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Abstract: The degradation of Lithium-ion batteries is usually measured by capacity loss. When
batteries deteriorate with usage, the capacities would generally have a declining trend. However,
occasionally, considerable capacity regeneration may occur during the degradation process. To better
capture the coexistence of capacity loss and regeneration, this paper considers a jump-diffusion
model with jumps subject to the exponential distribution. For estimation of model parameters, a
jump detection test is first adopted to identify jump arrival times and separate observation data into
two series, jump series and diffusion series; then, with the help of probabilistic programming, the
Markov chain Monte Carlo sampling algorithm is used to estimate the parameters for the jump and
diffusion parts of the degradation model, respectively. The distribution functions of failure time
and residual useful life are also approximated by the Monte Carlo simulation approach. Simulation
results show the feasibility and good performance of the combined estimation method. Finally, real
data analysis indicates that the jump-diffusion process model with the combined estimation method
could give a more accurate estimation when predicting the failure time of the battery.

Keywords: degradation model; jump-diffusion process; jump detection; Markov chain Monte Carlo
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1. Introduction

Nowadays, lithium-ion (Li-ion) batteries have become the dominant power storage
solution for many high-tech products and mobility applications. Therefore, controlling
the Li-ion batteries in a robust, reliable, and optimal way is an indispensable task for both
battery cell producers and product manufacturers. One essential battery management
function is remaining useful life (RUL) prediction, which estimates the length of time an in-
use battery will continue to operate prior to its end-of-life [1]. The information about RUL,
central in prognosis and health management for batteries, could help to locate and replace
the deteriorated batteries before their failures to avoid serious potential consequences
ranging from operational damage to performance degradation and even catastrophic
failure. Undoubtedly, accurate RUL prediction is vital. It requires good knowledge of the
mechanics of aging in Li-ion batteries as well as proper modeling for battery degradation.
Generally, battery aging manifests itself in the capacity loss, representing the reduced
ability to store energy [2]. Hence, a promising way for RUL prediction is to make use of
capacity loss as a degradation signal for batteries and develop a suitable degradation model
describing the aging over time.

In reliability analysis, the degradation is treated as a damage accumulation process for
a product, which occurs during the entire life cycle and eventually leads to a product failure
when the accumulated damage reaches an end-of-life criterion. For many applications,
the physical degradation can be very difficult to observe, but there always exist some
manifestations that are associated with the degradation process and can be easily tested.
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The capacity of Li-ion batteries is apparently such a manifestation, as it fades with the
aging of batteries and is easy to measure. Once the capacity fades to 80% of rated capacity,
the battery is deemed to have failed [3]. Thus, the RUL for a battery can be refined to the
remaining working time from the current time point until the capacity loss reaches up to
20% of rated capacity.

Degradation modeling for Li-ion batteries attempts to characterize the evolution of the
capacity loss and predict the RUL. By far, a significant number of degradation models have
been proposed, which can be generally classified as model-based methods and data-driven
methods. Data-driven methods use different machine learning techniques to capture the
degradation evolution from measured data and usually are easy to implement and good at
dealing with nonlinearity. The techniques include support vector machines [4], deep neural
networks [5], long short-term memory network [6], etc. However, all these techniques
require a relatively large quantity of training data to ensure good performance, which may
not always be feasible for battery capacity data. Conversely, model-based methods do not
have the requirement for data size because they use physical or mathematical models to
describe the degradation process. The most intensively used model is the Wiener process,
which is well-known due to its nice physical explanations and mathematical properties [7].
It owns the ability to describe a non-monotonic degradation evolution path, which makes
itself distinct from other stochastic process models, such as the Gamma process and inverse
Gaussian process. And this ability is indeed the expected trait when modeling the capacity
loss of Li-ion batteries, as the capacity change with repeated charge-discharge cycles has a
fluctuation characteristic, as shown in Figure 1. This figure depicts the capacity of battery
#6 with operational cycles based on the data set provided by [8]. Taking the Wiener process
as a basic model, many research works have focused on the extensions that could improve
model flexibility and applicability. One commonly used extension method is to consider a
nonlinear drift parameter, which can be assumed in the form of an integral with a variable
upper limit [9], a multi-stage function [10], and even a stochastic process [11]. At the same
time, various filtering techniques can be incorporated with state-space-based prognostic
models so that the parameters of degradation models can be updated sequentially with
new observations [12–14]. Moreover, random effect and measurements error can be also
involved in models to capture the heterogeneity of batteries and the variation caused by
environmental factors or measurements [15,16]. Besides the Wiener process, the Gaussian
process is another stochastic model that can be used for modeling the degradation of Li-ion
batteries; see [17,18] for reference.

The methods discussed above can effectively describe the general decline trend for the
capacity of batteries with operational cycles, but unfortunately, they do not sufficiently take
into account the fact that the fluctuation represents not only the accumulative effect from
numerous uncontrollable factors but also the capacity regeneration rooted in the Li-ion bat-
teries. The capacity regeneration phenomenon, also called the relaxation phenomenon, is
accounted for the self-recharge during the rest or relaxation period. When rest, battery cells
are allowed to stand without passing a current through an external circuit. Then the reaction
products that build up around the electrodes in cells would have a chance to dissipate, lead-
ing to an increase in the available capacity for the next cycle [19]. Many works have noticed
the important role these occasionally considerable capacity changes play in degradation
modeling and try to model the frequency and size of the changes mathematically. Zhai
and Ye [20] and Shen et al. [21] introduced heavy-tailed non-normal measurement errors to
capture the capacity regeneration by treating it as abnormal observation. However, this
type of methods ignores that the regeneration indeed alters the degradation evolution of
batteries. Saha and Geobel [19] considered the positive relationship between the self-charge
and the rest period between two successive charge-discharge cycles and then modeled the
capacity regeneration by an exponential process and estimated the RUL in the particle filter
framework. Zhang et al. [22] regarded the capacity loss and regeneration as a stochastic
switching working mode, and represented the mode by assuming piecewise functions for
the drift coefficient of a diffusion model. Zhang et al. [23] used a random jump process to
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describe the capacity regeneration phenomenon and proposed a jump-diffusion model for
RUL prediction.

