and 

on the segment under consideration, in space ]2/,0[1 L  we obtain 

( )4/)(1ln
1

2
arctg

2
))(1())(1()()( 2

2/

0

2/

0

0 n
n

n
dxxηdxxfxfxf nnn +


+


−


=−−=− 



.  

Since ( ) 04/)(1ln
1

2
arctg

2
lim 2 =








+


+


−



→
n

n

n

n

, then 0)()(0 ⎯⎯ →⎯−
→nn xfxf .  

Similarly, one can prove that the sequence )(xfn
 converges in the norm to a function 

)(0 xf  in the space ]2/,0[2 L . □ 

Thus, the sequence of approximating functions )(xfn
 in spaces ],[1 −L  and 

],[2 −L  is fundamental. In space ],[ −C  the sequence )(xfn
 is not fundamental. 
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The function )(1 xf  will be called initial (or angular). Instead of sine, we can use 

another (not necessarily periodic) function as an initial function. Note that when using the 

iterative procedure (2) and under the condition 2)(1 xf  we obtain 

))(1sign()(lim xfxnf
n

=
→

. In this case, any step function can be approximated. Indeed, for 

the step function 








=

),(,0

),,(,
)(

21

21

xxx

xxxh
xf  (3) 

take the initial function in the form 1))(1exp()( 2
1 −+−= baxxf . From the condition

0)()( 2111 == xfxf  we find )/()();/(2 122121 xxxxbxxa −+=−= . For these values of the 

coefficients a  and b  the sequence  

 Nnnn ==+= − 1),()2/()(,sin)2/()()),(sin1()2/()()( 111 -nxfxxxhxfxf nn
  

converges to the step function )(xf . Then, any step function with values 
ih  on the 

intervals ),( 21 ii xx  can be approximated by the sum of similar sequences  
=

k

i
i

1

)(xfn
. 

The proved Theorem 2 is of a general nature and is valid for an arbitrary step 

function. Therefore, for example, an arbitrary periodic step function can be represented as 

a linear combination 𝑓(𝑥) = ∑ ℎ𝑖 ∙ 𝑓0𝑖(𝑥), ℎ𝑖 ∈ 𝑅,
𝑘
𝑖=1  shifted in phase and along the 

ordinate axis functions 𝑓0𝑖(𝑥) = sign(sin(𝑙𝑖𝑥 − 𝑥𝑖)), 𝑙𝑖 , 𝑥𝑖 ∈ 𝑅. According to the proved 

theorem, in the spaces 𝐿1[−𝜋, 𝜋] and 𝐿2[−𝜋, 𝜋]  we have the convergence ‖𝑓0𝑖(𝑥) −

𝑓𝑛𝑖(𝑥)‖
𝑛→∞
→   0,∀𝑖, therefore the function 𝑓𝑛(𝑥) = ∑ ℎ𝑖 ∙ 𝑓𝑛𝑖(𝑥)

𝑘
𝑖=1  converges in the norm to 

the function 𝑓(𝑥), since 

‖𝑓(𝑥) − 𝑓𝑛(𝑥)‖ = ‖∑ℎ𝑖 ∙ 𝑓0𝑖(𝑥) − ∑ℎ𝑖 ∙ 𝑓𝑛𝑖(𝑥)

𝑘

𝑖=1

𝑘

𝑖=1

‖  ≤ ∑|ℎ𝑖|

𝑘

𝑖=1

∙ ‖𝑓0𝑖(𝑥) − 𝑓𝑛𝑖(𝑥)‖
𝑛→∞
→   0.   

3.3. Approximation Error 

To estimate the error of approximation (2), we use the relation  

𝜑𝑛(𝑥) ≤ 𝑓𝑛(𝑥) ≤ 𝜓𝑛(𝑥)  

(Figure 14), where  

𝜓𝑛(𝑥) = (𝜋/2)
𝑛−1 ∙ 𝑥, 𝑥 ∈ 𝜋/2, 𝑛 ∈ 𝑁.   

Functions 𝜑𝑛(𝑥)  and 𝜓𝑛(𝑥)  are constructed from the condition of equality of 

derivatives at zero 𝜑𝑛
′ (𝑥) = 𝜓𝑛

′ (𝑥) = 𝑓𝑛
′(𝑥) , which allows one to obtain a narrow 

interval for estimating the approximation error. 

