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Abstract: This study proposes the concept of severity as an alternative measure of extreme air
pollution events. Information about severity can be derived from the cumulative effect of air pollution
events, which can be determined from unhealthy Air Pollution Index (API) values that occur for
a consecutive period. On the basis of the severity, an analysis of extreme air pollution events can
be obtained through the application of the generalized extreme-value (GEV) model. A case study
was conducted using hourly API data in Klang, Malaysia, from 1 January 1997 to 31 August 2020.
The block-maxima approach was integrated with information about monsoon seasons to determine
suitable data points for GEV modeling. Based on the GEV model, the estimated severity levels
corresponding to their return periods are determined. The results reveal that pollution severity in
Klang tends to rise with increases in the length of return periods that are measured based on seasonal
monsoons as a temporal scale. In conclusion, the return period for severity provides a good basis for
measuring the risk of recurrence of extreme pollution events.
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1. Introduction

Air pollution is an important issue that must be addressed worldwide, particularly
in urban areas. Given many factors related to high population density, industrial ac-
tivities, congested vehicles, and construction activities, urban air quality has become
more fragile [1,2]. This scenario leads to many problems related to health, such as
direct impact on human health via inhalation [3-5], an increase in the chance of non-
communicable disease such as lung disease, heart disease, and cancers [6-8], and effects on
environmental sustainability [9-11], mortality and morbidity that correspond to increased
risk of death from cardiovascular diseases, including ischemic heart disease, heart fail-
ure, and ischemic/thrombotic stroke [12,13], etc. In addition, air pollution can cause a
spillover effect on various issues, including economies [14,15], social problems [16], physical
activities [17], anxiety and depression [18], and housing prices [19]. Thus, research on air
pollution always provides beneficial information for the management and mitigation of the
risks of unhealthy air pollution events.

The available literature related to statistical analysis on air pollution events mostly
focuses on the assessment of real values or the magnitude of air pollution events. For
example, various statistical techniques have been proposed for modeling and forecast-
ing the magnitude of air pollution events, such as neural networks and deep learning
models [20-22], spatial temporal modeling [23,24], analysis of air pollution’s relation-
ship with related meteorological variables [25-27], multivariate analysis [28,29], stochastic
modeling [30-32], and many more. On the other hand, studies that analyze the severity
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effect of air pollution commonly focus on the impact on health aspects. For instance,
Vivanco-Hidalgo et al. [33] found that initial stroke severity is influenced by the effects of
outdoor air pollution. Domingo and Rovira [34] reported that the severity of respiratory
viral infections indicates a clear association with air pollution concentration. Meanwhile,
Marques and Domingo [35] found that the effect of COVID-19 patient severity was related
to exposure of various air pollutant variables.

Based on a literature review, no specific study has been done to investigate the behav-
iors of air pollution events based on their severity size. Thus, this study tries to fill this
gap by proposing the concept of severity measure as an alternative approach in evaluating
the characteristic of unhealthy air pollution events. Prior to the determination of air pollu-
tion severity size, information about monsoon seasons will be used to derive reasonable
independent data points to represent extreme air pollution events. Thus, the technique of
the generalized extreme-value (GEV) model can be used for the analysis of air pollution
severity size. In parallel with that, the return period information for pollutant severity,
which was derived from the GEV model, can be used to provide a basis for measuring the
risk of recurrence of extreme pollution events. To summarize, the objectives of this study
are as follows:

1. To analyze the behaviors of an air pollution event based on the measure of severity size;

2. To determine a suitable statistical model for describing the probabilistic behaviors of
air pollution severity size;

3. To evaluate the expected risk of air pollution severity size based on the concept of
return period.

This paper is organized as follows. Section 2 describes the study area and data.
Section 3 describes the statistical methodologies used in this study. Next, the results and
discussion are described in Section 4. In Section 5, some conclusions are drawn.

2. Study Area and Data

Klang is one of the largest cities in Malaysia, with a land area of approximately 573 km?.
It is located at a latitude of 101°26'44.02” E and longitude of 3°2°41.70” N. Figure 1 shows
the map of Peninsular Malaysia with the Klang location [36]. Klang is actively involved
with many important industrial and economic interests for Malaysia and is a center for
import and export activities that operate in Port Klang. Klang has been recognized as the
13th busiest trans-shipment port and the 16th busiest container port in the world. However,
this scenario has elevated the risk of atmospheric pollution in Klang. In conjunction with
this issue, the API behavior in Klang must be analyzed to facilitate the planning and
mitigation of the risks of extreme air pollution events. Thus, hourly API data for the period
covering 1 January 1997 to 31 August 2020 are analyzed in this study.