Figure 1. The capacity evolution of battery #6 with operational cycles.

Since the capacity regeneration distinguishes itself from the general decline trend by
sudden and substantial jumps, it may be more efficient to separate capacity observations
into different groups so that the general degradation trend and the capacity regeneration
can be modeled respectively. Orchard et al. [24] presented and evaluated different methods
for the detection of capacity regeneration phenomena in Li-ion batteries and developed
the corresponding nonlinear, non-Gaussian state-space models. Qin et al. [25] adopted a
support vector machine and hyperplane shift model to detect long rest time intervals and
used Gaussian process and nonlinear models to describe the capacity loss and recovery.
Xu et al. [26] identified the effective relaxation periods by comparing each period to a
subject threshold and then developed a degradation model by modeling and combining
three different modes that occur in capacity fade evolution.

Our paper also focuses on how to better describe the coexistence of capacity loss
and regeneration and intends to model them separately with the help of a jump detection
test. Enlightened by the similarity between the jumps in financial asset prices and the
capacity regeneration of Li-ion batteries, we consider a jump-diffusion process model, of
which the diffusion part is a geometric Brownian process and the jumps are assumed to
follow an exponential distribution. The geometric Brownian process is well known as the
Black-Scholes option pricing model and also provides another solution to deal with the
nonlinearity in degradation modeling [27]. Based on the jump-diffusion process model, the
nonparametric jump detection test proposed by Lee and Mykland (LM) [28] is adopted to
identify the jump arrival times and then separate battery degradation data into two series,
jump series and diffusion series. With the help of probabilistic programming, the Markov
chain Monte Carlo (MCMC) sampling algorithm is utilized to estimate the parameters for
the jump and diffusion parts of the degradation model, respectively. Moreover, distribution
functions of failure time and residual useful life (RUL) are discussed. Simulation results
show that the jump-diffusion model and the estimation method are feasible in modeling
the battery capacity data and have a good performance in predicting the RUL.

The rest of the paper is organized as follows. Section 2 presents the formulation of
the exponential jump-diffusion model. Section 3 presents the LM jump detection test, and
also discusses the estimation of the model parameters and failure time/RUL distributions.
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Section 4 presents Monte Carlo simulations and the results. In Section 5, a Li-ion battery
capacity data set is analyzed. Finally, Section 6 concludes the whole work.

2. Formulation of the Degradation Model

Let Yt denote the capacity of a Li-ion battery at time t. As usual, the degradation of
this battery is the process {Yt, t ≥ 0}. Suppose that the degradation process follows a single
exponential jump diffusion process model

dYt = Yt

(
µdt + σdBt + [exp(X)− 1]dNt

)
, t ≥ 0, (1)

where µ is the drift rate, σ is the diffusion coefficient with σ > 0, Bt is the standard Brownian
motion, Nt is a homogeneous Poisson process with intensity λ, and X is an exponential
distributed random variable with mean 1/η, X∼exp(η). Assume that Bt, Nt and X are
independent with each other. Applying Ito’s lemma on (1) yields

d log Yt = (µ− 1
2

σ2)dt + σdBt + XdNt, t ≥ 0. (2)

Further denoting ν = µ− 1
2 σ2 and integrating the differential Equation (2) over (0, t],

we can obtain the solution to (1), i.e., the integral form of (1),

Yt = Y0 exp
(

νt + σBt +
Nt

∑
i=1

Xi

)
, t ≥ 0, (3)

where Y0 is the initial value, and ν is the drift rate for the logarithm of Yt.
From (3), it is clear that the considered jump-diffusion model is based on the geometric

Brownian motion, which corresponds to the general decline trend of capacity, and at
the same time, includes a homogeneous compound Poisson process, which captures the
occasionally occurred capacity regeneration. This setting implies that there exist two types
of variation in the degradation model, of which the smaller one is from the diffusion
process, while the larger one is incurred by the jump process.

As we know, the summation of random variables usually has complicated distribution
functions, which would result in parameter estimation, a cumbersome job. Such a problem
also exists in the model (3). Either the summation of σBt and ∑Nt

i=1 Xi or even ∑Nt
i=1 Xi

itself reminds us the difficulty of using traditional estimation methods, such as maximum
likelihood estimation, when estimating the model parameters. A possible way to deal with
this problem is to simplify the model (3) by approximating the compound Poisson jump
process by a Bernoulli jump process, which was discussed by Ball and Torous [29,30]. To
do so, we decompose (3) into a small time interval (t, t + ∆t),

∆ log Yt = ν∆t + σ∆Bt +
∆Nt

∑
i=1

Xi, t ≥ 0, (4)

where ∆ log Yt = log Yt+∆t − log Yt, ∆Bt = Bt+∆t − Bt is the increment of the Brownian
motion, and ∆Nt = Nt+∆t − Nt is the number of jumps that occur at (t, t + ∆t]. Because the
occurrence of capacity regeneration is not frequent during the entire measurement period,
the Bernoulli jump process can be put forward as an appropriate model for capacity jumps.
The distinguishing characteristic of the Bernoulli jump process is that over a fixed period of
time, either no self-recharge impacts upon the capacity change or the regeneration occurs at
most once. Moreover, Ball and Torous [30] showed that, as the time interval gets smaller, the
Bernoulli process would converge to the Poisson process. Because of the simple structure
and nice properties of the Bernoulli jump process, we assume that during the small time
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interval (t, t + ∆t) there is at most one jump, and the jump occurs with a probability λ∆t.
That is,

P
( ∆Nt

∑
i=1

Xi = X1

)
= λ∆t, P

( ∆Nt

∑
i=1

Xi = 0
)
= 1− λ∆t.