In space 𝐿1[0, 𝜋/2]  the estimates for the absolute and relative errors are, 

respectively 

(2/𝜋)𝑛−1

2
≤ ‖𝑓𝑛(𝑥) − 𝑓0(𝑥)‖𝐿1[0,

𝜋
2
]
≤ (
2

𝜋
)
𝑛−1

∙ (1 − exp (− (
𝜋

2
)
𝑛

)) ;  

(2/𝜋)𝑛

2
≤
(‖𝑓𝑛(𝑥) − 𝑓0(𝑥)‖𝐿1[0,

𝜋
2
]
)

(
𝜋
2)

≤ (
2

𝜋
)
𝑛

∙ (1 − exp (−(
𝜋

2
)
𝑛

)).  
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Figure 14. Graphs of limiting functions. 

For space 𝐿2[0, 𝜋/2], these estimates take, respectively, the form 

((2/𝜋)𝑛−1/3)1/2 ≤ ‖𝑓𝑛(𝑥) − 𝑓0(𝑥)‖𝐿2[0,
𝜋
2
]
≤

(
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2

𝜋
)
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∙

(1 − exp (−2 (
𝜋
2
)
𝑛
))

2

)

 
 

1
2

;  

((2/𝜋)𝑛/3)1/2 ≤

(‖𝑓𝑛(𝑥) − 𝑓0(𝑥)‖𝐿2[0,
𝜋
2
]
)

(
𝜋
2
)

1
2

≤

(

 
 
(
2

𝜋
)
𝑛

∙

(1 − exp (−2 (
𝜋
2
)
𝑛
))

2

)

 
 

1
2

.  

The graphs of the upper and lower estimates of the relative error 𝛿 depending on 

𝑛 ∈ 𝑁 for the space 𝐿1[0, 𝜋/2] (curves 1) and space 𝐿2[0, 𝜋/2] (curves 2) are shown in 

Figure 15. 

 

Figure 15. Graphs of estimates of the relative error. 

Considering the approximation of the step function )(xf  (3), we assumed that its 

position and height are precisely known. In real problems, the parameters are usually set 

approximately. Let, for example, the initial parameters are specified with absolute errors 

),0[ˆ),,0[ˆ),,0[ˆ 2221111 hhh-hxxxxxxxx 2
 ==−=− ,  

where hhxxxx ===  sup,sup,sup 2211 , hxx ˆ,ˆ,ˆ 21  are the approximate 

values of the parameters. Consider the step function (3) on the segment ],[ dc , for which 
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],[],[ 2211 dcxxxx +−  . In this case, in spaces ],[],,[],,[ 21 dcMdcLdcL , where 

],[ dcM  is the set of functions bounded on an interval ],[ dc  with a metric 

)()(sup))(),(( )2()1(

],[

)2()1( xfxfxfxfρ
x

−=
 dc

, for the absolute error of approximation in 

the norm, we obtain, respectively, the estimates 

hxxxxhhxfxff
dcn

hxx



→

−+++=− )()()()()(limsupsupsup 1221],[1
21

Ln

; 

2
1221

2

],[
)()()()()(limsupsupsup

2
21

hxxxxhhxfxff
dcn

hxx



→

−+++=−
Ln

; 

hhxfxff
dcMn

hxx



→

+=−
],[

)()(limsupsupsup

21
n

. 

 

As we can see from the estimates obtained, the approximation error does not 

accumulate, which is a positive side of the proposed method. 

Since in practice, as a rule, we only know the approximate values of the parameters 

and measurement errors, it is better to express the upper estimates for the absolute 

approximation error in the form 

hxxxxxxhhf
L

 ++−+++ )ˆˆ()()2ˆ( 211221],[1 dc
; 

2
211221

2

],[
)ˆˆ()()2ˆ(

2

hxxxxxxhhf  ++−+++
dcL

; 

hhf + 2ˆ
],[ dcM

.  

 

Let us return to function (1) and its approximation using sequence (2) in the space of 

bounded functions ],0[ М .  

Let ]1,0[)()(0 −= xfxf n
 be the absolute error of approximation. 

Let’s write down a sequence 









−=
=

12maxmax
)2()1(:],0[2,1

xxrr
xxf

nn
n nfxx

 of 

maximum metrics. From the equation −= 1)(xnf  we obtain that this sequence can be 

represented as  

 Nnnn −==−= − 1,1,arcsin)/2(,arcsin2 11 -nrr nn .  

It can be proved similarly to the proof of Theorem 1 that the sequence 





=


=⎯⎯ →⎯ 

→ ,0,0

],1,0(,
)()( rr n n

 where the convergence on an interval [0,1] is pointwise 

but not uniform. It is important to note that the sequence }{ nr  also converges to a step 

function. 

The graphs of the first few functions in the sequence are shown in Figure 16. 
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Figure 16. The lengths of the gaps with an approximation error not exceeding ∆. 

As we can see in Figure 16, the length of the gap at which the approximation error 

does not exceed  , sharply increases with an increase n  in the region of sufficiently 

small error values  . This fact speaks of the fast convergence of the proposed method 

and is its positive feature. 