In Malaysia, air quality status at a particular time is measured using the Air Pol-
lution Index (API). The API was first adopted and established in 1996 by the Depart-
ment of Environment Malaysia to provide comprehensible information about the sta-
tus of air quality to the public. The technique used to develop the API is almost sim-
ilar with the Pollutant Standard Index by the United States Environmental Protection
Agency [37,38]. Generally, information on five dominant sub-pollutant indices, namely,
nitrogen dioxide (NO,), sulfur dioxide (S5O;), ozone (O3), suspended particulate matter of
less than 10 microns (PMjg), and carbon monoxide (CO), are integrated, with the highest
values of these indices representing the API values at a particular time. According to
Al-Dhurafi et al. [39], PMj( and O3 are the main emission sources in this region.

Figure 2 illustrates the process of determining the API value. On the basis of the
API value, the breakpoints of 50, 100, 200, 300, 400, and 500 are referred to as thresholds
for categorizing API values that correspond to their associated health status [38,40], as
described in Table 1.



Mathematics 2022, 10, 3004

30f15

B0 / Kyong., s
' % 4 »-w Bal
o "'L 4 Puncak Alam y’
3
550 .:f y ‘,"' Sungal Buloh s: SIS
o Nk ,
e KérA’:,: -
L 7 DAMANSARA
L) B {5 i
Kapar 1@ 2 e 2 i X\ ua
s b= Ppetaling Jaya % .
BTV D ow :
31 SETIAALAMY 'u L L
= y 2 (]
£ SELANGOR' J
OTY.
§ § Subang Jaya
= = Jlau Ketam g B3 Puchong
—_ i | Pulau Klang o} n
\ 10 2 ;—
. 0] ‘ 4
Kualaldrﬁﬁur' 3.0- Tengah Port Klang KOTA ‘)

i [Nt e KEMUNING BN e
1angsiantar KLANG P.URA'JAVA Y 1. 1€l 181 L) L o
EGE % s '
Sy Pulau cre S

? 3 v Mat Zin L)
NoRTRagiATRA MAACCA g £ )
2-5 5 S F o ulau Pintu 5 Telok 2% Cyberjay
R 1 x Gedong ulau Indah Panglima ]
$ -g 3 Dumai | g y
%3Padan ) o . 29 Garang
Scdem:uan < JOHOR Carey Island —_— .

oy oo s"ng :;re Jenjarom s o]

- w2

ﬂ:\ i ; e Careylsland - r

5 %ﬁ H 0

et 0
le e ay Pekanbaru £201 -/ Kl X
Goog ‘130.\ . 102 ny Map data £2019 Google . S G 9 ; ,.;,?n,‘,‘?;mmn
. 101.3 1014 1015 101.6
Longitude )
Longtitude
(a) (b)
Figure 1. (a) Map of Peninsular Malaysia. Klang is identified by the red dot; (b) Map of Klang.
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Figure 2. Process of determining the API value [41].
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Table 1. API values and their corresponding health effects and advice.

API Status Health Effect Health Advice
. . Outdoor activities are not restricted.
0-50 Good Low pollution without a bad effect on health. Maintain healthy lifestyle.
B Moderate pollution that does not pose any Outdoor activities are not restricted.
>1-100 Moderate bad effect on health. Maintain healthy lifestyle.
Worsens the health condition of high-risk Outdoor activities for high-risk people are
101-200 Unhealthy people, i.e., people with heart and limited. The public needs to reduce extreme
lung complications. outdoor activities.
"i\cf)(l)zfzgz;}tf hﬁalstil::aclo :;ieﬁ?snesg}i lce)‘(/)vell;e s Elderly and high-risk people are prohibited
201-300 Very Unhealthy . Py 19€8 0f peob from outdoor activities. The public is
with heart and lung complications, affects ) . L
: advised to refrain from outdoor activities.
public health.
. . Elderly and high risk people are prohibited
301-500 Hazardous Hazardous to h.l gh-risk people and from outdoor activities. The public is
public health. . . L
advised to refrain from outdoor activities.
. . The public is advised to follow orders from
>500 Emergency Hazardous to high-risk people and the National Security Council and always

public health.

follow the announcements in mass media.

