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Abstract: Variable speed limit (VSL) control is an effective technology to improve safety near freeway
bottlenecks. This study aims to develop a control strategy for mixed traffic flow consisting of both
human-driven vehicles (HDVs) and connected and automated vehicles (CAVs) based on collision
avoidance theory. A microscopic simulation platform is first established, and four vehicle longitudinal
dynamic models including Cruising model, Intelligent Driver Model (IDM), Adaptive Cruise Control
model (ACC), Cooperative Cruise Control model (CACC) and one vehicle lateral dynamic model
Minimizing Overall Braking Induced by Lane Changes model (MOBIL) are incorporated into the
simulation platform. Then, a new VSL control strategy derived from collision avoidance theory is
proposed for mixed traffic flow at the initial stage of CAVs’ popularization. Extensive simulation
experiments are conducted, and surrogate safety measures and total travel time indicators are utilized
to evaluate the safety and efficiency performances of the proposed VSL control. Results indicate
that the proposed VSL control strategy can effectively improve the safety performance near freeway
bottlenecks with an acceptable efficiency level.
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1. Introduction

Freeway bottlenecks are usually caused by road geometric restrictions and traffic
incidents such as traffic accidents and work zones. When the traffic demand is far greater
than the capacity of the roadway, the consequent congestion and speed difference between
the upstream and downstream may further increase collision risks. In order to alleviate
the safety issue, the mainstream method is to reduce vehicle speed and increase speed
homogenization by intelligent control strategies.

Variable speed limit (VSL) control, as one of the advanced traffic management tech-
nologies, has been extensively utilized to improve traffic safety on freeways via dynamically
adjusting upstream speed limits posted on the variable message signs (VMS). The classical
VSL control strategies can be divided into two types, i.e., model prediction control (MPC)
and feedback-based control [1–6]. The performance of the MPC-based VSL control strategy
depends on the accuracy of the predictive model. The feedback-based control strategy
is simpler and easier to implement, whose objective is usually to obtain critical density
at the bottleneck around the setpoint. More details can be referred to in the literature
review section.

In recent years, intelligent transportation technologies have developed rapidly and
can be generally divided into two directions: the intelligent road system and the intelligent
vehicle system. The former provides the basis for vehicle-road collaboration and is able
to further improve the effectiveness of traditional VSL controls, while the latter realizes
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the intelligence of vehicles through connected and automated technologies. The connected
and automated vehicles (CAVs), as a representative of the intelligent vehicle system, can
effectively reduce the response delay and operational errors of human-driven vehicles
(HDVs). Therefore, it is recognized to be a promising technology to improve traffic safety
and reduce traffic congestion and emissions.

Considerable previous studies have explored various VSL control strategies with
intelligent road and vehicle systems, aiming to improve control effectiveness by taking
advantage of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication
together with automated driving [7–12]. Nevertheless, CAVs are facing unavoidable
challenges such as sensor failure, limited operational design domain and accurate trajectory
prediction of other road users [13]. The popularization of CAVs will still take a long time
due to these technical and safety issues, which means that the mixed traffic flow consisting
of CAVs and HDVs will exist for the long term. For the initial stage of CAV application in
the near future, HDVs still dominate in the mixed traffic flow with a large proportion, and
VSL control methods need to take this special characteristic into account.

The primary objective of the current study is to propose a VSL control strategy for
the initial stage of CAV popularization. More specifically, we focus on a general dynamic
scenario of mixed traffic flow considering the driving behavior of car following and lane
changing and develop the VSL control based on the collision avoidance theory. Four
car-following models and one lane-changing model are embedded in the micro-simulation
platform to capture the driving behaviors of HDVs and CAVs. Surrogate safety measures
derived from time-to-collision (TTC), such as the time-exposure TTC (TET) and time-
integrated TTC (TIT), are employed to evaluate the safety improvement performance
of the proposed VSL control strategy. Meanwhile, the total travel time (TTT) is used to
evaluate the efficiency. Taking into account the safe time gap of CAVs and different market
penetration rates (MPRs), extensive simulation experiments are conducted and compared
to verify the effectiveness of the proposed control strategy.