For a quantitative assessment of the change in the length of this interval, we derive 

an approximate dependence for the function 1),( −−= nrnrnr . For this purpose, we 

use the ratio )1(21 nxnxnrnr −−=−− , where ( )1)/2(arcsin −= nxnx  , 

)1arcsin(1 −=x . Then, ))1)/2arcsin((1(21 −−−=−− nxnxnrnr . Expanding 

)1)/2arcsin(( − nx  in a Maclaurin series and taking into account the sufficiently small 

values 
1−nx , we obtain approximately 

1)2()/2(1 −−−− nxnrnr . Then, 

( ) )1arcsin()2(
1

/21 −−
−

−−
n

nrnr . 

Let us indicate some properties of the proposed approximation (2). 

Property 1. The maximum value of the difference in the lengths of the intervals 1−− nrnr  does 

not depend on n  and is found by the ratio: 

N−−−=−−


1,2/41arcsin242)1(
]1,0[

max -nnrnr .  

Proof. Based on the previously obtained relation

N−−−=−− 1)),1)/2arcsin((1(21 -nnxnxnrnr , we find the derivative  

)2)1(1(
1

1

)42(/22
14212

)1(
−−

=

−







−−−−−=



−− -n

i

2
ixnxn

d

nrnrd

. 

 

The points 2/121 ===−=− xnxnx   are the minimum points at which 

01 =−− nrnr . In case 1=  we also have 01 =−− nrnr . The points 

1)4/2(1 −=− nx  are maximum points and are independent of n . Then, we obtain 

that 

2/41arcsin242)1(
]1,0[

max −−−=−−


nrnr . □  

For reference, we point out that 661,0)1(
]1,0[

max −−


nrnr . 
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Property 2. The maximum value of the difference between the values of the functions 

x)nfx)nf (1( −−  does not depend on n  and is found by the ratio: 

N−−−=−−


1,/))/2arccos(242())(1)((
],0[

max nxnfxnf
x

.  

The proof is similar to the proof of property 1. 

Moreover, for reference, we point out that 211,0))(1)((
],0[

max −−


xnfxnf
x

. 

Property 2 shows that the sequence of approximating functions )(xfn
 (2) does not 

converge in the Cauchy sense, that is, it is not fundamental, since 
  nmnn ,0 N , that −


)()(max

],0[
xfxf mn

πx

. As   you can take, for 

example, the number 0,1, setting 2,1 +=+=  nnnm . 

The obtained relations can be used to estimate the approximation error in solving 

applied problems. 

3.4. Generalized Functions and Their Approximation by a Sequence of Recursive Functions 

Generalized functions [67] became widespread in the 20th century, when new 

problems in physics and mathematics led to an urgent need to expand the definition of a 

function.  

Let 𝑌  be a linear space whose elements are functions in the sense of the usual 

definition. 

If there is a rule according to which a certain number is assigned to each function 𝑦 ∈

𝑌 , then it is said that on the set 𝑌 there is a given functional. We denote the functional by 

𝐼: 𝑌 → 𝑅, or more simply 𝐼(𝑦). 

A functional is called linear if the condition I(αy1 + βy2) = αI(y1) + βI(y2), ∀y1, y2 ∈

Y, ∀α, βϵR holds. 

A functional is called continuous if the condition 𝑦𝑛 ⇒ 𝑦
∗ implies the fulfillment of 

the condition 𝐼(𝑦𝑛) → 𝐼(𝑦
∗), ∀𝑦𝑛 , 𝑦

∗ ∈ 𝑌. 

We will consider functions on the set R. 

A function 𝜑(𝑥) is said to be compactly supported if it equals zero outside a finite 

interval [𝑎, 𝑏] , and the boundaries of the interval depend on 𝜑(𝑥) . Any continuous 

compactly supported function is called basic. The set of basic functions will be denoted 

by 𝐶0. 

Let the function 𝑓(𝑥) be ordinary in the sense of the definition, and it is continuous 

except, perhaps, a finite number of discontinuity points, and bounded on any finite 

interval. 

We define the functional by the integral 𝐼(𝜑) = ∫ 𝑓(𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞
, which for any basic 

function 𝜑(𝑥) will be finite. A functional of this kind is called a regular functional. 

Definition 12. A linear functional 𝜉: 𝐶𝑐
∞(ℝ) → ℝ is continuous, if for every convergent sequence 

{𝑓𝑛}𝑛=1
∞  of functions 𝑓𝑛 ∈ 𝐶𝑐

∞(ℝ) we have 𝑙𝑖𝑚
𝑛→∞

〈𝜉, 𝑓𝑛〉 = 〈𝜉, 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛〉. We use the notation 〈𝜉, 𝑓〉 

instead of 𝜉(𝑓). 

