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Abstract: This paper proposes an adaptive barrier fast terminal sliding mode control (ABFTSMC)
approach for quadrotor unmanned aerial vehicles (UAV). Its main objectives are to mitigate the
external disturbances, parametric uncertainties, and actuator faults. An adaptive barrier function is
considered in the design to ensure the finite-time convergence of the output variables to a predefined
locality of zero, independent of the disturbance bounds. A fast terminal sliding mode control (FTSMC)
approach is designed to speed up the convergence rate in both reaching and sliding phases. The
design considers hyperbolic tangent functions in the adaptive control law to drastically reduce the
chattering effect, typically associated with the standard SMC. The performance of the proposed
approach was assessed using a quadrotor UAV subject to external disturbances and sudden actuator
faults. The obtained results show that the trajectory and the sliding surface converge to the origin in
a finite time, without being affected by the high disturbance and actuator faults. In this method, due
to the substitution of the discontinuous function by the hyperbolic tangent function, the chattering
effect has also been highly reduced.

Keywords: quadrotor UAV; fast terminal sliding mode; fault-tolerant control; actuator

MSC: 93C40; 93E35; 93-XX; 93C10; 34A34; 34M04; 68M15; 70Q05; 93B52; 93Dxx

1. Introduction

Unmanned aerial vehicles (UAVs) are progressively being deployed in the various
army and civilian applications, such as topography, fire monitoring, aerial imaging, surveil-
lance, pipeline inspection, reconnaissance, the defeat of enemy air shield, etc. [1–7]. They
owe this popularity to their autonomy, lower cost, simple configuration, ease of control,
small size, and ability to navigate hazardous terrains and hard-to-reach locations, to list
a few [8,9]. However, from a control point of view, their small size and underactuated
design make them vulnerable to faults and exogenous disturbances such as wind gusts [10].
Faults are defined as deviations in the system’s structure or parameters from the nominal
situation. Fault-tolerant controls (FTCs) are control systems that can maintain satisfactory
operation under faulty conditions and prevent faults from developing into failures that
might jeopardize the system’s safety [11]. Actuators are said to be faulty when they behave
abnormally as a result of loss of effectiveness or actuator bias [12,13]. FTC techniques
are commonly organized into active and passive strategies. Active FTCs require a fault
detection and isolation (FDI) unit to detect and evaluate the faults explicitly, whereas
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passive FTCs depend exclusively on the use of robust control schemes to ensure system
insensitivity to faults without such forthright detection [14]. PFTC systems are designed
to be robust against the assumed faults. This method does not need to diagnose, isolate,
or know the fault type. Compared to PFTCs, AFTCs require a lot of computing authority.
Between fault detection, fault isolation, and controller reconfiguration, there is also a time
delay, which is one of the weaknesses of this method [15]. These disadvantages are the
main motivation for investigating a robust PFTC in this paper. Various control approaches
have been investigated for the design of PFTCs, such as linear matrix inequality (LMI)
schemes [16], H∞ control [17], adaptive sliding mode control (ASMC) [18–21], sliding mode
control (SMC) [8,9], fuzzy logic control [22,23], neural networks (NN) [24,25], model predic-
tive control (MPC) [26,27], etc. Among the above-listed approaches, SMC has drawn much
attention due to its robustness, ability to eliminate parametric uncertainties and external
disturbances, and effectively mitigate faults [4,28–38]. SMC’s main ideas can be described
as follows: First, a sliding surface is defined to fulfill the desired motion properties of the
closed-loop system. Second, a control law is designed to force the states to reach the sliding
surface and remain on it thereafter [39]. In order to eliminate the effects of parametric
uncertainties, external disturbances, and input saturations in the quadrotor system, [40]
proposed practical finite-time adaptive robust flight control and [41] used the nonsingular
finite-time adaptive robust saturated command filtered control approach.