The rest of this paper is organized as follows: Section 2 presents the literature review.
In Section 3, the simulation platform is introduced, and the VSL control strategy based
on collision avoidance theory is proposed. The simulation experiments are designed in
Section 4, and the simulation results are demonstrated in Section 5. The paper ends with
conclusions in Section 6.

2. Literature Review

The early VSL control is mainly aimed at the conventional human-driven traffic flow,
which can be divided into closed-loop control and open-loop one. The closed-loop con-
trol is a feedback logic-oriented control strategy. For example, Li et al. developed a VSL
control strategy with the feedback logic by analyzing the risk of microscopic secondary
collision [14]. Dörschel and Abel proposed a new directional feedback control through
systematic analysis of the macroscopic traffic model, which is suitable for VSL control
of a freeway [15]. Based on the analysis of the induction mechanism of the fundamental
diagram of the freeway traffic flow, Frejo et al. proposed a new macroscopic VSL control
model, which takes capacity, critical density, and compliance into account. The results
show that the new model has better performance under low compliance when comparing
the proposed model with two typical macroscopic models [16]. Based on the analysis of
the macroscopic traffic model and the evolution law of the traffic fundamental diagram,
Zhang et al. proposed an extended VSL control model for alleviating the impact of con-
gestion and queuing problems caused by shock waves on the freeway [17]. In order to
ensure the integral stability of the closed-loop system from input to state, Göksu et al.
proposed a VSL controller, which utilized saturation feedback to ensure the integral input
of traffic state to state stability. The controller was designed by using a traffic flow ordinary
differential equation model and a two-phase fundamental diagram. A two-stage general
Lyapunov function was established, and the robustness of the proposed controller was
verified by numerical examples [18].
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The open-loop control, also known as Model Predictive Control (MPC), utilizes a
traffic flow model to predict trends in traffic flow evolution. Song and Wang proposed a
VSL control method based on a high-precision collision prediction model to reduce the
collision risk and traffic delays [19]. Zhang et al. proposed two control schemes based on
feedback linearization and model prediction and combined VSL control with lane-changing
control. The results show that both of the schemes can effectively improve the operating
efficiency of the system and that the feedback linearization VSL control can provide better
performance than model predictive control [20]. Hegyi et al. proposed a VSL strategy
based on the model predictive control approach to optimally coordinate variable speed
limits for freeway traffic with the aim of suppressing shock waves. The result shows that
continuous speed limits via the coordinated control are effective against shock waves [3].
Mao et al. proposed an extended model-based VSL controller, which was also developed on
the basis of the scheme of model predictive control to improve the connected environment.
The results of numerical simulation show that the extended model-based VSL controller
possesses greater significance in the reduction of total travel time [9]. Frejo et al. compared
the effectiveness of the global and local model predictive control methods in a traffic
network controller system consisting of ramp metering and variable speed limits. The
results showed that the local techniques have a suboptimal behavior and the controller
improves the local controller performance [2].

Since then, some studies have been devoted to developing and solving VSL control
models based on algorithm optimization theory, mainly including the heuristic algorithm,
reinforcement learning and deep reinforcement learning. In terms of the heuristic algorithm,
Yu and Fan studied a VSL control problem at a partial lane closure bottleneck based on
a genetic algorithm and established a multi-objective nonlinear integer model. They
also evaluated and compared the solution quality of a genetic algorithm and sequential
quadratic programming (SQP) algorithm. The numerical analysis results show that the
VSL control model optimized by genetic algorithm is superior to that optimized by the
SQP algorithm [21]. Wang et al. established an optimization model of VSL control for
rainy days with the goal of minimizing accident incidence. The genetic algorithm is used
to solve the VSL model [22]. Kušić et al. proposed a multi-agent reinforcement learning
VSL control method based on W-learning algorithm. In this algorithm, two agents control
two sections leading to the bottleneck area, and the performance of the control strategy
is verified by simulation of two scenarios of dynamic and static traffic [23]. In terms of
deep reinforcement learning, Wu et al. proposed a differential VSL (DVSL) control model
based on deep reinforcement learning, which can achieve differentiated dynamic speed
limits between lanes. The results show that the DVSL control model can help improve the
safety and operation efficiency of freeways and reduce emissions [24]. Ke et al. proposed
a VSL control strategy based on Double Deep Q-learning to reduce the total driving time
on freeways [25]. Some researchers have also conducted different studies on various
scenarios [26–31].