Definition 13. A generalized function is any linear continuous functional 𝐼(𝜑), defined on the 

set 𝐶0, having the properties 

1. 𝐼(α𝜑1+ β𝜑2)= 𝛼𝐼(𝜑1) + 𝛽𝐼(𝜑2), ∀𝜑1, 𝜑2 ∈ 𝐶0, ∀𝛼, 𝛽𝜖𝑅; 

2. 𝐼(𝜑𝑛) → 𝐼(𝜑), if 𝜑𝑛 ⇒  𝜑 in 𝐶0. 

Not every generic function is regular. A generic function that cannot be represented 

by the integral 𝐼(𝜑) = ∫ 𝑓(𝑥)𝜑(𝑥)𝑑𝑥
+∞

−∞
, is called singular. An example of a singular 
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generalized function is the function 𝐼(𝜑) = 𝜑(0). This function is called the δ-function or 

the Dirac function. 

Using the proposed methods, one can also approximate singular generalized 

functions, for example, a δ-function. 

The meaning of singular generalized functions can be understood based on their 

approximations, perceiving the generalized function as the limit of some approximating 

sequence of ordinary functions. For example, as noted, the delta function can be viewed 

as the limit of a sequence of step functions (Figure 8). However, the use of a sequence of 

step functions does not allow adequate representation of the derivatives of the delta 

function, which, in turn, are also generalized functions. The problem is that step functions 

have discontinuity points at which they are not mathematically differentiable. Therefore, 

to represent the derivatives of a delta function, it is necessary to use an approximating 

sequence of analytic functions with derivatives of any order. 

The expression used for approximation in this case can be of the form [11] 

𝑓(𝑥) = cos (𝐴 (𝐴(…𝐴(𝑥)))), where 𝐴(𝑥) =
𝜋

2
sin(𝑥).  

In particular, Figure 17 shows the graph of the function  

𝑓(𝑥) = 310 cos(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝑥))))))))))))))))))))).  

Comparing the graphs in Figures 7, 9 and 17, we note that the proposed 

approximation methods give a much more accurate approximation of the δ-function than 

the Fourier series. Moreover, the accuracy of the approximation can be increased to an 

arbitrarily large degree by increasing the number of nested functions. The height of the 

approximation peak (amplitude) can be determined by the integral condition in the 

definition of the δ-function. 

 

Figure 17. Graph of approximation δ—functions. 

To determine the height of the approximation peak, we use the fact that the δ-

function is the derivative of the Heaviside function, or the unit jump function, which is 

defined as 

𝐻(𝑥) = {
1, ∀𝑥 > 0;
0, ∀𝑥 < 0.

  

The Heaviside function can be approximated by a sequence of functions of the form 

𝐻𝑛(𝑥) = 0,5(1 + 𝑓𝑛(𝑥)), where the sequence of functions 𝑓𝑛(𝑥) is defined by relation (2) 

and is considered on the interval [−𝜋 2, 𝜋 2⁄⁄ ]. 

For example, Figure 18 shows graphs of three successive approximations 
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9( ) 0,5(1 sin( ( ( ( ( ( ( ( ( ))))))))))H x A A A A A A A A x= + , 

10( ) 0,5(1 sin( ( ( ( ( ( ( ( ( ( ))))))))))H x A A A A A A A A A x= + , 

11( ) 0,5(1 sin( ( ( ( ( ( ( ( ( ( ( )))))))))))H x A A A A A A A A A A x= + , 

 

where 
( ) sin

2
A x x


=

. 

The thickness of the graph in Figure 18 increases as the number of the approximating 

dependence increases. 

 

Figure 18. Graphs of approximations of the Heaviside function. 

Finding the first derivatives of the approximations of the Heaviside function, we 

obtain successive approximations 9( )dH x

dx

, 10( )dH x

dx

 and 11( )dH x

dx

 for the delta function. 

Their graphs are shown in Figure 19. 

 

Figure 19. Graphs of approximations δ—functions. 

With a sufficiently large number of nested functions, we obtain an approximating 

function 18( )dH x

dx
, the graph of which was obtained using the MathCAD computer 

program and is shown in Figure 17. 

Differentiating the approximating functions of the considered sequence

( ) 0,5(1 ( ))n nH x f x= + , we obtain  
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1 1

1

( )
cos ( ) cos

2 2

n n
n

kn
k

dH x
f x x

dx

 − −

=

 
=  

 
 .  