An ASMC approach was proposed in [42] to mitigate the effects of actuator faults
in the framework of FTC. However, like the standard SMC, this approach suffers from
limitations such as finite-time convergence and the chattering phenomenon. An integral
terminal sliding mode control (ITSMC) was proposed in [43] to ensure the convergence of
the states to the closest vicinity of zero in the finite time. An adaptive fuzzy state-observer
approach was considered in [43] to approximate the limitless states to troubleshoot actuator
faults, external disturbances, and actuators’ saturation bound. In [44], to eliminate the
impacts of external disturbances and actuator faults in a quadrotor system, the fault-tolerant
controller based on the internal type-2 fuzzy sliding mode control approach was used.
In [45], an adaptive type-2 fuzzy backstepping fault tolerant controller was proposed to
remove the effects of the parameter uncertainties, external disturbances, and actuator faults.
In [46], an LMI-based adaptive barrier global sliding mode control approach was used to
reduce the parametric uncertainties, external disturbances, and actuator faults. In [47], two
proportional-derivative (PD) controllers and an adaptive fuzzy TSMC was proposed to
stabilize a quadrotor. In order to determine the preferred attitude of the quadrotor, PD
controllers were used, and TSMC was used to adjust the rotors’ rotation speed. In [48], a
nonlinear ASMC with two separate controllers was utilized to eliminate the effects of wing
damage. In the event of simultaneous actuator faults, the stability of the system is reduced.
The second controller employs an adaptive control method to guarantee the stability of the
closed-loop system and eliminate the drawbacks of the controller. In [49], it was shown
that the model predictive control is a suitable fault-tolerant control approach to mitigate
actuator faults in quadrotor UAV systems. Fault tolerance control has been achieved with
the help of moving horizon estimation (MHE) and an unscented Kalman filter (UKF) and
their integration with MPC. In [50], an SMC-based FTC approach was proposed for a
quadrotor subject to the butterfly damage and actuator fault situation. In [51], in order to
reject the impressions of external disturbances and actuator additive faults, a nonsingular
fast terminal sliding mode fault-tolerant control scheme based on the disturbance observer
(DO) for a quadrotor UAV was used. Both passive and active FTC designs have been
considered to mitigate the actuator faults. Ref. [52] proposed a nonsingular TSMC to
eliminate the parametric uncertainties, external disturbances, and unexpected actuator
faults. The mentioned approach has achieved the finite-time convergence in both reaching
and sliding phases. In [53], in order to remove the effects of the multiple actuator faults and
multisource disturbances, a finite-time controller based on the composite barrier Lyapunov
function was employed.
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In [2,54], a nonlinear robust FTC method aiming to mitigate wind disturbances and
actuator faults in the quadrotor system was investigated. A continuous FTSMC was
suggested for accurate tracking and limiting the convergence time based on the estimated
information. In [1], an adaptive sliding mode controller was mentioned to eliminate the
actuator faults, parametric uncertainties, and time delays. In this approach, to improve
the robustness of the control system, the integral term was added. With the help of this
method, the adaptive law can estimate and eliminate the actuator fault without the need of
fault detection and isolation. This method guarantees the asymptotic stability of the sliding
dynamics. In [3], in order to reject the existence disturbance effects of the six-degrees-of-
freedom (6DoF) quadrotor system, an adaptive barrier terminal sliding mode controller
(ABTSMC) was used. In order to improve the methods of [1–3], the researchers could
ensure the convergence of the output variable by adding a comparative barrier function.
The main idea of choosing the barrier function is to use the cost functions that prevent
undesirable areas. Loop insensitivity is guaranteed by SMC depending on the faults and
disturbances in the system and finite-time convergence. However, the implementation of
this controller requires the knowledge of upper bounds of perturbations.

This paper proposes an adaptive barrier fast terminal sliding mode control (ABFTSMC)
approach for elimination of actuator faults, external disturbances, and parametric uncertain-
ties in quadrotor unmanned aerial vehicles (UAV) in the finite time. The main contributions
of this paper are organized as follows:

• A fast terminal sliding mode control (FTSMC) approach speeds up the convergence
rate in both reaching and sliding phases, and fast finite-time robust performance
is achieved.

• A design method that provides a barrier function without information about the
upper bounds of perturbations and actuator faults makes the quadrotor track the
desired trajectory.

• An SMC technique relies on the hyperbolic tangent function in order to achieve the
chattering-free responses.

The remainder of this paper is organized as follows: Section 2 provides a brief de-
scription of the quadrotor’s dynamic model. Section 3 derives the proposed controller and
discusses the stabilization analysis. The simulation results are presented in Section 4, and
finally, conclusions are given in Section 5.

2. Quadrotor Model

The quadrotor UAV can be represented using the following second-order time-varying
nonlinear system [52]:

.
X = f (X, t) + (g(X, t) + (ζ − g(X, t))κ)u + Dx (1)

where X ∈ R12 denotes the vector of the states to be controlled, f (X, t) ∈ R12 is a nonlinear
system function, and ζ = g(X, t)L ∈ R12×4 signifies a non-singular post-fault dynamic.
L = diag([l1, · · · , l4]) displays the loss of actuator effectiveness coefficients, with the scalars
lj(j=1,··· ,4) satisfying 0 ≤ lj ≤ 1, where lj = 1, indicating a faulty jth actuator; 0 < lj < 1,
indicating a certain level of loss of actuator effectiveness; and lj = 0, denoting the complete
failure of the jth actuator. κ ∈ R is designed as a step function to model the abrupt
fault during fly. To be specific, t < t f , κ = 0 shows the fault-free case, and t > t f ,
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κ = 1 symbolizes the post-fault condition. The terms X, f (X, t) and g(X, t) are assumed
as follows:

X = [x, y, z, ϕ, θ, ψ,
.

x,
.

y,
.
z,

.
ϕ,

.
θ,

.
ψ]

T

f (X, t) =



x
y
z
ϕ
θ
ψ
0
0
−g

Iy−Iz
Ix

.
θ

.
ψ + J

Ix

.
θΩ

Iz−Ix
Iy

.
ϕ

.
ψ− J

Iy

.
ϕΩ

Ix−Iy
Iz

.
ϕ

.
θ



, g(X, t) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Λx 0 0 0
Λy 0 0 0
Λz 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz



(2)

where
Λx =

1
m

cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ)

Λy =
1
m

cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ)

Λz = −
1
m

cos(ϕ)cos(θ)

The angular velocities of the rotors are obtained by combining the control inputs and
are written as follows: 