With the rapid development of CAV technology, the VSL control strategy combined
with CAV has attracted widespread attention in recent years. Lu and Shladover proposed
a VSL control method based on second-order METANET model prediction, which takes
the market penetration rate of adaptive cruise control vehicles into account [32]. Grumert
and Tapani proposed a VSL control system based on connected vehicles, whose goal was
to allow the application of VSL control to any case for aperiodic bottleneck mitigation [33].
Gregurić et al. proposed an intelligent speed adaptation strategy that could induce vehi-
cles to achieve a smooth speed conversion according to the suggested or imposed speed
limit [34]. Yao et al. proposed a trajectory smoothing method based on the location-based
individual VSL, which dynamically imposed speed limits on the identified target control
vehicles through vehicle–infrastructure communication at adjacent lane control points [35].
Nezafat et al. proposed a feedback control method to manage the speed of connected
vehicles from the upstream of a downhill freeway segment to avoid bottleneck formation
due to changes in driver behavior [36]. Li et al. proposed a system combining CAVs
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with VSL control and simulated the safety gain brought by the system [37]. Meanwhile,
the connected technology of CAV can make up for the shortcomings of human sight dis-
tance, especially when the visible range is affected by severe weather such as heavy fog.
Zhao et al. proposed a VSL control system based on connected vehicles and then simulated
different levels of visibility based on a driving simulator to examine the effectiveness of the
proposed system. The results indicate that the developed system has a better performance
in heavy fog conditions than that in light fog conditions [12]. Wu et al. proposed a VSL
control method based on the different relationships between the car-following distance
and the visual distance to reduce the risk of rear-end collisions in highway bottleneck
sections under fog conditions [11]. Additionally, the previous study also indicates that
near-maximum efficiency improvements can be obtained at relatively low CAV penetration
rates [38]. Due to the aforementioned technical and safety issues of CAVs, the mixed traffic
flow with a comparative low penetration rate is likely to be maintained for a long time.
Therefore, it is necessary to develop specific VSL strategies applicable to this important and
unavoidable period.

In summary, although a large number of studies have been conducted about VSL
control strategies, the VSL control strategy is not fully explored for the mixed traffic flow
consisting of CAVs and HDVs, especially for the initial stage of CAVs’ popularization in
the near future. This study aims to bridge the research gap by proposing a new VSL control
strategy based on the collision avoidance theory.

3. Methodology

This section presents the methodology of the current study. To simultaneously con-
sider the car following and lane changing for simulation experiments, four typical car-
following models and a lane-changing model are employed in the current study. The
car-following models, including Cruising model, Intelligent Driver Model (IDM), Adap-
tive Cruise Control model (ACC), and Cooperative Cruise Control model (CACC) are
introduced in Section 3.1. The vehicle lateral dynamic model Minimizing Overall Braking
Induced by Lane Changes model (MOBIL), which models the lane-changing behaviors,
is presented in Section 3.2. Section 3.3 details the VSL control strategy based on collision
avoidance theory.

3.1. Car-Following Models

This study focuses on the safety performance of VSL control strategy in the mixed
traffic flow composed of HDVs and CAVs. Four microscopic car-following models are used
to model the longitudinal dynamic behaviors of HDVs and CAVs.

(1) Cruise model

The control objective of cruise mode is to maintain the desired speed of the driver
when the previous vehicle is not present or far away. In the simulation, it is used as the
running mode of the leading vehicle of the fleet (no matter the leading vehicle is a HDV or
a CAV). The specific calculation formula of acceleration in this mode is as follows:

a = k0v0 − v, (1)

where control gain k0 is the parameter to determine the speed error rate of acceleration,
which is set as 0.4 according to the previous study [39]; v0 and v denote the desired speed
and current speed of the driver, respectively.