Substituting into the resulting expression for the derivatives 0x = , taking into 

account the parity of the  - function, we find the value for the peak height 
nА  of the 

approximating functions ( )nH x  

1

2

n

n n
A

 −

=   

3.5. Approximation of Derivatives of Generalized Functions: Comparison of Approximation 

Methods 

Since we approximated the generalized functions with analytical functions, we can 

differentiate these approximating functions and find them to obtain approximations of 

the derivatives of the generalized functions with any degree of accuracy. For example, 

similarly to how it was conducted in the previous section, we can build graphs of 

approximations of the derivatives of the δ-function. Figure 20 shows graphs of successive 

approximations of the first, second and third derivatives of the δ-function. 
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Figure 20. Graphs of approximations of the derivatives of the δ-function. 

Derivatives of higher orders can be found in the same way. The plotted graphs give 

a good idea of the behavior of the derivatives of the δ-function. By mentally increasing the 

number of the approximating function [11], according to the graphs (Figure 20), it is 

possible to continue the traced tendencies of changes in the approximations and to present 

the limiting positions of the sequences of functions approximating the derivatives of the 

δ-function. This will help to improve the understanding of generalized functions that are 

derivatives of the δ-function, to use them not just as an abstract mathematical apparatus, 

but to consciously understand their structure, even if they are written in limiting form. 

This approach can also be used to better understand other generic functions and their 

behavior.  

The δ-function can also be approximated by other continuously differentiable 

functions, for example, such 

2 2
( , )

( 1)
x

x


 

 
=

+
, →, 

2 2( , ) exp( )x x


  


= − , →, 

sin ( )
( , )

x
x

x

 
 

 
=  , →, 

 

for which lim ( , ) 0 ( 0)x x


 
→

=   and 

-

lim ( , ) 1x dx


 
+

→


= . 

The disadvantage of approximating the δ-function using the third of these functions 

is a big deviation from the δ-function since this function has not only positive, but also 

negative values. The graphs of such a function correspond to the graph shown in Figure 

10. Moreover, the sequence of negative values is not limited from below, that is, the error 

can be arbitrarily large. 

As for the approximation using the first two functions, they allow for approximating 

the periodic delta function only as a sum ( ) ( 2 )x x k  
+

−





= − , which can be 

inconvenient for practical use, while the approximating functions according to the 

proposed method are periodic in nature and allow approximating the periodic delta 
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function without any additional constructions. By a periodic delta function, we mean a 

generalized function whose argument values, in which the function is not equal to zero, 

repeat periodically.  

An example is the graph of the function 

𝑓(𝑥) =
𝜋13

214
cos(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝐴(𝑥))))))))))))))),  

where 𝐴(𝑥) =
𝜋

2
sin(𝑥), is shown in Figure 21. 

 

Figure 21. Graph of the function that approximates a periodic Δ-function. 

The constructed function 𝑓(𝑥) can be used to approximate the distribution function 

of a discrete random variable using the relation 𝐹(𝑥) = 𝑃 ∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑡0
, where 𝑃  is a 

parameter determined from the properties of the distribution function. An example of a 

distribution function constructed in this way is shown in Figure 22 [5,6,14]. 

 

Figure 22. An example of approximation of the distribution function. 

These techniques can be used in the context of mathematical models represented by 

ODEs or PDEs. For example, in the case of systems with a variable structure, mathematical 

models are often presented in the form of several systems of differential equations in 

sections. In this case, problems arise in constructing a solution to equations during a cycle, 

periodic solutions, the need to track the transitions of the system from section to section 

and coordinate solutions at the boundaries of sections. Similar problems arise when 

solving differential equations with piecewise linear and impulse characteristics. The use 

of the developed approximation methods makes it possible to overcome these problems. 

In particular, the authors applied the developed methods in studies, the results of which 

are published in the following articles [6–9,13,68–70] and others. 

4. Practical Application and Examples of Using the Developed Approximation Methods 

This section of the review discusses various possibilities of using the developed 

methods for approximating piecewise linear and generalized functions. The examples 

given are characterized by specific content, a more complete reflection of physical reality. 

In reality, even fast-flowing processes occur, albeit in a short, but not zero time. For 

example, in reality there cannot be an instantaneous change in the speed of a material 
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object with a non-zero mass, since such an instantaneous change would require an infinite 

amount of energy. 

4.1. Application of New Methods of Approximation in Problems of Structural Mechanics 

The proposed approximation methods, similarly to the Fourier series, are universal. 

They can be applied in a wide variety of fields of science and technology. One of the many 

possible examples of the use of these methods in practice is their application in problems 

of resistance of materials in the broad sense of this term and in problems of structural 

mechanics in particular. 

When calculating building structures such as trusses, beams, etc. it is necessary to 

take into account the action of distributed and concentrated loads [71]. Loads, as a rule, 

have piecewise linear characteristics and Fourier series are widely used for their 

approximation. 