3. Statistical Methodologies
3.1. Air Pollution Severity Size

Based on Table 1, an API value higher than 100 indicates the occurrence of unhealthy air
pollution events. Thus, information about the duration of unhealthy events can be derived
based on consecutive API values higher than 100 that occur for a consistent period. Specifically,
the duration of unhealthy air pollution events can be described mathematically as [42]:

N
D; =Y Ii(APL), fori=1,2,3,...,n, )
j=1

where D; represents a random variable for pollution duration,j=1,2, 3, ..., N represents
an observe time series data with N is the total number of observations,andi=1,2,3,... ,n
represents i-th air pollution event with # as the total number of air pollution events that
occur throughout the period of 1 January 1997 to 31 August 2020. Then, for each particular
i-th air pollution event, the indicator function I;(API;) is used to represent a data points
with unhealthy state (API > 100) as follows:

{1, if API; > 100,
(APE) = {o, if API; < 100. @)

In addition, based on the duration size, this study proposes another characteristic of
air pollution event, i.e., severity. Severity can be measured as cumulative API values greater
than 100 that correspond to their duration D;. Mathematically, severity can be described as:

D;
S; =Y API;, for VD, 3)
j=1

where S; represents a random variable for the severity of pollution events. The higher the
value of severity, the more serious the air pollution event [41]. The relationship between
these two air pollution characteristics is illustrated in Figure 3. A prolonged duration of any
unhealthy pollution event implies a high level of severity of that particular event, which
indicates the occurrences of extreme pollution event. This scenario negatively affects public
health, disrupts economic activities, and deteriorates environmental ecosystems. Thus,
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this study proposes the application of the extreme-value approach as a tool to evaluate the
behavior of pollution severity and thus provide an improved understanding regarding
this matter.

Time series fluctuation of air pollution index

si= air pollution severity size
di= air pollution duration size

API value

T T
0 50 100 150

Time (hourly)
Figure 3. Air pollution characteristics based on their duration and severity [32].

3.2. Maximum-Values Based on Monsoon Seasons

The pollution concentration in Klang is positively correlated with ambient tempera-
ture but negatively correlated with humidity factor. This scenario has been reported by
Azmi et al. [43], who found that a high temperature increases the quantity of biomass
burning and the re-suspension of materials, such as soil dust from the Earth’s surface. By
contrast, high humidity influences the number of rain events, where the number of particles
is reduced due to the wash-out processes of the atmospheric aerosols in the atmosphere.
In addition, wind speed and UV radiation variables were found to have an effect on the
concentration of particulate matter in the Klang area. All these factors can be related to
the occurrence of monsoon seasons in Malaysia. Thus, this study investigates extreme
pollution behavior by integrating information on monsoon seasons, which is used as block
maxima on the generalized extreme-value (GEV) model.

Malaysia experiences recurrent annual monsoon seasons known as northeast and
southwest monsoons. The northeast monsoon commonly occurs from November to March.
This monsoon occurs in tandem with the winter season on the Asian continent. At the same
time, the summer season occurs on the Australian continent. Thus, the Asian continent
experiences low temperature (high-pressure area) while the Australian continent is having
high temperature (low-pressure area). This phenomenon leads to the movement of wind
from the high-pressure area of Asia to the low-pressure area of Australia due to the
difference of temperature between these two continents. At this time, the wind blows at a
speed of 10-20 knots, with its direction coming from the east or northeast of Peninsular
Malaysia and then deflected toward Australia when crossing the Equator. By contrast,
the southwest monsoon commonly occurs from June to September. During this period,
the process is reversed, i.e., the Asian continent is having the summer season while the
Australian continent is having the winter season. Thus, the winds blow from the Australian
continent (with low air temperature and high pressure) to the Asian continent (with
high air temperature and low pressure). The wind at this period blows with a speed of
15 knots, with its direction coming from Australia to the northwest across the Indian Ocean,
and while crossing the Equator, the wind is deflected to the northeast before arriving
southwest of Peninsular Malaysia. Both of these monsoon seasons bring heavy rains,
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which imply a decrease in temperature and increase in humidity [44]. Figure 4 illustrates
the process of the northeast and southwest monsoon seasons in Malaysia. In between
these two monsoon seasons, transition monsoon seasons commonly occur in April-May
and September—October. During these periods, the wind blows at a lower speed (less
than 10 knots) and fluctuates in terms of its direction. Moreover, humidity decreases and
temperature increases during the period.