Then ∆ log Yt in (4) can be simplified as

∆ log Yt = ν∆t + σ∆Bt + ZtXt, t ≥ 0, (5)

where Zt is a Bernoulli random variable with P(Zt = 1) = λ∆t, P(Zt = 0) = 1− λ∆t, and
Xt is the jump size subject to the exponential distribution with mean 1/η, Xt∼exp(η).

3. Parameter Estimation and RUL Prediction

To avoid computing the density function of σ∆Bt + ZtXt in (5), we use the LM jump
detection test together with the MCMC algorithm for estimating parameters instead of
those traditional estimation methods.

3.1. LM Jump Detection Test

The LM jump detection test adopted in this paper is proposed by Lee and Mykland [28]
with the original aim to identify jump arrival times in financial asset prices. This test is a
nonparametric test and refers to a single test at a certain time without assuming whether
there were or were no jumps before or after that time. If the detection of jumps over time is
expected, taking single tests over available times would work for the purpose.

Suppose that there is a fixed time horizon T, and n is the number of observations
in [0, T]. Observations of Yt, equivalently log Yt, occurs at discrete times 0 = t0 < t1 <
· · · < tn = T. The time interval between two successive observations is ∆ti = ti − ti−1. For
simplicity, assume ∆ti = ∆t = T/n, i.e., observation times are equally spaced.

To determine whether there was a jump that arrived at ti, the LM test considers a local
movement of the jump-diffusion process within a predetermined window size K. Based
on the previous K− 1 observations just before the testing time ti, the test statistics L(i) is
defined as

L(i) =
log Yti /Yti−1 − m̂i

σ̂(ti)
, (6)

where

m̂i =
1

K− 1

i−1

∑
j=i−K+1

(log Ytj /Ytj−1), (7)

σ̂(ti)2 =
1

K− 2

i−1

∑
j=i−K+2

| log Ytj /Ytj−1 || log Ytj−1 /Ytj−2 |. (8)

Note that m̂i is the average of the logarithmic change rate of Yt in the window and

used to estimate the change rate at the time ti. And σ̂(ti)2, called realized bipower variation
in [28], is a consistent estimator for the local variation only from the diffusion part of the
process. The work [28] showed in Lemma 1 that, with some conditions, as ∆t→ 0,

maxi∈Ān
|L(i)| − Cn

Sn
→ ξ, (9)

where ξ has a cumulative distribution function P(ξ ≤ x) = exp(−e−x), Ān is the set of
i ∈ {1, 2, . . . , n} so that there is no jump in (ti−1, ti],

Cn =
(2 log n)1/2

c
− log π + log(log n)

2c(2 log n)1/2 and Sn =
1

c(2 log n)1/2 ,

where c =
√

2/
√

π ≈ 0.7979.
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Given a significance level α, the LM test selects the 1− α percentile of the distribution of
ξ as the threshold for |L(i)|−Cn

Sn
. In this paper, we set α = 0.01. Then the threshold β∗ satisfies

P(ξ ≤ β∗) = exp(−e−β∗) = 0.99, which is equivalently β∗ = − log(− log(0.99)) = 4.6001.
Hence, the null hypothesis of no jump at ti is reject if |L(i)|−Cn

Sn
> 4.6001.

Applying the above LM jump detection test over time, we can separate the n obser-
vation times into two sets, one for the time points at which the test declares the presence
of a jump and the other for the time points at which no jump is detected. We denote
the two sets by Bn and BC

n , respectively. Correspondingly, the observations also can be
classified as either belonging to the jump series or to the non-jump/diffusion series. Let
Si = log Yti /Yti−1 , i = 1, 2, . . . , n. We can denote the jump series by SJ0 = {Si, i ∈ Bn}, and
the diffusion series by SC0 = {Si, i ∈ BC

n }.

Remark 1. Note that the test statistic in (6) is not applicable for the first K− 1 observation times,
t1, . . . , tK−1. When applying the LM test at these times, we narrow down the window size to i− 1,
i = 1, . . . , K − 1. That means to use all observations before ti to compute the statistic. Other
alternative ways to deal with the problem can be assuming no jump is detected at these times or
excluding the corresponding observations from parameter estimation, etc.

3.2. Parameter Estimation Based on MCMC Algorithm

To estimate the parameter θ = (ν, σ, λ, η)′ in the model (5), we need to expand the
diffusion series SC0 to accommodate all observation times by interpolating values at all
detected jump arrival times Bn. For i ∈ Bn, the latent observation from the diffusion part,
denoted by S′i , can be given via the moving average algorithm,

S′i =
{

(S1 + S2 + · · ·+ Sb)/b i ≤ b
(Si−b + Si−b+1 + · · ·+ Si−1)/b i > b

, (10)

where b is a predetermined lag. For i ∈ BC
n , simply let S′i = Si. Then we can have a modified

diffusion series SC = {S′i , i = 1, 2, . . . , n}. And the difference between Si and S′i can be
assigned as the jump size at each jump arrival time. Let Ji = Si − S′i . Then a modified jump
series SJ = {Ji, i ∈ Bn} is obtained. Based on these two modified series, an initial estimator
for θ can be derived. We denote it by θ̂LM, as it is a by-product of the LM jump detection
test. It is also referred to as the estimator based on the LM method in the following.