Consider, for example, a beam on which a uniformly distributed load with an 

intensity p acts on a section of length 2c (Figure 23). Other parameters are directly given 

in Figure 23. 

 

Figure 23. Example of a uniformly distributed load. 

By transforming the argument, without losing the generality of reasoning, we can 

always consider the load function 𝑓 = 𝑓(𝑥) only on the interval [−𝜋, 𝜋]. In this case, the 

expansion of the load in a Fourier series in our case has the form 

𝑓(𝑥) =
𝑝𝑐

𝜋
+
2𝑝

𝜋
∑
1

𝑘
sin(𝑘𝑐) ∙ cos(𝑘(𝑥 − 𝑑)).

∞

𝑘=1

  

Figure 24 shows some other types of loads and their representations in the form of 

Fourier series. 

(a) 

 

𝑓(𝑥) =
2𝑝𝑐

𝜋
+
4𝑝

𝜋
∑
1

𝑘
sin(𝑘𝑐) ∙ cos(𝑘𝑑) cos(𝑘𝑥) .

∞

𝑘=1

 

(b) 

 

𝑓(𝑥) = −
2𝑝

𝑐
∑

1

𝑘
sin(𝑘𝑐) ∙ cos(𝑘𝑥).∞

𝑘=1   
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(c) 
 

𝑓(𝑥) =
𝑃

2𝜋
+
𝑃

𝜋
∑ cos(𝑘(𝑥 − 𝑑)).∞
𝑘=1   

(d)  

𝑓(𝑥) =
𝑃

𝜋
+
2𝑃

𝜋
∑cos(𝑘𝑑) ∙ cos(𝑘𝑥) .

∞

𝑘=1

 

Figure 24. Variants of loads and their approximation by Fourier series. 

Similarly, if necessary, you can write down the corresponding Fourier series for other 

symmetric and asymmetric types of loading of building structures. 

The decomposition of loads (acting forces) in Fourier series will have all the 

disadvantages noted in Section 2.1. Therefore, to eliminate these disadvantages, one can 

use the proposed approximation methods.  

For the load shown in Figure 24a, for 𝑐 = 𝜋 6⁄ , 𝑑 = 𝜋 2, 𝑝 = 4 ⁄  the Fourier series 

expansion will have the form 

𝑓(𝑥) =
4

3
+
𝜋

16
∑sin (𝑘

𝜋

6
) cos (𝑘

𝜋

6
) cos(𝑘𝑥)

∞

𝑘=1

.  

Approximating function by the proposed method is found by the expression 

𝑓(𝑥) = 2 − 2 sin (
𝜋

2
sin (

𝜋

2
sin(… sin(0,5 + cos 2𝑥)))).  

Figure 25 shows the graphs of the original function and its approximating functions. 

Here, the graph of the original function is highlighted with a thickened stepped line. The 

graph of the approximating function, constructed using the Fourier series for k = 1, 2, ..., 

17, is shown by a thin line. The dotted line corresponds to the graph of the approximating 

function constructed by the proposed method for four nestings. 

 

Figure 25. Graphs of he initial load and approximating functions. 

From Figure 25 we see that, despite the fact that for the expansion in the Fourier series 

we used seventeen harmonic terms (k = 17), and in the approximation by the proposed 

method we used only four compositions, the last approximating function approximates 

the original function much better. Moreover, one could graphically show that a further, 

arbitrarily large increase in the number of harmonic terms in the Fourier series does not 

save the situation. The reason for this lies in the aforementioned Gibbs effect. 
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The advantages of approximating the load using the proposed methods are clearly 

manifested for concentrated actions on a beam. For example, for the case shown in Figure 

26 under the action of two equal in magnitude, but oppositely directed forces applied at 

symmetrically located points, the expansion in a Fourier series has the form 

𝑓(𝑥) =
2𝑃

𝜋
∑ sin(𝑘𝑑) ∙ sin(𝑘𝑥)∞
𝑘=1 .  

 

Figure 26. Scheme of action of concentrated forces on a beam. 

For 𝑑 = 𝜋 2,⁄  𝑃 = 10 we approximate this loading scheme by the finite sum of the 

Fourier series 𝑓(𝑥) =
2𝑃

𝜋
∑ sin(𝑘𝑑) ∙ sin(𝑘𝑥)20
𝑘=1  and function 

𝑦(𝑥) = cos (
𝜋

2
sin (

𝜋

2
sin (

𝜋

2
sin (

𝜋

2
sin (

𝜋

2
sin (

𝜋

2
cos(𝑥))))))) ∙ 40𝑥.  