Ω2
1 = 1

4b uz − 1
2b£ uϕ − 1

4p uψ

Ω2
2 = 1

4b uz − 1
2b£ uϕ + 1

4p uψ

Ω2
3 = 1

4b uz +
1

2b£ uθ − 1
4p uψ

Ω2
1 = 1

4b uz +
1

2b£ uθ +
1

4p uψ

(3)

The inputs of the system are also obtained by combining the angular velocity of the
rotors and are expressed as follows:

ui =


b
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4
)

b£
(
Ω2

2 −Ω2
4
)

b£
(
Ω2

1 −Ω2
3
)

p
(
Ω2

2 −Ω2
1 + Ω2

4 −Ω2
3
)
 (4)

where
[
uz uϕ uθ uψ

]
denote the rotor inputs after applying the controller; Ix, Iy, and

Iz denote the moments of inertia; b and p are the thrust and drag coefficients, respectively,
£ denotes the distance between the quadrotor center and rotor center; m denotes the
quadrotor mass; and J represents the rotor inertia. The terms Ω2

i(i=1,...,4) denote the square
angular velocities. x, y, and z are the quadrotor positions and ϕ, θ, and ψ signify the
quadrotor attitudes.

.
x,

.
y, and

.
z represent the position derivation of the quadrotor, and

.
ϕ,

.
θ, and

.
ψ represent the angular velocities. Ω is a disturbance term that is presented in the

system depending on the rotor speeds. It represents the overall residual propeller speed
by [55]:

Ω = −Ω1 + Ω2 −Ω3 + Ω4
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Considering the parametric uncertainties and external disturbances, the vector Dx is
defined as follows:

Dx = ∆ f + ∆gu + d (5)

where ∆ f ∈ R12 and ∆g ∈ R12 denote parametric uncertainties, and d ∈ R12 represents
external disturbances. The main control objectives are to force the state variables to track
the desired trajectory in the presence of faults and disturbances.

3. Adaptive Barrier Fast Terminal Sliding Mode Control

Figure 1 shows the control technique of the quadrotor. The thrust input (uz) controls
the altitude of the quadrotor. The roll (ϕ), pitch (θ), and yaw (ψ) angles are controlled via
the roll, pitch, and yaw controller, respectively. Their desired values are (ϕd), (θd), and
(ψd), respectively. The actual positions of x, y, and z, are acquired via a Global Positioning
System (GPS) unit and transformed from the altitude signals. The actual ϕ, θ, and ψ. angles
are measured from the inertial measurement corps. The rotation motion of the quadrotor is
used to control the control inputs uϕ, uθ , and uψ.

Figure 1. The control scheme of the quadrotor.

The following assumptions were considered to design the ABFTSMC technique:

Assumption 1. The main control objective is to eliminate the actuator faults, external disturbances,
and parametric uncertainties. For this purpose, to apply the effect of the actuator faults, we consider
κ = 1.

Assumption 2. The parametric uncertainty and external disturbance term Dx is bounded and is
less than ηk , i.e.,:

||Dx||< ηk (6)

Assumption 3. For non-zero and positive values of σ1 and σ2, the following relation is established:

σ1 ≤ 1 ≤ σ2 (7)

Lemma 1. For every given scalar x and positive scalar y the following inequality holds [56]:

xtanh(yx) = |xtanh(yx)| = |x||tanh(yx)| ≥ 0 (8)
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Proof. From the mathematical definition of the tanh(.) function, we have

xtanh(yx) = x
eyx − e−yx

eyx + e−yx (9)

Multiplying the above equation by eyx

eyx′ , one can obtain

xtanh(yx) =
(

1
e2yx + 1

)
x
(

e2yx − 1
)

(10)

According to the conditions
{

e2yx − 1 ≥ 0 i f x ≥ 0
e2yx − 1 < 0 i f x < 0

, one can obtain

x
(

e2yx − 1
)
≥ 0 (11)

Based on
(

1
e2yx+1

)
> 0, and from Equation (11), we have

xtanh(yx) =
(

1
e2yx + 1

)
x
(

e2yx − 1
)
≥ 0 (12)

Therefore, from the fact that for every scalar z and v, if zv ≥ 0 then
zv = |zv| = |z||v| ≥ 0 holds, one can conclude that

xtanh(yx) = |xtanh(yx)| = |x||tanh(yx)| ≥ 0 (13)

This completes the proof. �

Lemma 2. Suppose the positive definite continuous function v(t) achieves the following inequality:

.
v(t) ≤ −αv(t)− βvη(t) ∀t ≥ t0, v(t0) ≥ 0 (14)

where η is the fraction of two odd positive numbers with 0 < η < 1, and the α and β
are positive parameter coefficients. Then the tr is a finite-time convergence obtained by
Lyapunov, such as:

tr = t0 +
1

α(1− η)
ln

αv1−η(t0) + β

β
(15)

The desired quadrotor trajectory is represented by
Xd =

[
xd, yd, zd, ϕd, θd, ψd,

.
xd,

.
yd,

.
zd,

.
ϕd,

.
θd,

.
ψd

]
; moreover, the tracking error can be rep-

resented as:
e = X− Xd (16)