As the Wiener process has independent and stationary increments that are normally
distributed, the increments from the diffusion part of (5) follow a normal distribution with
mean ν∆t and variance σ2∆t,

(log Yti − Zti Xti )− (log Yti−1 − Zti−1 Xti−1) = ν(ti − ti−1) + σ(Bti − Bti−1)
i.i.d∼ N(ν∆t, σ2∆t), i = 1, . . . , n. (11)

As the diffusion series SC represents the increments from the diffusion part (11), nature
estimators for the drift rate ν and the squared diffusion coefficient σ2 are given by

ν̂LM =
1

n∆t
S̄′, (12)

σ̂2
LM =

1
(n− 1)∆t

n

∑
i=1

(S′i − S̄′)2, (13)

where S̄′ = ∑n
i=1 S′i/n is the average of the diffusion series SC. And σ̂LM =

√
σ̂2

LM.
For the jump part, an estimator for the intensity λ of the homogeneous Poisson

process is

λ̂LM =
nJ

n∆t
, (14)
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where nJ is the number of elements in Bn or the number of detected jump arrival times.
And the parameter for exponential jump η can be estimated by

η̂LM =
nJ

∑
nJ
i=1 Ji

, (15)

That is the reciprocal of the mean jump size, which is obtained by averaging the jump
series SJ .

With the initial estimator θ̂LM = (νLM, σLM, λLM, ηLM)′, we further adopt the MCMC
sampling algorithm to obtain a more accurate estimator for θ. The MCMC sampling
algorithm is carried out with the help of probabilistic programming, which is an emerg-
ing branch in statistical learning and can be implemented with the Python package-
PyMC3 [31,32]. PyMC3 is an open source framework and features several MCMC sampling
techniques, such as the Metropolis-Hastings sampler, the No-U-Turn Sampler (NUTS) [33],
and Hamiltonian Monte Carlo [34], etc. Here the Metropolis-Hastings sampler is used to
randomly updates the values of parameters. Another alternative is the NUTS, which may
speed up the sampling procedure for continuous random variables.

Probabilistic programming aims for flexible and automatic Bayesian inference. Thus a
suitable Bayesian statistical model should be developed for further parameter estimation.
Suppose that the degradation process follows the simplified jump-diffusion model (5), and
the parameters in the model are also subject to some probability distributions, i.e., prior
distributions. For convenience, conjugate priors are chosen. For the diffusion part that is
dominated by a normal distribution, the parameters ν and σ have the priors,

ν ∼ N(µν, σ2
ν ), σ2 ∼ Inverse Gamma(ασ2 , βσ2). (16)

In the jump part, the assumption of Bernoulli distribution for Zt and exponential distribu-
tion for Xt implies that the priors for λ and η can be

λ ∼ Beta(αλ, βλ), η ∼ Gamma(αη , βη). (17)

The parameters of the priors can be set such that the means of the prior distributions equal
or approximately equal the LM estimate θ̂LM.

The procedure of the MCMC sampling and further estimation given the priors is as
follows, which can be carried out in two steps.

Step 1 Estimation of ν and σ. Based on the diffusion part ν∆t + σ∆Bt with the priors (16)
and the modified diffusion series SC,

1. Generate M Markov chains with length Q for both ν and σ;
2. Discard the first Q0 samples for burn-in in each of the 2M chains;
3. For each parameter, diagnose the convergence of Markov chains by Gelman–

Rubin variance ratio test based on the M chains;
4. For each parameter, compute the sample mean and sample variance of the

remaining M× (Q−Q0) samples.

From Step 1, the two obtained sample means are taken as the final estimates for ν and
σ, denoted by ν̂ and σ̂. And the square roots of sample variances are the empirical standard
errors for ν̂ and σ̂. Next, we estimate the other two parameters λ and η.

Step 2 Estimation of λ and η. Based on the simplified model (5) with the priors (17), the
original series {Si,= 1, . . . , n} and the estimates ν̂, σ̂ obtained in Step 1,

1. Generate M Markov chains with length Q for both λ and η;
2. The same as Step 1–2;
3. The same as Step 1–3;
4. The same as Step 1–4.
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Similarly, the sample means obtained from the above Steps 2–4 are regarded as the
final estimates for λ and η, denoted by λ̂ and η̂. And the square roots of sample variances
are also the empirical standard errors for λ̂ and η̂.

In both steps, we arbitrarily choose M = 2, Q = 5500, and Q0 = 500. This means that
all estimates are computed based on 2× (5500− 500) = 10,000 samples. The final estimate
for θ is θ̂ = (ν̂, σ̂, λ̂, η̂)′. This estimation is referred to be based on the combined method as
the LM test and the MCMC method are involved.

3.3. RUL Prediction

For an in-use product, a so-called soft failure is considered to occur when the degra-
dation process reaches a prescribed threshold of D. Apparently, the threshold for Li-ion
batteries can be set as a certain value between 70% and 80% of rated capacity. Under this
failure concept, the failure time of a Li-ion battery is defined as the first passage time TD of
the degradation process, which is a random variable with the expression

TD = inf{t : Yt ≤ D|Y0 > D}. (18)

In addition, the RUL is a conditional random variable derived from the failure time
and has different forms for different purposes. If we concern the RUL of a population, the
RUL at time t can be defined as

L1
D(t) = TD − t|TD > t. (19)

If we are interested in a particular battery with observed true degradation data y =
(y1, . . . , yn) at t = (t1, . . . , tn), the RUL at time tn can be better given by

L2
D(tn) = inf{t : Ytn+t ≤ D|y0 > D, y1 > D, . . . , yn > D}. (20)

In our jump-diffusion model, the Wiener process and the homogeneous Poisson
process own the Markov property, and both are assumed to be independent of the jump
size. Thus L2

D(tn) is actually equivalent to the first passage time to the threshold D− yn.

That is, L2
D(tn) has a same distribution as TD−yn , i.e., L2

D(tn)
d
= TD−yn .