40

30+

20+

10

104

20+
AUSTRALIA
LEGEND
- Wind Direction 30+ - Wind direction
T T T T T T ‘F’-’:\A T
80 920 100 110 120 130 140 150 80 90 100 110 120 130 140 150
(a) (b)

Figure 4. Process of the formation of the (a) northeast and (b) southwest monsoon seasons in
Malaysia [44].

To summarize, each different monsoon season exhibits different meteorological phe-
nomena that influence the behaviors of air pollution events. Thus, a maximum value of
API data between different monsoon seasons will intrinsically provide good independent
properties of extreme events. In this study, for the purpose of extreme-value modeling and
analysis, a block maxima size will be determined based on four different monsoon seasons.

3.3. Extreme-Value Modeling

The block-maxima approach provides a tool to determine an extreme air pollution
event that can be described by using an extreme-value model [45,46]. Let random vari-
able Xj, Xp,..., X, indicate severity data, which intrinsically follow a density function
F. Then, to evaluate an extreme event, the maximum value of severity on some blocks
Y = max(Xj, X, ..., Xy) need to be determined. In parallel, the probability behavior of the
extreme event dictated by the density function of the random variable Y can be determined
as follows:

P(Y<y)=P(X;<x,Xp<x,...,.Xn <y) =F'(y). 4)

Although the independent and identical conditions on original random variable
X1,Xa, ..., Xy are not satisfied, the density of F” may still be able to provide an accurate
approximation probability model for the distribution of Y [47]. This flexibility enables
an extreme-value model based on the block-maxima approach to be a popular tool for
analyzing various kinds of problems, including a complex phenomenon [48-50]. However,
in real applications, an exact density function of F that represents the distribution of
the phenomenon being studied is always unknown. Thus, before implementing it in
Equation (4), F is estimated on the basis of the observed data. However, small discrepancies
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in terms of F determination lead to substantial discrepancies of F”. This scenario affects
the subsequent analysis involving F", thus contributing to a large error that consequently
produces wrong results. Fortunately, this problem can be overcome by assuming the density
function F to be unknown. Then, F” can be obtained as an approximation to the limiting
form of its density function [51]. This limiting distribution G(y) is valid if a sequence of
constants {a, > 0} and {c, } exists such that:

P{Y_C” §y}%G(y), asn — oo, 5)

an

where G(y) is also a nondegenerate function [52]. As described in various literature, a
statistical model that satisfies the limiting distribution properties in Equation (5) is known
as a GEV distribution, which is given as:

exp{[l —K(y%g)} '](}, forx #0,
—

opl-ewp{-()}] frs o

where ¢, « and « indicate location, scale, and shape, respectively. Then, by inverting G(v),
its quantile function can be obtained [53] as:

) _ (e[ (= In(p))"], forx #0,
G 1(Pl§/04/7<) —{ g-&ln(—ln(pli), ]forKZO. @

G(y) = (6)

The information provided by the quantile function is useful for determining the
return period of an extreme event. Return period is a popular tool in measuring a risk of
recurrence of some extreme event [54,55]. Specifically, it measures the probability of the
T-time block extreme event which exceeded is % in every period of time which defined by
block-maxima size. For a given return period x7, the critical value of the pollution severity

can be determined on the basis of the following equation:

1

P(Y >yr) =Glyr) = 7 ®)

Then, based on Equation (8), the estimated maximum pollution severity value corre-
sponds to a particular return period, and T can be determined as:

yr = G ! <T]_,l,§, a, K>. 9)

3.4. Methods of Parameter Estimation

The parameters of the GEV model need to be estimated in the process of modeling
an extreme air pollution event. Three popular methods are considered in this study to
determine the best fitted results in terms of the statistical modeling on severity size of air
pollution event.