The sliding surface of the FTSMC can be described as follows [2,57,58]:

δ = e + b1|e|αsign(e) + b2
∣∣ .
e
∣∣βsign

( .
e
)

(17)

The time differentiation of Equation (17) is as follows:

.
δ =

.
e + αb1|e|α−1 .

e + βb2
∣∣ .
e
∣∣β−1

(
f (X, t) + g(X, t)Lu + Dx −

.
Xd

)
(18)

by placing
.
δ = 0, the equivalent input control rule is given by:

ueq = −(g(X, t)L)†
(

f (X, t) + Dx −
..
Xd +

1
βb2
|e|β−1

(
1 + αb1|e|α−1

) .
e
)

(19)
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where the term g(x, t)L is a non-zero (non-singular) expression, and (g(x, t)L)† is the

pseudo-inverse of g(x, t)L, i.e.,: (g(x, t)L)†=
[

LTg(x, t)Tg(x, t)L
]−1

LTg(x, t)T.

Remark 1. In order to find the coefficients α, β, b1, and b2, it is necessary to consider the following
conditions with respect to the time-derivative of the fast terminal sliding surface [59,60]:

• The multiplication of α and b1 must be a positive value.
• β multiplied by b2 must be a positive value.
• The terms α −1 and β −1 should also be positive values.

An adaptive controller based on the barrier function is presented. The external distur-
bances can be approximated more effectively by expending an adaptive barrier SMC, and
the closed-loop system can evolve more steadily. In order to employ the barrier function
approach, the switching control law can be formed as:

usw = −(g(X, t)L)†(Q̂(t) + µ
)
sign(δ) (20)

with

Q̂(t) =
{

Qa i f 0 < t < t
Qpsb i f t > t (21)

where t is the time that the state trajectories consolidate to the environs of the fast terminal
sliding mode consistency δ, and the term g(X, t)L is a non-zero (non-singular) expression.

The adaptive-tuning rule and the positive-semi-definite barrier function are provided
by [61,62]: 

.
Qa = ρ

∣∣∣∣∣∣δ∣∣∣∣∣∣
Qpsb = ||δ||

ε−||δ||
(22)

where ε, ρ > 0.
Using adaptation law (21), the control gain Q̂ is adjusted to advance until the state

trajectory reaches the neighborhood ε of the fast terminal sliding surface δ at the time t.
Then, for the times after t, the adaptive control gain Q̂ switches to the positive-semi-definite
barrier function, diminishing the convergence region and preserving the system states
there. The system’s stability is confirmed in two situations as follows:{

(a) 0 < t < t
(b) t > t

(23)

Remark 2. t is the time that the state trajectories take to reach the vicinity of the sliding surface δ.
The boundary of the sliding surface is equal to the value ε. The value of t is equal to the amount
of time that the system spends to reach the boundary ε. The time t cannot be entered manually or
by test because it causes a chattering problem. The value of ε is defined in the system and a control
algorithm is designed that can calculate the value of time t.

The final sliding mode control input is:

u = ueq + usw (24)

Theorem 1. Consider the disturbed nonlinear system (1). By combining the adaptive control law
(20) with the equivalent controller (19) and the discontinuous controller (21) assuming Q̂ = Qa,
then in a finite-time, the tracking trajectories of system states converge to the vicinity of the fast
terminal sliding surface.
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Proof. Consider the following Lyapunov function:

v1 =
1
2
(δTδ + ρϑ−1

(
Qa −Q)2

)
. (25)

where ϑ > 0, and Q is a positive unknown constant; δT is transpose vector of δ. The
time-differentiation of v1 is

.
v1 = δT

.
δ + ρϑ−1(Qa −Q)

.
Qa (26)

where substituting Equation (18) into the above equation, we obtain:

.
v1 = δT(

.
e + αb1|e|α−1 .

e + βb2
∣∣ .
e
∣∣β−1

( f (X, t)
+g(X, t)Lu + Dx −

..
Xd)) + ρϑ−1(Qa −Q) ||δ ||

(27)

Substituting the adaptive control law (24) in the above equation, one has:

.
v1 = −δT((Qa + µ)sign(δ)− Dx) + ρϑ−1(Qa −Q) ||δ ||
≤ −µ ||δ ||+ ||δ || ||Dx || − δTQasign(δ) + ρϑ−1(Qa −Q) ||δ ||
≤ ||δ || ||Dx || −Qa ||δ ||+ ρϑ−1(Qa −Q) ||δ || − µ ||δ || ≤ ||δ || ||Dx ||
−Qa ||δ ||+ ρϑ−1(Qa −Q) ||δ ||+ Q ||δ || −Q ||δ ||
≤ −(Q− ||Dx ||) ||δ || −

(
1− ρϑ−1(Qa −Q)

)
||δ ||

(28)

where ||Dx || < ηk. Because Q− ||Dx || > 0 and ρϑ−1 < 1, Equation (28) is written as

.
v1 ≤ −

√
2(Q− Dx)

||δ ||√
2
−
√

2ϑ
(
1− ρϑ−1) (Qa−Q)√

2ϑ

≤ −min
{√

2(Q− ||Dx ||),
√

2ϑ
(
1− ρϑ−1) ||δ ||}( ||δ ||√

2
+ ‖Qa−Q‖√

2ϑ

)
≤ −χv

1
2
1

(29)

�

Theorem 2. For disturbed nonlinear system (1), using the adaptive control law (20) with the
comparable controller (19) and the intermittent controller (21) assuming Q̂ = Qpsb (Equation (24)),
i.e.,:

u = −(g(X, t)L)†
(

f (X, t) + Dx −
..
Xd +

1
βb2
|e|1−β

(
1 + αb1|e|α−1) .

e
)

−(g(X, t)L)†
(

Qpsb + µ
)

sign(δ)
(30)

Then, the system’s states arrive at the convergence region ||δ || < ε in finite-time.