If the degradation {Yt, t ≥ 0} is a Wiener process Yt = νt + σBt, the first passage time
follows a inverse Gaussian distribution, TD ∼ IG(D/ν, D/σ2). However, our model in (4)
or (5) involves an extra jump process, which makes the inverse Gaussian distribution not
directly applicable. Instead, we use the Monte Carlo simulation method to approximate
the distributions of the failure time and RULs. The approximation method takes the
following steps:

1. Based on the model (5) and the parameter estimate θ̂, generate R degradation paths,
each composed of n observations at t1, . . . , tn. Denote these R path by yr = (yr

1, . . . , yr
n),

r = 1, . . . , R.
2. For a given threshold D, record the first passage time to D for each degradation path.

Denote these times by tr
D, r = 1, . . . , R.

3. Based on tr
D, r = 1, . . . , R, calculate the empirical cumulative distribution function

(CDF) F̂R(t) and the mean t̄D,R.
4. For a given time t∗, screen out those first passage times great than t∗, denoted by t∗rD ,

r = 1, . . . , R∗. With {t∗rD − t∗}, calculate the empirical CDF ĜR∗(t) and the mean t̄∗D,R∗ .

Obviously, the empirical CDFs F̂R(t) and ĜR∗(t) are approximations for the CDFs of
the failure time TD and RUL L1

D(t
∗). That is

F̂TD (t) = F̂R(t), F̂L1
D(t∗)(t) = ĜR∗(t), t ≥ 0. (21)

At the same time, the probability density functions (PDFs) of TD and L1
D(t
∗) can be

estimated by the empirical PDFs, denoted by f̂TD (t) and f̂L1
D(t∗)(t). And the expectation of
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TD and L1
D(t
∗), named mean time to failure and mean residual useful life (MRUL), can be

estimated by t̄D,R and t̄∗D,R∗ . In fact, with the R first passage times, the estimates of various
quantiles of TD and L1

D(t
∗) also can be obtained. In order to guarantee the accuracy of the

estimation, the number of R can be chosen as large enough. Here we set R = 5000.

4. Simulation Study
4.1. The Choice of the Parameters and the Performance of the Estimation Methods

A simple Monte Carlo simulation experiment is conducted to evaluate the performance
of the adopted estimation methods and facilitate further real data analysis. The data are
generated based on the original diffusion-jump process (4) with the drift rate ν = −0.05,
the diffusion coefficient σ = 0.005, the Poisson intensity λ = 0.05, and the exponential
parameter η = 20. In the simulation study, we assume that the degradation signal of a
product is measured at 200 time points, t = (1, . . . , 200)′, and ∆t = 1. This set of parameters
mimics the capacity data that will be analyzed in the next section. In this experiment,
200 replications are run.

To choose suitable values for the window size K in the LM test and the lag b in the
smoothing average, we evaluate the performance of the initial estimator θ̂LM for various
combinations of K and b, with K ranging from 5 to 15 and b from 3 to 10. Table 1 reports
the empirical mean and root-mean-square error (rmse) of the estimated parameters θ̂LM.
Only part of the simulation results are given here due to the limited space of this paper.
The results in Table 1 show that the impact of (K, b) on ν̂LM and σ̂LM is negligible, and
relatively little on λ̂LM, but rather noticeable on η̂LM. The emergence of the phenomenon is
not strange because the detection of jumps and the estimation of jump size heavily depend
on K and b. A comparison reveals that η̂LM has the smallest rmse when K = 10 and b = 6.
Thus (K, b) is set as (10, 6) in further study for the simulated model as well as the capacity
data analysis.

Table 1. The estimation results of θ̂LM for different (K, b)’s: mean (rmse).

K = 8 K = 9 K = 10 K = 11

b = 5

ν −0.0047 −0.0047 −0.0047 −0.0047
(0.0005) (0.0005) (0.0005) (0.0004)

σ 0.0054 0.0054 0.0054 0.0054
(0.0008) (0.0007) (0.0008) (0.0006)

λ 0.0297 0.0297 0.0295 0.0294
(0.0236) (0.0238) (0.0238) (0.0240)

η 20.083 19.181 18.721 18.655
(6.997) (5.382) (4.9883) (5.2900)

b = 6

ν −0.0047 −0.0047 −0.0047 −0.0047
(0.0005) (0.0005) (0.0004) (0.0004)

σ 0.0054 0.0054 0.0054 0.0054
(0.0008) (0.0007) (0.0007) (0.0006)

λ 0.0299 0.0298 0.0296 0.0294
(0.0234) (0.0237) (0.0238) (0.0240)

η 20.386 19.682 18.704 18.605
(7.2857) (6.2454) (4.9247) (5.2474)

b = 7

ν −0.0047 −0.0047 −0.0047 −0.0047
(0.0005) (0.0005) (0.0004) (0.0004)

σ 0.0054 0.0054 0.0054 0.0054
(0.0008) (0.0007) (0.0007) (0.0006)

λ 0.0299 0.0297 0.0296 0.0295
(0.0234) (0.0238) (0.0238) (0.0239)

η 20.172 19.2022 18.732 18.727
(7.0741) (5.3714) (4.9631) (5.2456)
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Following the principles of simplicity and the distribution means close to θ̂LM, the
priors for the four parameters are set as follows through trial and error,

ν ∼ N(ν̂LM, 100), σ2 ∼ Inverse Gamma(1/σ̂LM, σ̂LM),

λ ∼ Beta(2, 2/λ̂LM), η ∼ Gamma(0.5η̂LM, 0.5). (22)

Figure 2 and Table 2 show the parameter estimation results in one of the 200 replica-
tions. From Figure 2, we observe the estimated kernel density functions for ν̂, σ̂, λ̂, and η̂,
respectively. For each parameter, two kernel density functions are presented, in the dotted
line and solid line, which are estimated from the two realized Markov chains generated by
the MCMC method. And the average of the means of the two density functions is taken as
the parameter estimate obtained in this replication. At the same time, the realized Markov
chains, two for each parameter, are plotted in the right panel, which visually displays the
quick convergence of the chains and thus indicates the validity of the MCMC algorithm.
The convergence are further verified by the Gelman and Rubin convergence diagnostic,
as the corresponding statistic takes value 1 for all the four parameters. Moreover, Table 2
compares the performances of θ̂LM and θ̂ in one replication. It is clear that the utilization of
the MCMC algorithm indeed improves the accuracy of parameter estimation and could
provide the empirical standard error (se) to measure the variability of θ̂.