(2) IDM model

A widely used microscopic vehicle dynamic model, Intelligent Driver Model (IDM), is
incorporated to describe the car-following behavior of HDVs [40,41]. The authority of the
IDM model has been proved that it can accurately reflect the one-dimensional dynamic
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behavior of HDVs. The model uses the desired speed and clearance distance to calculate
dynamic acceleration, and the specific calculation formula is as follows:

a = αm

[
1−

(
v
v0

)4
−
(

s∗

s

)2
]

, (2)

s∗ = s0 + max

[
0, vT + L +

v∆v
2
√

αmβ

]
, (3)

where a is the acceleration of subject vehicle; αm represents the absolute value of maximum
acceleration; v and v0 denote the current speed and desired speed of the subject vehicle,
respectively; s is the net distance headway between the subject vehicle and the leading
vehicle; s0 is the minimum clearance distance at standstill; T is the safe time gap; L is the
average length of vehicles; ∆v is the speed difference between the subject vehicle and the
leading vehicle; β means the absolute value of desired deceleration.

(3) ACC model

The ACC model developed by the California Partnership for Advanced Transportation
and Highways (PATH) is used in this study. The PATH ACC model is derived from the
real vehicle test and has been successfully commercialized to perform automated cruise
driving without drivers’ input. Notably, the above-mentioned IDM model describes the
car-following behavior of conventional vehicles humans (HDVs) while the ACC model can
be considered as the initial version of autonomous driving. Similar to the traditional car-
following model, the specific calculation formula for the acceleration of the ACC vehicle is:

ai = k1(xi−1 − xi − thwvi − Li−1) + k2(vi−1 − vi), (4)

where ai is the acceleration of the subject vehicle; xi−1 and vi−1 represent the position and
speed of the leading vehicle, respectively; xi and vi represent the position and speed of the
subject vehicle, respectively; thw denotes the safe time gap; Li−1 represents the length of
leading vehicle; k1 and k2 are the model coefficients, which are calibrated as 0.23 and 0.07,
respectively, according to the previous study [42].

(4) CACC model

Milanés et al. conducted field tests on vehicles equipped with the cooperative adaptive
cruise control system, which is the advanced version of the ACC system equipped with
vehicle-to-vehicle communication functionality [42]. Under the control of the CACC model,
the vehicle speed is calculated from the speed of the previous step, the gap error of the
previous step and its derivative. The specific calculation formula is as follows:

ei = xi−1 − xi − thwvi, (5)

vi = viprev + kpei + kde′i , (6)

where ei represents the gap error of the ith vehicle; xi and xi−1 represent the position of
the ith vehicle and its preceding vehicle, respectively; thw denotes the safe time gap; vi
represents the speed of the subject vehicle. Equation (6) represents the speed calculation
formula of CACC model, where viprev is the speed of the subject vehicle at the previous
time step; ei is the gap error of the ith vehicle; e′i is the derivative of the clearance error of
the ith vehicle; kp and kd represent the constant parameters adjusted for clearance error
and clearance error derivative, which are set to 0.45 and 0.0125 according to previous
studies [40,43].

Dynamic acceleration calculated by the Cruise model, IDM model and ACC model
can further update the speed and position of the vehicle in the next step:

v = vprev + a∆t, (7)
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x = xprev + v∆t + a(∆t)2/2, (8)

where xprev and vprev represent the position and speed of the subject vehicle in the previous
time step, respectively; ∆t denotes the simulation time step.

CACC further updates the position of the next step based on the speed calculated by
the CACC model:

ai = k1(xi−1 − xi − thwvi − Li−1) + k2(vi−1 − vi). (9)

3.2. Lane-Changing Model

The Braking Overall Induced by Lane Changes (MOBIL) lane changing model pro-
posed by Kesting et al. is applied to describe the lateral dynamics of vehicles in this
study [44]. In this model, the driving benefit of a driver is represented by the vehicle’s
acceleration. By comparing the acceleration gain of the vehicles affected by lane change
in the current lane and the target lane, the overall acceleration gain of the local affected
vehicle group is calculated to determine the lane changing demand. The lane changing
executor should not only consider that it can achieve acceleration gain through lane change
but should also consider other vehicles affected. Before and after lane change, the rear
vehicle in the current lane will generate a positive lane changing gain, while the rear ve-
hicle in the target lane will generate a negative lane changing gain. Only when the total
acceleration gain of the system, consisting of the lane changing executer, the rear vehicle in
the current lane and the rear vehicle in the target lane, reaches a certain degree (the system
lane changing gain threshold), the lane changing requirements can be met. The specific
calculation formula is as follows:

aa f ter
sub − abe f ore

sub + palta
a f ter
cur f − abe f ore

cur f + aa f ter
tar f
− abe f ore

tar f
> ∆a + abias, (10)

where abe f ore
sub and aa f ter

sub are the acceleration of the subject vehicle before and after lane

change; abe f ore
cur f and aa f ter

cur f are the acceleration of the rear vehicle in the current lane before

and after lane change of the subject vehicle; abe f ore
tar f

and aa f ter
tar f

represent the acceleration of
the rear vehicle in the target lane before and after lane change of the target vehicle; palt
denotes the altruistic factor; ∆a is the threshold of the overall benefit improvement of the
system when lane changing demand decision making; abias is the additional parameter,
which reflects the asymmetric lane change.

Lane change can only be carried out if the acceleration of the rear vehicle in the target
lane is greater than the maximum deceleration after the subject vehicle changes lanes. The
discriminant condition of lane change safety is as follows:

aa f ter
tar f

> −bsa f e, (11)

where bsa f e represents the absolute value of maximum deceleration to ensure safe driving.

3.3. VSL Control Strategy Based on Car-Following Collision Avoidance Theory

In order to develop our VSL control strategy, two basic premises are first made here.
(1) The major risks are from rear-end collisions. This assumption is reasonable since the
primary objective of VSL is to proactively adjust the high speeds of vehicles and avoid
longitudinal collisions for the downstream vehicles with low speeds. (2) The low market
penetration rates (MPRs) of CAVs are considered for the near future and the HDVs dominate
in the mixed traffic flow [38]. That is because the popularization of CAVs is a long-term
process and the MPRs will not be high in the near future. With this premise, we further
propose basic car-following collision avoidance theory from the IDM.

Consider that there is a pair of car-following vehicles, among which the speed of
rear and preceding vehicles is v2 and v1, respectively. Let αm and β represent the desired
acceleration and deceleration of driver, v0 is the desired speed of subject vehicle, T is the
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safe time gap, L means the length of the vehicle, and ∆x means the net distance headway
between the preceding and rear vehicles. According to IDM model, we can calculate the
vehicle acceleration in the current car-following condition, and its specific expression is
as follows:

a = αm[1−
(

v2

v0

)4
−
(

2
√

αmβ(v2T + L) + v2(v2 − v1)

2
√

αmβ∆x

)2

], (12)

The maximum deceleration rate of the vehicle is assumed as amax
dec , which is a negative

value. If the acceleration of the rear vehicle calculated by the IDM model a is greater
than amax

dec , its safety can be guaranteed in the current scenario, which means the current
acceleration calculated based on the car-following model is within the braking performance
of the vehicle; otherwise, it indicates that there is a rear-end collision risk. In order to ensure
the safety of car following, the requirements are as follows:

a = αm[1− (
v2

v0
)4 − (

2
√

αmβ(v2T + L) + v2(v2 − v1)

2
√

αmβ∆x
)2], (13)

(
v2

v0
)4 + (

2
√

αmβ(v2T + L) + v2(v2 − v1)

2
√

αmβ∆x
)2 < 1−

amax
dec
αm

, (14)

4αmβ∆x2v2
4 + v0

4(2
√

αmβ(v2T + L) + v2(v2 − v1))
2 < 4αmβ∆x2v0

4(1−
amax

dec
αm

), (15)

4αmβ∆x2v2
4 + v0

4(v2
2 + (2

√
αmβT − v1)v2 + 2

√
αmβL)2 < 4αmβ∆x2v0

4(1−
amax

dec
αm

), (16)

(4αmβ∆x2 + v0
4)v2

4 + (4
√

αmβT − 2v1)v0
4v2

3 + (4αmβT2 + v1
2 + 4

√
αmβL

−4
√

αmβTv1)v0
4v2

2 + (8αmβTL− 4
√

αmβv1L)v0
4v2 + 4αmβ(L2

+(
amax

dec
αm
− 1)∆x2)v0

4 < 0
(17)

Now, we obtain a unary quartic inequality about the driving speed of the rear ve-
hicle v2. Theoretically, only when v2 satisfies this quartic inequality, the rear vehicle can
avoid rear-end collision risks. Let f v2 = (4αmβ∆x2 + v0