Proof. Consider the Lyapunov function as:

v2 =
1
2
(δTδ +

(
Qpsb −Qpsb(0))

2
)

(31)

Now, differentiating the Lyapunov Function (31), concerning time, we have:

.
v2 = δT

.
δ +

(
Qpsb −Qpsb(0)

) .
Qpsb (32)

where substituting
.
δ, and Qpsb(0) = 0 into the above equation, we obtain:

.
v2 = δT((g(X, t)L)−1(

.
e + αb1|e|α−1 .

e + βb2
∣∣ .
e
∣∣β−1×(

f (X, t) + g(x, t)Lu + Dx −
..
Xd

)
+ Qpsb

.
Qpsb

(33)
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Substituting the control law (30) into (33) gives:

.
v2 = −δT

((
Qpsb + µ

)
sign(δ)− Dx

)
+ Qpsb

.
Qpsb

≤ −µ ||δ ||+ ||δ || ||Dx || −Qpsb ||δ ||+ Qpsb
.

Qpsb

≤ −
(

Qpsb − ||Dx ||
)
||δ ||+ Qpsb

(
ε

(ε− ||δ ||)2

)
sign(δ)

.
δ

≤ −µ ||δ || −
(

Qpsb − ||Dx ||
)
||δ || −Qpsb

(
ε

(ε− ||δ ||)2

)
sign(δ)×((

Qpsb + µ
)

sign(δ)− Dx

)
≤ −

(
Qpsb − ||Dx ||

)
||δ ||−

ε

(ε− ||δ ||)2

(
Qpsb − ||Dx ||

)
||δ ||Qpsb

(34)

where, since Qpsb > ||Dx || and ε

(ε− ||δ ||)2 > 0, one finds:

.
v 2 ≤ −

√
2
(

Qpsb − ||Dx ||
)
||δ ||√

2
−

√
2ε

(ε− ||δ ||)2

(
Qpsb − ||Dx ||

) ||δ ||Qpsb√
2

≤ −
√

2
(

Qpsb − ||Dx ||
)

min
{

1, ε

(ε− ||Dx ||)2

}(
||δ ||√

2
+
||δ ||Qpsb√

2

) (35)

where Ω =
√

2
(

Qpsb − ||Dx ||
)

min
{

1, ε

(ε− ||Dx ||)2

}
.

The undesired response results from using the sign(.) function in the control law (20),
which causes the chattering phenomenon in the system. To mitigate this problem, the
discontinuous signum function is replaced by the continuous hyperbolic tangent function. If
the steepness coefficients increase, the chattering phenomena has occurred drastically using
the discontinuous sign(.) function. However, by estimating this function and replacing that
method with the continuous tanh(.) function, the problem is significantly solved and the
chattering phenomenon is reduced [63]. The chattering avoidance idea is to decrease the
steepness of the function tanh(.). Therefore, via the continuous hyperbolic tangent function,
the auxiliary control Function (20) can be defined as:

usw = −(g(X, t)L)†(Q̂(t) + µ
)
tanh(

δ

ζ
) (36)

where sign
(

δ
ζ

)
≈ tanh( δ

ζ ), and ζ is a boundary layer thickness ratio. �

Remark 3. The hyperbolic functions are utilized in Equation (20), and the fast terminal sliding
surface δ(t) will not be equipollent to zero for all time. The adaptive parameters will increase to
alleviate this drawback. An adaptive barrier rule is modified by [64]:

Q̂(t) =


0 i f |δ| < ζ
ρ ||δ || i f |δ| > ζ 0 < t < t
||δ ||

ε− ||δ || i f |δ| > ζ t > t
(37)

According to Equation (21), the barrier function has two criteria, so the reason for
replacing sign(.) with tanh(.) must be defined and proved separately for both Q̂(t) criteria
of the Lyapunov function.