Figure 2. The estimated kernel density functions (left) and the Markov chains (right) for θ̂.

Similar conclusions can be achieved from the results in Table 3, which summarizes the
empirical mean, se, rmse, and mean absolute percentage error (MAPE) of the parameter
estimates. The MAPE for θ̂ is defined as MAPE(θ̂) = 1

L ∑L
l=1 |θ̂l/θ0 − 1| × 100%, where θ0

is the true parameter, L is the number of replications and set as 200 in our experiment, and
θ̂l is the estimate obtained in the lth replication. The results in the table clearly show that
the estimator based on the combined method θ̂ has a smaller bias, se, rmse, and MAPE
than the initial one θ̂LM.
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Remark 2. In Figure 2, the kernel density estimates for the parameters λ and η are highly skewed.
This is due to the setting of the two corresponding priors, which have long right tails. However, a
close examination on the results from the 200 replications shows that, the samples with values larger
than 2λ and 2η take only about 6% and 2% out of 10,000 MCMC samples in average.

Table 2. The estimation results in one replication: mean [se].

ν σ λ η

LM −0.0049 0.0048 0.0350 16.6958

Combined −0.0049 0.0048 0.0423 18.6473
[0.0004] [0.0001] [0.0184] [6.0570]

Table 3. The comparison between the LM estimation and combined estimation methods.

LM Combined

Mean rmse se MAPE Mean rmse se MAPE

ν −0.0047 0.0004 0.0004 0.0708 −0.0047 0.0005 0.0004 0.0736
σ 0.0054 0.0007 0.0006 0.0957 0.0053 0.0004 0.0003 0.0514
λ 0.0296 0.0238 0.0121 0.4269 0.0401 0.0119 0.0030 0.2085
η 18.704 4.9247 4.7511 0.1972 20.569 1.5733 1.3724 0.0784

To further demonstrate the superiority of the combined estimation method, we com-
pare the performances of failure time and RUL prediction based on the two estimation
methods. For the failure time TD, both the true and the estimated PDFs are computed by
the Monte Carlo method given in Section 3.3, and compared in terms of the Jensen-Shannon
divergence. That is, if we denote the true parameter by θ0,

JS( f̂TD (t; θ0) ‖ f̂TD (t; θ̂)) =
1
2

KL

(
f̂TD (t; θ0) ‖

f̂TD (t; θ0) + f̂TD (t; θ̂)

2

)
+

1
2

KL

(
f̂TD (t; θ̂) ‖

f̂TD (t; θ0) + f̂TD (t; θ̂)

2

)
, (23)

where θ0 is the true parameter, θ̂ is the parameter estimate, and KL is the Kullback–Leibler
divergence that measures the similarity between two PDFs, say P1 and P2, and defined as

KL(P1 ‖ P2) =
∫ ∞

−∞
P1 log(P1/P2)dt. (24)

For both JS divergence and KL divergence, small values are expected as they indicate a
good estimation of the PDF.

For the RUL, the expectation MRUL is used for estimation and comparison. Given a
arbitrary time t∗ = 25, we are interested in its MRUL, MRUL(25) = E[L1

D(25)]. As shown
in Section 3.3, the estimate M̂RUL(25) is the average of the first passage times greater
than 25, which are obtained from 5000 generated paths given the parameter estimate θ̂.
The performance of the MRUL estimate is measured by the MAPE to the real MRUL,
MAPE(M̂RUL(25)) = 1

L ∑L
l=1 |M̂RUL(25)/MRUL(25)− 1| × 100%, where L = 200 and

MRUL(25) is also approximated by the Monte Carlo simulation method but with the true
parameter θ0.

Table 4 summarizes the empirical mean and se of the JS divergence as well as the
MAPE based on the two estimation methods. It is clear that the combined method provides
much better performances than the LM method when predicting both the failure time and
RUL. This conclusion is also supported by Figure 3, in which the estimated PDF of TD by
the combined method (red line) is closer to the true one (blue line).
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Table 4. The results for the failure rate and RUL prediction.

LM Combined

JS: fTD (t) 0.0085 0.0003
[0.0314] [0.0003]

MAPE: MRUL(25) 0.3990 0.0524

Figure 3. The estimated PDFs of TD based on the LM estimation and the combined methods.

4.2. A Brief Discussion on Model Misspecification

To better understand the robustness of the considered model together with the estima-
tion procedure, we further investigate their performances under model misspecification.
An additional simulation experiment is carried out with the data generated from a new
jump-diffusion process, which remains with the geometric Brownian process as the base
model but assumes normal-distributed jumps. The assumption of the normal-type jumps
was also considered in Zhang et al. [35], but their model was built on the nonlinear
Weiner process.

In the data generating process, we let the jump size Xt follow a normal distribution
with mean 0.05 and standard deviation 0.01, Xt∼N(0.05, 0.012), which has the same mean
as the exponential jump considered in the previous. The setting of other parameters is
the same as in the previous experiment. That is, the drift rate ν = −0.05, the diffusion
coefficient σ = 0.005, and the Poisson intensity λ = 0.05. Moreover, the degradation signal
of a product is also assumed to be measured at 200 time points, t = (1, . . . , 200)′, and
∆t = 1. In this experiment, 200 replications are run.