Figure 27 shows the graphs of the obtained approximating functions. The thin line 

corresponds to the approximation using the Fourier series, the thickened line corresponds 

to the approximation by the proposed method. As you can see, the results of the 

approximation clearly speak in favor of the proposed method. We have proposed an 

approach that allows us to model the load using an analytical function that allows finding 

derivatives of any order. This function is a single analytical expression for the entire 

domain of definition and is not composite across sections. This approach can describe a 

given design load circuit with any degree of accuracy. 

 

Figure 27. Graphs of approximating functions. 

4.2. Application of New Approximation Methods for Modeling Diffusion Processes in 

Semiconductor Materials 

Based on the developed methods for approximating piecewise linear and generalized 

functions, modified models of diffusion processes in semiconductor materials were 

created [70,72–76]. These models make it possible to provide a more accurate description 

of diffusion processes in comparison with the known models. 

In the modified models, the possibilities of using a new method of continuous 

approximation of step functions based on the use of trigonometric expressions in the form 

of recursive functions are considered. Calculations are performed for the classical model 
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of diffusion of minority charge carriers generated by a wide electron beam in a two-layer 

semiconductor material. 

To quantitatively describe the phenomenon of diffusion of nonequilibrium minority 

charge carriers generated in a semiconductor by an external energy action, the following 

two approaches are usually used: 

(1) a model of collective motion of minority charge carriers [77,78], according to which 

diffusion of nonequilibrium minority charge carriers from any microvolume of a 

semiconductor is influenced by other electrons or holes from other microregions of the 

material. Mathematically, this is expressed in the fact that the differential diffusion 

equation as a function of generation of minority charge carriers (usually written in the 

right-hand side of the differential equation) includes a function that describes the 

dependence on the coordinates of the density of minority charge carriers generated per 

unit time in the target. This model is successfully used to quantitatively describe the 

diffusion processes of minority charge carriers generated by a wide electron beam in 

homogeneous semiconductors, for which the right-hand side of the differential equation 

is a continuous function of coordinates. The use of a wide electron beam makes it possible 

to neglect the edge effects and to solve the one-dimensional problem of heat and mass 

transfer;  

(2) the model of independent sources, according to which the diffusion of 

nonequilibrium minority charge carriers from any microvolume of the semiconductor is 

not influenced by other electrons or holes from other microregions of the material. 

Mathematically, this is expressed in the fact that first the diffusion equation is solved for 

each of the point sources of minority charge carriers, after which, by integrating over the 

volume occupied by the sources of minority charge carriers, their concentration in the 

semiconductor is found as a result of their diffusion. The idea of this approach is borrowed 

from classical work [79]. This model was previously used to quantitatively describe the 

processes of one-dimensional diffusion of minority charge carriers generated by a wide 

electron beam in inhomogeneous and multilayer planar structures, for which the 

distribution of electrophysical parameters of materials over depth has break points of the 

first kind [80,81]. 

A modification of the first model was proposed, allowing it to be used to simulate 

the diffusion of minority charge carriers in a two-layer material. The possibility of using 

this model to solve such a problem appears if, instead of piecewise constant coefficients 

(electrophysical parameters) of the differential equation of diffusion of minority charge 

carriers we use their new approximations based on trigonometric expressions in the form 

of recursive functions [5]. Note that the approximating functions are continuous and 

analytical, and therefore, at the boundary of the layers, they correspond to a greater extent 

than step functions to the dependence of the values of real electrophysical parameters on 

the coordinate [82]. 

Within the framework of the considered mathematical model, in the case of one-

dimensional diffusion into the final semiconductor, the concentration of minority charge 

carriers in depth is found as a solution to the differential equation [68,70] 

𝐷(𝑧)
𝑑2∆𝑝(𝑧)

𝑑𝑧2
−
∆𝑝(𝑧)

𝜏(𝑧)
= −𝜌(𝑧)  

with boundary conditions 

𝐷1
𝑑∆𝑝(𝑧)

𝑑𝑧
|𝑧=0 = 𝜈𝑠1∆𝑝(0), ∆𝑝(𝑙) = 0. 

 

In the modified models in the equation, instead of piecewise-constant coefficients 

(electrophysical parameters), their new approximations are used, based on the use of 

trigonometric expressions in the form of recursive functions [5]: 
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{𝑓𝑛(𝑧)|𝑓𝑛(𝑧) = (
𝐻

2
) (1 + sin(𝜑𝑛(𝑧))) , 𝜑𝑛(𝑧) = (

𝜋

2
) sin(𝜑𝑛−1(𝑧)),

𝜑1(𝑧) = (
𝜋

2
) 𝑓1(𝑧), 𝑛 − 1 ∈ 𝑁 }. 