Theorem 3. Using the adaptive controller (24) with Q̂(t) = Qa(t), the state trajectories reach
the neighborhoodε of the sliding surface in the finite time. The hyperbolic tangent function is
applied instead of sign(.) to reduce the chattering. This is also done by reducing the steepness of the
hyperbolic tangent function.
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Proof. Considering Lyapunov Function (25), the time-derivative of the Lyapunov function
is found as

.
v1 = −δT((Qa + µ)sign(δ)− Dx) + ρϑ−1(Qa −Q) ||δ ||

Substituting the sign function with the hyperbolic tangent, the following equation
is obtained:

.
v1 = −δT

(
(Qa + µ)tanh( δ

ζ

)
− Dx) + ρϑ−1(Qa −Q) ||δ ||

≤ ||δ || ||Dx || − δT((Qa + µ)tanh( δ
ζ )) + ρϑ−1(Qa −Q) ||δ ||

(38)

Considering Lemma 1, the subsequent equation is obtained:

− (Qa + µ)tanh(
δ

ζ
) ≤ 0 (39)

Considering Assumption 3 and multiplying Equation (7) by u2 yields:

σ1u2 ≤ u2 ≤ σ2u2 (40)

From Equations (38) and (40), the following condition is obtained:

σ1

[
1
σ2

1
(Qa + µ)2(tanh(

δ

ζ
))2

]
≤ u(t)× u(t)= − 1

σ1
(Qa + µ)tanh(

δ

ζ
)u(t) (41)

By multiplying ( δ
ζ )

2
> 0 to both sides of the above equation, one has

δ

ζ
u(t) ≤ −(Qa + µ) || δ

ζ
|| (42)

whereby combining Equations (38) and (42), we have:

.
v 1 ≤ ||δ || ||Dx || − δT(Qa + µ) || δζ ||+ ρϑ−1(Qa −Q) ||δ ||+ Q ||δ || −Q ||δ ||
≤ −µ || δζ || − (Q− ||Dx ||) ||δ || − ( 1

ζ − ρϑ−1(Qa −Q)) ||δ || (43)

with ||Dx || < ηk. Because Q− ||Dx || > 0 and ρϑ−1 < 1, Equation (43) is written as

.
v 1 ≤ −

√
2(Q− ||Dx ||) ||δ ||√2

ϑ
(

1
ζ − ρϑ−1

)
(Qa−Q)√

2ϑ

≤ −min
{√

2(Q− ||Dx ||),
√

2ϑ
(

1
ζ − ρϑ−1

)
||δ ||

}(
||δ ||√

2
+ ‖Qa−Q‖√

2ϑ

)
≤ −χv

1
2
1

(44)

�

Theorem 4. Using the adaptive controller (24) with Q̂(t) = Qpsb, the state trajectories reach the
neighborhoodε of the sliding surface in the finite time.

Proof. Considering the Lyapunov Function (31) and its time derivative and embedding the
control law (30), the following equation is obtained:

.
v2 = −δT

((
Qpsb + µ

)
sign(δ)− Dx

)
+ Qpsb

.
Qpsb
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Substituting the sign function with tanh(.), the following equation is obtained:

.
v2 = −δT(

(
Qpsb + µ

)
tanh( δ

ζ )− Dx) + Qpsb
.

Qpsb

≤ −µ ||δ ||+ ||δ || ||Dx || −Qpsb ||δ ||+ Qpsb
.

Qpsb

≤ −
(

Qpsb − ||Dx ||
)
||δ ||+ Qpsb(

ε

(ε− ||δ ||)2 )tanh( δ
ζ )

.
δ

≤ −µ ||δ || −
(

Qpsb − ||Dx ||
)
||δ || −Qpsb(

ε

(ε− ||δ ||)2 )× tanh( δ
ζ )

×(
(

Qpsb + µ
)

tanh( δ
ζ )− Dx)

(45)

Considering Assumption 3 and multiplying u2 to Equation (7), we have

.
v 2 ≤ −µ ||δ || −

(
Qpsb − ||Dx ||

)
||δ || −Qpsb(

ε

(ε− ||δ ||)2 )(
δ
ζ )(
(

Qpsb + µ
)
( δ

ζ )− Dx)

≤ −
(

Qpsb − ||Dx ||
)
||δ || − ε

ζ2(ε−δ)2

(
Qpsb − ||Dx ||

)
||δ ||Qpsb

(46)

where, since Qpsb > ||Dx ||, and ε

(ε− ||δ ||)2 > 0, one finds

.
v2 ≤ −

√
2
(

Qpsb − ||Dx ||
)
||δ ||√

2
−

√
2ε

ζ2(ε− ||δ ||)2

(
Qpsb − ||Dx ||

) ||δ ||Qpsb√
2

≤ −
√

2
(

Qpsb − ||Dx ||
)

min
{

1, ε

ζ2(ε− ||Dx ||)2

}(
||δ ||√

2
+
||δ ||Qpsb√

2

)
≤ −Ωv2

1
2

(47)

�

4. Simulation Results

Before starting the scenarios and showing the simulation results, the general schematic
of the system and the location of the fault and disturbance terms as well as the way that the
controller works in the quadrotor system should be described. It should be stated that the
quadrotor consists of several parts:

• Input controller;
• Quadrotor actuators;
• General quadrotor system;
• System output.

In the part of the actuators, as shown in Figure 1, the actuator fault reduced the
effectiveness of the rotors and the output from the actuators was entered into the quadrotor
system as the input of the system, and as a result, the output of the system was obtained. It
should be noted that the perturbation was applied to the output part of the system according
to Equation (1). By comparing the system output and the desired path and getting its error,
the error signal was entered as the input of the sliding surface to the controller. With the
help of the proposed control method (ABFTSMC), the resulting error was reduced and the
effects of actuator fault, output disturbance, and parameter uncertainties were eliminated.