The generated data are fitted by our target model (5) with the estimation methods dis-
cussed in Section 3. Table 5 reports the empirical mean and se of the estimated parameters
θ̂LM for different combinations of K and b, with K ranging from 5 to 15 and b from 8 to 12.
It is worthy noting that the se, instead of the rmse, is used in the table, because no rmse
is available for η due to the normal assumption for the jump size. The results in the table
indicate that the recommended combination (K, b) is changed to (11, 6) in this experiment
for model misspecification.

Table 6 presents the parameter estimation results for θ̂LM and θ̂, which are obtained
from the 200 replications and with the same prior distributions given in (22). It is shown
that the utilization of the MCMC algorithm improves the accuracy of the estimation for ν
and σ, but fails to do so for λ. The reason for the opposite performances is that the fitted
model and the data generating process differ in the distribution of jump size, which would
distort the estimation for the parameters of the jump process. But overall, the estimation
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methods can give relatively satisfactory estimates for the parameters when the model is
misspecified.

Table 7 summarizes the empirical mean and se of the JS divergence for f̂TD (t) and the
MAPE for M̂RUL(25) respectively. It is observed that even under model specification, the
combined estimation method still has better performances than the LM method for the
prediction of both the failure time and RUL, although the improvement is not as significant
as that in Table 4. Finally, we may conclude that, to some extent, the adopted model,
together with the estimation procedure, can deal with the model specification problem.

Table 5. The estimation results of θ̂LM for different (K, b)’s: mean (se), normal jumps.

K = 8 K = 9 K = 10 K = 11 K = 12

b = 5

ν −0.0049 −0.0049 −0.0048 −0.0048 −0.0048
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

σ 0.0054 0.0055 0.0055 0.0055 0.0056
(0.0008) (0.0009) (0.0009) (0.0009) (0.0009)

λ 0.0473 0.0468 0.0465 0.0463 0.0460
(0.0138) (0.0142) (0.0139) (0.0139) (0.014)

η 21.934 21.474 21.222 21.041 21.041
(4.6436) (2.9949) (2.5277) (2.1720) (2.1923)

b = 6

ν −0.0049 −0.0048 −0.0048 −0.0048 −0.0048
(0.0004) (0.00041) (0.0004) (0.0004) (0.0004)

σ 0.0054 0.0055 0.0055 0.0055 0.0056
(0.0008) (0.0009) (0.0009) (0.0009) (0.0009)

λ 0.0472 0.0467 0.0464 0.0463 0.0460
(0.0138) (0.0142) (0.0139) (0.0139) (0.0140)
21.732 21.442 21.156 21.022 21.022

(3.8271) (2.9743) (2.4685) (2.1296) (2.1590)

b = 7

ν −0.0049 −0.0049 −0.0048 −0.0048 −0.0048
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

σ 0.0054 0.0055 0.0055 0.0055 0.0056
(0.0008) (0.0009) (0.0009) (0.0009) (0.0009)

λ 0.0472 0.468 0.0465 0.0463 0.0461
(0.0138) (0.0143) (0.0139) (0.0139) (0.0140)

η 21.707 21.416 21.140 21.015 21.011
(3.6583) (2.8687) (2.4438) (2.1477) (2.1624)

Table 6. The comparison between the LM and combined estimation methods: normal jumps.

LM Combined

Mean rmse se MAPE Mean rmse se MAPE

ν −0.0048 0.0005 0.0004 0.0716 −0.0049 0.0004 0.0004 0.0668
σ 0.0055 0.0013 0.0009 0.1709 0.0052 0.0009 0.0008 0.0978
λ 0.0463 0.0164 0.0139 0.2555 0.0633 0.0262 0.0226 0.4158
η 21.022 - 2.1296 - 22.177 - 1.6105 -

No rmse and MAPE for η are due to the normal assumption for the jump size.

Table 7. The results for the failure rate and RUL prediction: normal jumps.

LM Combined

JS: fTD (t) 0.0035 0.0025
[0.0044] [0.0013]

MAPE: MRUL(25) 0.3898 0.2956

5. Capacity Data Analysis

Here we revisit the capacity data of the Li-ion battery #6 mentioned in Section 1. The
Li-ion battery #6 is a 18,650-sized rechargeable cell with LiNi0.8Co0.15Al0.05O2 cathode
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and graphite anode and was run through repeated charge and discharge cycles at room
temperature (24 ◦C). Charging was carried out in a constant current mode at 1.5 A until
the battery voltage reached 4.2 V and then switched to a constant voltage mode until
the charge current dropped to 20 mA. For the discharge, a constant current with a level
2 A was applied to the battery until the battery voltage fell to 2.5 V. The experiment was
stopped when the battery capacity faded from 2 Ahr to 1.4 Ahr, a 30% loss compared to
the rated capacity. During each of the total 168 cycles, the battery capacity was measured
by impedance measurement, which was executed through an electrochemical impedance
spectroscopy frequency sweep from 0.1 Hz to 5 kHz.

Denote by Yt the capacity at cycle t and by St = log Yt/Yt−1 the logarithm of the
change rate of capacity, t = 1, . . . , 168. A quick calculation tells that for St’s, the sample
skewness and kurtosis are 3.9080 and 24.934, respectively. This indicates that St follows
an asymmetric and fat-tail distribution and undoubtedly cannot be modeled by a normal
distribution. The non-normality of St’s further denies the geometric Brownian process as
an underlying degradation model for {Yt}. But after applying the LM jump detection test
on St over the 168 time points, we can get a diffusion series whose sample skewness and
kurtosis become −0.4015 and 5.2576. Although these two coefficients still slightly differ
from 0 and 3, the skewness and kurtosis for normal distribution, they indeed give strong
support for the feasibility of including a jump process into the degradation model. Hence
it should be proper to adopt the jump-diffusion model (3) for describing the capacity data.