 

As an initial function, a function of the form is taken 

𝑓1(𝑧) = exp(1 − (𝑎𝑧 + 𝑏)
2) − 1.  

Figure 28 shows the results of calculations carried out using the mathematical 

package Matlab (MathWorks, Inc., Natick, MA, USA) for the parameters characteristic of 

the semiconductor structure “epitaxial GaAs film—single-crystal GaAs substrate”. 

The following estimates were obtained for the relative error between the exact 

analytical solution of the problem and the numerical one for n = 5:  

Δ =
max
0≤𝑖≤𝑛

|𝛿𝑝(𝑧𝑖) − 𝛿𝑝𝑖|

max
0≤𝑖≤𝑛

|𝛿𝑝(𝑧𝑖)|
∙ 100% = 9.66%  

and for n = 11: ∆= 0.37%. 
Thus, for n = 5, the influence of the approximations on the simulation result is visible, 

and for n = 11, the error in the results is rather small, which indicates the convergence of 

the approximating procedure used. 

 

Figure 28. The concentration of minority charge carriers obtained using n = 5 recursive trigonometric 

functions (the graph is marked with crosses), and using n = 11 functions (the graph is marked with 

a solid line), as well as the concentration of minority charge carriers, calculated accurately 

analytically using piecewise constant coefficients (electro-physical parameters) of the differential 

equation of diffusion of minority charge carriers (the graph is marked with a dashed line). 

The authors of the modified model note [68,70] that the described model allows, with 

a relatively small number of recursive functions (up to 11), to estimate the concentration 

of minority charge carriers generated by a wide electron beam in a semiconductor target 

with an accuracy sufficient for practical use. The model subsequently makes it possible to 

relatively easily take into account the features of real semiconductor structures (the 

number and nature of the layers, the space charge region, possibly the energy distribution 

of electrons that occurs during the interaction of the primary beam with the target, etc.), 

which makes it promising for quantitative descriptions of the processes of one-

dimensional diffusion of minority charge carriers in inhomogeneous and multilayer 

planar structures. 

Note that modified models have been developed for various other examples 

describing diffusion processes in semiconductor technology [69,70,72–76]. 
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5. Conclusions 

As the review has shown, the developed methods for approximating periodic and 

non-periodic piecewise-linear and generalized functions are undoubtedly promising and 

have a number of advantages. These methods are characterized by fast convergence and 

low approximation errors. Similarly to the Fourier series, these methods can be based on 

the use of well-studied trigonometric functions that have good implementation in applied 

computer programs. While retaining the positive qualities of the Fourier series in this 

respect, the new methods are devoid of their drawbacks and can be widely used in solving 

applied problems. The developed methods are characterized by the complete absence of 

negative consequences of the Gibbs effect. There is also no wavelike character of the 

approximation on straight sections of the original piecewise-linear function, even with a 

small number of nested functions used for approximation. 

The proved theorems and properties concerning the convergence and error of the 

developed approximation methods have confirmed all of the positive aspects of these 

methods. 

The developed methods are illustrated by a large number of theoretical and practical 

examples taken from a wide variety of areas, so we can confidently speak about the 

universality of these methods. Despite the wide variety of examples given, these examples 

by no means exhaust all possible areas of application of new methods. The developed 

methods can find wide application in the field of signal transmission, the theory of 

automatic control and regulation systems, mathematical models of technical systems of 

variable structure, systems with discontinuous characteristics, systems with distributed 

and concentrated loads and influences, the theory of quantum and mathematical physics, 

and many other areas. These methods make it possible to find analytical functions for 

approximating singular generalized functions, and therefore, using differential calculus 

methods, construct approximations for the derivatives of generalized functions, thereby 

helping to achieve a better understanding of the meaning of generalized functions when 

applied to real applied problems. In other words, the developed methods also perform an 

epistemological function. 

Numerical tests carried out on the basis of various practical applications have 

convincingly shown the correctness of the theoretical studies and the assumptions made. 

Note also that the proposed approximating functions are continuous and analytical 

and even more than step functions correspond to real processes, since in reality even 

jump-like processes occur, albeit for short, but not zero time intervals. So, for example, an 

instantaneous change in the speed of a material object requires infinite energy, which is 

impossible to implement in practice. Concentrated impact in reality does not occur at a 

point, but is a distributed impact in some small neighborhoods of this point. These 

realities are fully consistent with the approximating functions obtained using the 

considered methods based on recursive sequences. In addition, we note that the 

widespread approximating functions based on splines, for example, are not analytical. 

Smoothing abrupt changes in the function, the proposed approximation methods bring 

mathematical models closer to reality, contributing to a deeper understanding of the laws 

of the world around us. 
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