The performance of the adaptive barrier fast terminal sliding mode control (ABFTSMC)
is assessed in this section. For performance analysis, in addition to the perturbations that
enter the system, two types of actuator faults were considered. For comparison purposes,
the performance of the proposed approach is compared with three methods: The first
method is an adaptive sliding mode controller in [1] and the second method is the fast
terminal sliding mode controller in [2]. Additionally, we performed a comparative analysis
with the ABTSMC in [3]. The parameters of the quadrotor in this study are illustrated in
Table A1. The controller parameters are also given in Table 1. The results are illustrated by
using the following scenarios:
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Table 1. Desired path and disturbances.

Variable Value Variable Value

b1 = b2
for (uz) 5 b1 = b2

for (uϕ,uθ , uψ) 9

α 2 Qpsb 0
β 3 µ 5
ρ 5 ζ 1

Scenario 1: In the first scenario, the performance comparison was conducted with a
40% loss of control effectiveness by multiplicative sinusoidal fault in actuators 2 and 3. The
faults were injected at the 20th second. One of the reasons for this type of fault is cracking
or breakage of the rotor blades. In this scenario, 40% of the multiplicative sinus fault was
applied to actuators 2 and 3. The desired trajectories and the amount of output perturbation
are given in Table 2. The simulation results are illustrated in Figures 1–3 via the comparison
of methods [1–3] and the proposed ABFTSMC technique based on the tanh(.) function.

Figure 2. Cont.
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Figure 2. Sliding surface under 40% sinusoidal fault to actuators 2 and 3.

Figure 3. Quadrotor position under 40% sinusoidal fault to actuators 2 and 3.
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Table 2. Desired path and disturbances.

State Desired Path Disturbance

xd |cos(0.2t)| 10sin(0.0015t)
yd |sin(0.4t)| 5sin(0.0015t)
zd 3 10sin(0.0015t)
ϕd |cos(0.2t)| 10sin(0.0015t)
θd |sin(0.4t)| 10sin(0.015t)
ψd |cos(0.3t)| 10sin(0.0015t)

Figure 2 shows a comparison between the sliding surfaces of all three methods. In the
case of variable z, methods [1–3] had high chattering. The proposed ABFTSMC method
based on the tanh(.) function drastically reduced this value and damage to the system. This
method worked similarly in other cases (ϕ, θ, ψ) and converged the sliding surface to zero
with more minor error. Figures 3 and 4 display the performance tracking of the quadrotor
attitude and position.

Figure 4. Quadrotor attitude under 40% sinusoidal fault in actuators 2 and 3.
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Figure 3 shows the performance tracking of the quadrotor position (x, y, z). As can
be seen, the proposed controller, which is an adaptive barrier fast terminal sliding mode
control and modified by a hyperbolic tangent, significantly reduced output chattering. The
perturbation and fault of the actuator imposed so much instability on the system that the
proposed method had better performance compared to methods [1–3] and followed the
defined path with a slight error, where Figure 3 shows that the initial time reached the
desired path in the finite time. The desired path tracked faster and with the least chattering
and error. Figure 4 shows the (x, y, z) performance tracking of the quadrotor attitude. As is
known, the proposed controller had a more successful performance than the methods. The
proposed method sped up the system response, converged to the desired trajectories, and
tracked the trajectory with minimal error and chattering. Three examples of performance
indicators, such as the integral of the absolute value of error (IAE), integral of the squared
error (ISE), and integral of the time-weighted absolute error (ITAE), are examined in Table 3,
which confirms the simulation results of Figures 3 and 4 and the proper performance of
the proposed method compared to the other methods. In all three comparative cases, the
values of IAE, ISE, and ITAE in all six output modes in the proposed method were lower
than with the other approaches.

Table 3. Performance indices under 40% sinusoidal fault actuators 2 and 3.

States x y z ϕ θ ψ

ASMC [1] 90.17 915 1.188. 1.236 0.002245 0.5868
ISE FTSMC [2] 11, 040 390.15 3.254 0.5127 0.004933 0.5559
ISE ABTSMC [3] 13.35 0.2575 1.211 1.414 0.001146 0.6035

Proposed method 11.6 0.01381 1.173 0.3965 0.00081 0.4428

ASMC [1] 27.35 3.129 1.162 1.268 0.07129 0.7905
FTSMC [2] 828.4 62.1 1.496 1.133 0.05958 0.774

IAE ABTSMC [3] 19.268 3.1 1.405 1.847 0.0506 0.776
Proposed method 11.27 0.2956 1.055 0.89 0.03881 0.7498

ASMC [1] 868 76.37 17.76 3.761 1.369 0.4188
FTSMC [2] 5312 81.76 13.79 9.218 0.5146 0.3896

ITAE ABTSMC [3] 479.3 73.26 25.51 5.113 0.9975 0.3771
Proposed method 433.6 12.56 0.37818 1.096 0.2571 0.3672