3.4.1. L-Moment Estimation

The L-moment method estimates the parameter of a model based on the concept
probability weighted moment [56]. The L-moment estimators for the GEV model are given
as follows:

é:ﬁl—%g—r(w;&)}, (10)
. Aok
oA+ R) (11)

& = 7.859c + 2.9554¢, (12)
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2 . log(2)
(3+13) log(3)

the terms of A1, Ay, A3 and 5 = A3/, must be estimated from the probability weighted
moments determined from the following equation:

where ¢ = . On the basis of Equations (10)-(12), the L-moment estimator for

a {1 —(r+1)"T(1+ K)}

Br=2¢+ x(r+1)

, (13)

such that, Ay = Bo, A2 = 21 — Bo and A3 = 682 — 681 + Bo [57]. Here, the unbiased
estimator for B, is determined as follows [58]:

G- -2)(i-3)...(i—71)
br—2|: nn—1)(n-1)...(n—r)

y(i)], for=0,1,2,..., (14)
i=1

3.4.2. Maximum Likelihood Estimation (MLE)

The MLE method determines the value of the parameters such that they maximize the
likelihood that the phenomenon described by the model produces data that are observed.
On the basis of the GEV model in Equation (6), their log-likelihood function when x # 0 is
given as follows:

Al

((6ly) = ~nlog(x) + 21 (3-1) G- @, (15)

where 6 = [, a, K}/ and z; = [1 — (x/a)(y; — ¢)] [59,60]. Equation (15) does not provide an
analytical solution for each parameter ¢, « and «. Thus, a numerical optimization technique
must be used to determine the final solution [52,61].

3.4.3. Generalized Maximum Likelihood Estimation (GMLE)

In the GMLE approach, the parameter x in the GEV model is assumed to be a random
variable with a range [k, k] and can be described by some form of beta prior density [60],
given as:

p-1 -1
() = (05+x)"7(0.5+«)
B(p.q)

where B(p,q) = T'(p)T'(q)/T(p + q). Thus, on the basis of this prior density, the generalized
likelihood function can be computed as:

(16)

GL(¢,a,x|x) = L(&, o, x|x) 7T (x). (17)

Then, the GMLE estimator for the parameters ¢, « and x can be obtained by maximizing
the generalized log-likelihood function, which corresponds to the modes of posterior
distribution of their parameter. In this study, R software (Vienna, Austria) corresponding
to extRemes package [61,62] is used to conduct extreme value analysis.

4. Results and Discussion

Before a detailed analysis is conducted, it is important to discuss some preliminary
insights based on the descriptive statistics of the API data in Klang (presented in Table 2).
Based on the observed hourly API data from January 1997 to August 2020, the mean API
value is approximately 55.221 with a large standard deviation of 20.970, which indicates
that the API value in Klang has high variability. The range of API values is also large,
as determined by the difference between their minimum (0) and maximum (543) values.
In addition, the measure of skewness and kurtosis indicates asymmetric behavior. These
scenarios are presented clearly in Figure 5. The distribution of API data has a high variability
accompanied with high skewness behavior due to long tail properties that exist in the
upper tail of its distribution. Most of the time, the API status in Klang indicates a good
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Number of days

(API < 50) and healthy (50 < API < 100) status. However, as mentioned previously, this
study only investigates the occurrence of events above the unhealthy (API > 100) status,
which could be defined as an unhealthy air pollution event. In particular, the proportion of
data points (hourly) with unhealthy API is about 0.0245. That is, the total observed number
of hours for unhealthy events (API > 100) from January 1997 to August 2020 is about 4980 h.
In addition, Figure 6 shows the bar plot for yearly number of days with unhealthy APL
Based on Figures 5 and 6, the occurrences of extreme air pollution events represented by
unhealthy, very unhealthy, hazardous, and emergency status is small. However, these
events provide the most valuable information about the severity of a pollution event. These
events exert negative effects on human health, disrupt economic activities, and deteriorate
environmental ecosystems. Thus, these events are crucial for data analysis, particularly
pollution risk management and mitigation.

Table 2. Descriptive statistics for the air pollution data in Klang.