4)v2
4 + (4

√
αmβT − 2v1)v0

4v2
3 +

(4αmβT2 + v1
2 + 4

√
αmβL− 4

√
αmβTv1)v0

4v2
2 + (8αmβTL− 4

√
αmβv1L)v0

4v2 + 4αmβ

(L2 + (
amax

dec
αm
− 1)∆x2)v0

4. For the convenience of expression, we simplify the formula coeffi-
cient: the quartic coefficient p4 = 4αmβ∆x2 + v0

4, the cubic coefficient p3 = (4
√

αmβT − 2v1)
v0

4, the quadratic coefficient p2 = (4αmβT2 + v1
2 + 4

√
αmβL− 4

√
αmβTv1)v0

4, the pri-
mary term coefficient p1 = (8αmβTL− 4

√
αmβv1L)v0

4, and constant coefficient p0 = 4αmβ

(L2 + (
amax

dec
αm
− 1)∆x2)v0

4. The ∆x denotes the net distance headway between the preceding

and rear vehicles and is greater than the vehicle length L. Meanwhile, amax
dec
αm
− 1 < −1

(αm > 0, amax
dec < 0); thus, we can obtain that L2 + (

amax
dec
αm
− 1)∆x2 < 0. Obviously, we can

obtain: p4 > 0 and p0 < 0. When v2 → +∞ , f v2 > 0. When v2 = 0, f v2 < 0. According to
the zero-existence theorem, there must be at least one zero in the range from 0 to +∞.

The zero-point classification is discussed below, as shown in Figure 1:

(1) There is only one zero in [0, +∞).

It is known that when v2 → +∞ , f v2 > 0; when v2 = 0, f v2 < 0. In addition, there is
only one zero in [0,+∞). There must be a zero x0, so that when v2 ∈ [0, x0), f v2 < 0. That is,
there will be no rear-end collision risk when v2 < x0.
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(2) There are multiple zeros in [0, +∞)

If there are multiple zeros in [0,+∞), there may appear more than one range, which
meets f v2 < 0. According to the principle of vehicle dynamics, when v2 = 0, f v2 < 0,
which means when the rear vehicle is at standstill, it must be safe. Therefore, v2 = 0 must
be in the feasible region. Then, there exists a minimum zero x0, when v2 ∈ [0, x0), safety
can be guaranteed. In the case of multiple zeros, there may be multiple feasible regions
where they meet f v2 < 0, as shown in Figure 1c. Nevertheless, when v2 < x0, f v2 < 0
(no rear-end collision risks); as v2 increases, f v2 > 0 (exist rear-end collision risks); as
v2 increases further, f v2 < 0 (no rear-end collision risks), which is contrary to common
sense. This means that other satisfying regions are theoretical solutions instead of real
feasible solutions.

To sum up, there must be a minimum zero x0 at [0, +∞), so that when v2 ∈ [0, x0),
there is no rear-end collision risk between the preceding and rear vehicles. This minimum
zero x0 corresponds to the maximum collision avoidance speed of the rear vehicle v∗2 .

The above maximum collision avoidance speed v∗2 (equal to x0) of the rear vehicle is
evaluated based on microscopic trajectory data including v1 and ∆x. In actual situations,
however, microscopic trajectory information of human-driven vehicles cannot be obtained
timely; thus, only aggregated traffic flow data can be collected from loop detectors. Next,
how to use traffic flow data collected from loop detector to replace microscopic trajectory
data will be introduced to develop our VSL control strategy as follows:

v̂1 =
1
N ∑N

n=1 v1 = VD[t, t + ∆T], (18)

∆x̂ = 1
N ∑N

n=1 ∆x = 1
N ∑N

n=1(Hi − Li) =
1
N

(
∑N

n=1 Hi −∑N
n=1 Li

)
= 1

N

(
∑N

n=1

(
1

KU [t,t+∆T]

)
−NL

)
= 1

N

(
∑N

n=1

(
L

OU [t,t+∆T]

)
−NL

)
= L

OU [t,t+∆T]
− L = L

(
1−OU [t,t+∆T]

OU [t,t+∆T]

)
,

(19)

where VU [t, t + ∆t] represents the average speed collected from loop detectors at upstream;
VD[t, t + ∆t] represents the average speed collected from loop detectors at downstream;
OU [t, t + ∆t] denotes the average occupancy collected from loop detectors at upstream; L
represents the average length of the vehicles; ∆T refers to the data aggregation interval of
loop detectors.