Scenario 2: In this scenario, a loss of 50% control effectiveness by a multiplicative step
fault in actuators 1 and 2 was imposed. These faults were injected at the 20th second. In this
scenario, actuators 1 and 2 received a 50% step fault. The desired path is given in Table 2.
In each scenario, the value of t in Equation (21) for each subsystem is written as follows:

t
[uz ,uϕ ,uθ ,uψ ]

T =


0.865

2.1
1.4

1.38


The simulation results are similar to the results of the first scenario, where the results

of control methods [1–3] are compared with those of the proposed ABFTSMC method
based on the hyperbolic tangent function, and are shown in Figures 5–7, respectively. In
all four sliding surfaces that correspond to the (z, ϕ, θ, ψ) modes, it is clear that the sliding
surface of the proposed method had the least chattering. In case z, papers [1–3] had high
chattering, which caused serious damage, but the proposed method greatly reduced the
chattering phenomenon.
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Figure 5. Sliding surface under 50% step fault in actuators 1 and 2.
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Figure 6. Quadrotor position under 50% step fault to actuators 1 and 2.

Figure 7. Cont.
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Figure 7. Quadrotor attitude under 50% step fault to actuator 1 and 2.

The ABTSMC method [3] had higher chattering in the sliding surfaces compared
to the other two methods. However, the proposed method reduced the chattering to
approximately zero with the least error. According to Figures 6 and 7, it is clear that all six
system outputs experienced a lot of instability and chattering by applying the actuator fault
after the 20th second. All three methods were able to solve this problem to some extent.
However, the method mentioned in this paper, firstly, due to the barrier function, was able
to limit the chattering due to output disturbances, parametric uncertainties, and actuator
faults. Secondly, the main advantage of this method is the use of the continuous hyperbolic
tangent function instead of the discontinuous sign function, which was able to reduce the
chattering caused by the sign function and other disorders compared to other methods.
Table 4 compares the indicator performance of the three methods applied to the quadrotor.
This table shows that in all three indicators, IAE, ITAE, and ISE, the numbers obtained from
the proposed method had the lowest value in all six output modes, indicating the superior
performance of the proposed controller.

Table 4. Performance indices under 50% step fault in actuators 1 and 2.

States x y z ϕ θ ψ

ASMC [1] 95.92 1.791 1.187 1.419 0.0008 0.6196
ISE FTSMC [2] 11, 045 3960 1.162 0.5541 0.04088 0.6026
ISE ABTSMC [3] 15.52 0.2473 1.207 1.239 0.00229 0.6031

Proposed method 11.51 0.01593 0.4741 0.4741 0.0007 0.442

ASMC [1] 29.12 3.033 1.364 1.282 0.07129 0.8093
FTSMC [2] 826.1 16.23 1.523 1.33 0.1405 1.078

IAE ABTSMC [3] 19.26 2.932 1.162 1.926 0.08221 0.778
Proposed method 11.48 0.3401 1.044 0.9746 0.04334 0.775

ASMC [1] 951.6 8116 68.18 9.631 2.387 0.4136
FTSMC [2] 5216 74.67 18.185 12.35 4.432 0.3764

ITAE ABTSMC [3] 476 65.18 17.62 5.766 3.492 0.386
Proposed method 442.4 14.49 13.46 3.969 0.7044 0.3448

Remark 4. It should be noted that scenarios 1 and 2 have the following differences:

- In the first scenario, 40% of the fault was entered into the system, but in scenario 2, the amount
of this fault was 50% in the form of loss of rotor efficiency.

- In the first scenario, the type of sinusoidal fault was intermittent, which sometimes results from
cracking of the rotor blades, but the type of fault in the second scenario was a fixed-step function.

- In the first scenario, fault was entered in actuators 2 and 3, but in the second scenario, it was
applied to actuators 1 and 2.
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5. Conclusions and Future Works

This paper proposed an adaptive barrier FTSMC based on the hyperbolic tangent
function for quadrotor UAVs. The approach aims to eliminate the influences of external
disturbances and mitigate the effects of the actuator faults and nonlinear uncertainties.
This approach achieves three important objectives: (1) FTSMC provides the convergence
performance in both reaching and sliding phases in the finite time, (2) an adaptive barrier
function is used to ensure the convergence of the output variables independent of high
gain of the disturbance and without overshoot, and (3) in order to reduce the severe
chattering phenomenon, a hyperbolic tangent function is used instead of the sign function,
which is effective in the simulation results. The simulation results and the performance
index table show the effectiveness of this method in mitigating the actuator faults. A
comparison analysis with the adaptive sliding mode control and fast terminal sliding mode
control approaches proposed in [1–3] shows that the proposed method outperforms the
other approaches. In future work, fuzzy-based model-predictive control with higher-order
sliding surfaces will be employed for robust tracking control of quadrotor UAVs.
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Appendix A

The parametric values of the model were taken from [54] and are given in Table A1.

Table A1. Quadrotor parameters [54].

Parameter Value Unit Parameter Value Unit

g 9.81 m
s2 Jr 90× 10−6 kg·10−6

m 1 kg l 0.24 m
Ix 8.1× 10−3 kg·m2 b 54× 10−6 N·m2

Iy 8.1× 10−3 kg·m2 d 1.1× 10−6 N·m·s2

Iz 14× 10−3 kg·m2
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