Data Mean Minimum Maximum Std. Deviation Skewness Kurtosis
Observed 55.221 0 543 20.970 4537 65.133
API
Good Air Moo, Distribution of API Data in Klang (January 1, 1997 to August 31, 2020)
Quality State State

S _ (P=0.3752) E(p:g 6003)

0.0

Very Unhealthy Air Hazardous Air Quality Emergency Air Quality
Quality State ! State x State
(P=0.00063) : (P=0.00051) : (P=0.00018)

Density
0.02
1

0.01
1

0.00
L

r T T T T T 1
0 100 200 300 400 500 600

APl value

Figure 5. Distribution of API data in Klang corresponds to their air quality status.

Yearly Number of Days with Unhealthy API

1997

1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

Figure 6. Bar plot for yearly number of days with unhealthy API.
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Based on the API data, the severity size on each occurrence of an unhealthy air
pollution event (API > 100) can be computed using their duration and severity measure as
described in Equations (1) and (3). On a basis of severity data, a further investigation on
the behavior of extreme pollution events can be done using a statistical analysis based on
extreme-value model that corresponds to the maxima block approach on each monsoon
season. Table 3 shows a comparison of the parameter estimations for the fitted GEV model.
A different estimation method is found to produce a different result. Thus, the method that
produces a more accurate result must be determined before a conclusion can be derived
from the fitted GEV model. Based on the results of parameter estimation, Figures 7 and 8

show a graphical representation of the model fitted. Both figures indicate that MLE is not
a good method to deal with this issue. By contrast, the GMLE and L-moment methods
produce good results with almost a similar performance. The fitted GEV density plots
based on GMLE and L-moment are found to be able to represent well the extreme severity
size of pollution event in Klang. The same conclusion can be drawn from a PP-plot, in
which the model probabilities for each data point are found to indicate a smaller difference
from their empirical probabilities. These findings are consistent with the results of the
estimator analysis that have been reported by Martins and Stedinger [60].

Table 3. Comparison of the results of parameter estimation for the fitted GEV model.

Estimated Parameter
Model
Location (¢) Scale () Shape (k)
GEV based on L-moments 1790.661 2975.936 0.452
GEV based on MLE 1584.359 2997.820 1.824
GEV based on GMLE 1996.137 2663.216 0.613

GEV Modeling (MLE approach) GEV Modeling (GMLE approach) GEV Modeling (L-moment approach)

0.00020

--- Modeled Density

0.00020

--- Modeled Density

0.00020

--- Modeled Density

0.00018
0.00018

0.00015

Density
0 UU‘UWU
Density
0 UUP‘IU
Density

0.00010

0 UUIUUS
U.UUIUU5

0 UUIUUS

0.00000

0.00000

T T
0 10,000 20,000

0.00000

T 1 T T T
30,000 40,000 0 10,000 20,000 30,000

Severity

40,000 0 10,000 20,000 30,000
Severity

Severity

1
40,000

Figure 7. Comparison of GEV modeling using different estimation methods.
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PP-plot (GEV with MLE approach)

PP-plot (GEV with GMLE approach) PP-plot (GEV with L-moment approach)

Model Probabilities

Model Probabilities
Model Probabilities

T
0.0 02 04

Empirical Probabilities

T
06

T T T T T
0.8 10 00 0.2 04 06 08 1.0 0.0 02 04 0.6 08 1.0

Empirical Probabilities Empirical Probabilities

Figure 8. PP-plot on the fitted GEV model based on different estimation approaches.

Based on the fitted GEV model, information regarding the return period and return
level of the severity size can be determined to measure the risk of recurrent extreme air
pollution events. Return period provides information about the estimated time interval
between the re-occurrence of some particular return level [63,64]. In this study, a return
level refers to air pollution events with a particular level of severity size. For example, if a
return period of some particular air pollution event is about 10 years, then its probability of
occurring is equal to 1/10 during any one monsoon season. However, it does not mean
that if an air pollution event has occurred within a 10-year return period, then the next
air pollution event will occur within the next 10-year period as well. To the contrary, this
means that, in any given monsoon season, there is a 10% chance that an air pollution event
will occur, regardless of when the last similar event occurred. Figure 9 shows the results of
return level estimates based on the GMLE and L-moment approaches. Both plots show that
the estimated return level curves are found to be similar within the range of the observed
data. However, for the range beyond the observed data, the interpolation of severity return
level indicates differences. The return level estimate for maximum severity size based on
GEV modeling with GMLE is found to be increased even more in comparison with the
return level estimate based on GEV modeling with the L-moment approach. The confidence
intervals of GEV modeling with GMLE are found to be much wider than GEV modeling
with the L-moment approach, particularly for long return periods. Given that a small
uncertainty is desirable, GEV modeling with the L-moment approach could be trusted,
which implies that its inferences to the data of air pollution duration would be preferred.