Based on (3), the unknown parameter θ = (ν, σ, λ, η)′ are estimated by the two meth-
ods, the LM method and the combined method. The priors are set as (22). The correspond-
ing estimates θ̂LM and θ̂ are listed in Table 8. According to the conclusion achieved in the
simulation study, we have reasons to believe that the estimate obtained by the combined
method, θ̂, should be closer to the true value.

Table 8. The parameter estimates are based on the two estimation methods.

ν σ λ η

LM −0.0056 0.0070 0.0539 22.738
Combined −0.0056 0.0071 0.0627 31.643

[0.0005] [0.0002] [0.0273] [17.653]

With the parameter estimates θ̂LM and θ̂, the probability density functions of the failure
time TD are also estimated and plotted in Figure 4. We regard a Li-ion battery to be failed
once there is a 20% fade in capacity, so the threshold used to define the failure time TD is
set as D = 2.0353× 80% = 1.6282, where 2.0353 Ahr is the original capacity of the battery
#6. As shown in Figure 4, the estimated PDF obtained by the combined method (red line) is
thinner and taller than the one by the LM method (blue line). This implies that without the
MCMC method, the density function will be estimated with heavier tails. This heavy-tail
characteristic is also observed in Table 9, when the 5% and 95% percentiles are compared.
Although the 5% percentiles are the same for the two methods, the 95% percentile for the
combined method is clearly less than that for the LM method.

Table 9. Some characteristics of the density functions of TD: D = 1.6282.

Mean Mode Median 5% Percentile 95% Percentile

Wiener 58 22 43 12 156
Wiener + error 57 41 52 24 110
LM method 71 44 58 33 149
Combined method 63 51 56 33 120
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Figure 4. The estimated PDFs of TD: D = 1.6282.

Table 9 also reports some other characteristic values of the failure time TD and makes
a comparison to the Wiener process model and the degradation model proposed by [21].
In [21], a logistic distributed measurement error is introduced to the basic Wiener process.
From the values in Table 9, we see great differences among the characteristic values for the
considered models, and this diversity may introduce troubles to further decision-making
for battery health management. However, it is worth noting that with the threshold of
1.6282, the real failure time for the battery #6 is 61 cycles, which can be easily obtained from
the data set. This failure time is best estimated by the mean of the estimated PDF given by
the jump-diffusion model with the combined estimation method, which is 63 cycles. This
relatively better performance in predicting failure time may be contributed to the inclusion
of the jump process in the degradation model, which deems the capacity regeneration a
part of the internal mechanism in battery aging. On the contrary, the basic Wiener process
and the model in [21] attempt to filter out the effect of capacity regeneration on prediction
by treating it originated from external interference. Moreover, these different modeling
ways may explain why most characteristics in Table 9, except the 95% percentile, always
have larger values for the jump-diffusion model, no matter which of the two estimation
methods is used.

Therefore, it may be suggested to use the estimation results obtained by the jump-
diffusion model with the combined estimation method to make decisions. For example,
the 5% percentile for the model tells us that with properties and testing conditions similar
to the battery #6, about 5% of the batteries would survive less than 33 cycles. This infor-
mation would be helpful in the warranty design for the cycle-life of batteries. Moreover,
conservative maintenance can be planned by considering replacing in-use batteries when
they have worked for 51 cycles, which is the median of the estimated density.

6. Conclusions

This paper aims to model the degradation process of Li-ion batteries, which manifests
itself in a loss in capacity. However, the capacity data set shows that the capacity regen-
eration phenomenon would appear due to a long relaxation period. To simultaneously
describe the capacity loss and regeneration, a jump-diffusion model was considered, with
the diffusion part represented by a geometric Brownian process and the jump part modeled
by a compound homogeneous Poisson process. When estimating model parameters, the
LM jump-detection test was adopted to identify the jump arrival times and separate battery
degradation data to two series, jump series and diffusion series. Based on the two series
of data, an initial estimation for the model parameters was given. Furthermore, with the
help of probabilistic programming, the MCMC sampling algorithm was utilized to obtain
final parameter estimates. Besides, the prediction of the failure time and RUL were also
discussed. Simulation results suggested that the jump-diffusion model and the estimation
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method are feasible in modeling the battery capacity data and predicting the RUL. The
good performance of the model was also demonstrated by the real data analysis.

Although it is the geometric Brownian process taken as the basic diffusion model in
this paper, other Winer-process-based models are also good candidates as long as they
satisfy the conditions required by the LM jump detection test. Similarly, rather than Poisson-
type jumps, other suitably pure jump models also can be considered for describing the
capacity regeneration phenomenon. But for any of the possible jump-diffusion models, the
parameter estimation would still be a difficult task since the complication of the associated
likelihood function. Therefore, future research should focus more on the estimation prob-
lems for both the model parameters and the RUL. Moreover, if the estimation is carried
out in the Bayesian framework, it would be interesting and crucial to study how to make a
good choice on priors, which are known to have great influences on estimation accuracy.

In this paper, only the capacity data itself was adopted to model the degradation
evolution of Li-ion battery. In fact, batteries are usually used in time-varying environments,
and their life can be affected by many dynamic external variables, such as charging current,
charging voltage, charging power, temperature, etc. Hence, it is necessary and interesting
to incorporate the external information into degradation models so that batteries’ reliability
can be predicted more accurately. By treating the external variables as time-varying covari-
ates, the model considered in this paper can be extended. For the parameter estimation,
the LM detection test still can be used to identify the times at which the capacity regener-
ation occurs, and the Bayesian framework together with the MCMC algorithm is also a
feasible method.
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