Based on Figure 9, the return period shows the dependence between the return period
that referred to time interval between the re-occurrence of some particular magnitude
of return level that corresponds to a level of air pollution severity size. In general, from
Figure 9, it is found that the lower return level appears more often that the higher return
level. For the estimation return period of less than 10 years, both plots provide a good
approximation. This result provides an agreement with Figures 7 and 8, i.e., the GEV model
is an appropriate approach to provide the estimation of the return level for extreme air
pollution events, particularly for a period of less than 10 years. In parallel, Table 4 presents
the results of the return level estimation of air pollution severity in a short return period of
extreme pollution events.
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Figure 9. Return level estimates based on the GMLE and L-moment approaches.

Table 4. Return level estimates corresponding to their return period.

Return Period Return Level Estimation Air Pollution Severity

2 years 3090.557
3 years 5206.969
5 years 6975.709
6 years 8546.659
7 years 11,319.008
8 years 12,576.375
9 years 13,769.592
10 years 14,909.100

According to Masseran [41], the air pollution events with a severity size greater than
1221 obey the power-law mechanism. The power-law mechanism describes the occurrence
of extreme events corresponding to the existence of a long-tail properties (rare phenomena)
in their distribution. Thus, it does not matter whether the pollution event is occurring with
a duration of 10 days with 120 severity size, or in a single-day pollution incident with an
API of 300. As long as the cumulative effect of API severity size for any pollution event
is found to be greater than 1221, it is advisable that precautionary measures should be
taken. Table 4 justifies that in the current scenarios, without any intervention, the estimated
return levels for air pollution severity in Klang are found to exceed the threshold of
1221 within a period of 10 years. This scenario is most likely to occur in parallel with
various related factors, particularly (i) rapid development around the Klang area involving
the construction of many new houses and factories [65], and (ii) increasing in the number of
motor vehicles [66]. This high severity implies a higher risk for the occurrences of pollution
events that can negatively affect public health and disrupt the economic activities and
environmental ecosystems of the country. Thus, additional prevention policies and stricter
enforcement should be implemented to reduce and manage the risks of these extreme
pollution events and thus improve environmental sustainability.

5. Conclusions

This study was conducted to deal with the issue of extreme air pollution events. For
this purpose, an alternative measurement known as severity was proposed to represent
the characteristic of extreme air pollution events. Specifically, information about severity
is derived from the cumulative effect of air pollution events that can be determined from
unhealthy API values that occur in a consecutive period. The higher the value of severity,
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the more serious is the air pollution event. On the basis of severity, an analysis of extreme
air pollution events can be obtained through the application of the GEV model. A case
study was conducted using hourly API data in Klang, Malaysia, from 1 January 1997 to
31 August 2020. Given that the air pollution in Malaysia is influenced by the effect of
monsoon seasons, the block-maxima approach was integrated with information about
monsoon seasons to determine suitable data points on GEV modeling. To determine the
best-fitting GEV model, three different estimation methods were compared. The GMLE
and L-moment methods can produce good GEV fitted results on modeling the severity
size of air pollution events. On the basis of the fitted GEV model, information about the
return period of extreme pollution severity in Klang was computed. The result showed
a high expected level of severity size for unhealthy air pollution events in Klang. This
result implies a higher risk of occurrences of pollution events with a high severity size that
can negatively affect public health and disrupt the economic activities and environmental
ecosystems of the country. Thus, additional prevention policies and stricter enforcement
must be implemented to reduce and manage the risk of these extreme pollution events and
thus improve environmental sustainability. However, a limitation of this study is related to
interpolation of air pollution severity size for a long return period, in which the confidence
interval for interpolation is found to be wider and corresponds to a longer duration of
return periods. This scenario implies a decreasing precision of interpolation. Thus, for
future research this study recommends the adaption of Bayesian technique with a proper
prior knowledge on the parameters of GEV model to be overcome this issue.
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