The theoretical speed limit of the upstream under the current traffic condition can be
obtained by substituting v1 and ∆x with the traffic flow information, respectively (substitute
Equations (18) and (19) into Equation (17)). Then, the upstream theoretical speed limit value
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Vvsl(xi, t + ∆T), which is defined as the maximum collision avoidance speed calculated by
aggregated traffic flow data, can be obtained.

The theoretical speed limit value Vvsl(xi, t + ∆T) is calculated from downstream to
upstream consecutively. However, the above-mentioned theoretical speed limits cannot be
directly applied as a reliable VSL strategy. That is because the current speed limits have
no spatial–temporal constraints to ensure the smooth shift of speed. and it is likely to
result in a sharp change in speed regarding temporal dimension and spatial dimension.
More specifically, considering a significant decrease in two temporally consecutive speed
limit values, the vehicles arriving at the next strategy execution periods would slow down
sharply. It forms a shock wave propagating back to the upstream, leading to an increase in
rear-end collision risks. Conversely, safe deceleration is also crucial for vehicles following
two spatially consecutive speed limits. If there is a dramatic change in speed limits posted
by two consecutive VMSs, vehicles moving from the previous VMS to the next will suffer
a deceleration scenario of high risk. It will also cause unexpected traffic flow oscillation.
To solve the above issues and obtain a preferable speed limit value, spatial–temporal
constraints are applied to avoid the possible turbulence of traffic flow. The spatial–temporal
constraints can be expressed by the following two equations. Note that Equation (20) is
used for the temporal constraint representation, and Equation (21) is used for the spatial
constraint representation.

Vvsl(xi, t + ∆T) = max(min(Vvsl(xi, t + ∆T), Vvsl(xi, t) + ∆vsl), Vvsl(xi, t)− ∆vsl), (20)

Vvsl(xi, t + ∆T) = max(min(Vvsl(xi, t + ∆T), Vvsl(xi+1, t + ∆T) + ∆vsl), Vvsl(xi+1, t+
∆T)− ∆vsl),

(21)

where Vvsl(xi, t) represents the calculated speed of avoiding the occurrence of rear-end
collision at location xi at time t. ∆vsl is the constraint value, which is set to be 15 km/h.
Vvsl(xi+1, t + ∆T) represents the calculated speed of avoiding the occurrence of rear-end
collision at location xi+1 at time t + ∆T.

Note that the collision avoidance theory is considered as the underlying philosophy for
developing the VSL. This theory is based on the physical model of two vehicle interactions,
which is rather intuitive. To prevent possible collisions, the interaction of two vehicles
should avoid situations where the required speed changes of collision avoidance exceed
the maximum ability of the vehicle. More specifically, if the current acceleration calculated
by the car-following model is within the braking performance of the vehicle, the safety
can be confirmed. Otherwise, it indicates that there is a rear-end collision risk. Most of the
surrogate safety measures such as Time-to-Collision (TTC) and Deceleration Rate to Avoid
Crash (DRAC) are proposed on the basis of this physical model and the corresponding
collision avoidance theory [45,46].

3.4. Evaluative Measurements

To evaluate the effectiveness, especially the safety performance of the proposed VSL
control strategy, appropriate surrogate safety measures capable of quantifying the rear-end
collision risk should be considered in VSL studies [47]. Surrogate safety measures are used
to bridge the gap between vehicle interactions and potential risky events, namely traffic
conflicts. Previous studies have developed a variety of indicators to measure the safety
status for induvial vehicles. In this study, two indicators time-exposed TTC (TET) and
time-integrated TTC (TIT) derived from time-to-collision (TTC) are employed for the crash
risk analysis [37,48–50]. The TTC value denotes the remaining time for the rear (following
vehicle) vehicle to collide with the leading vehicle (preceding vehicle) if the two vehicles
do not change their driving states (changing vehicular speeds or lanes). A TTC threshold
(denoted by TTC*) is commonly used to identify the high-risk conditions in the dynamic
driving process. Specifically, interactions are considered as unsafe when the TTC value is
lower than the selected threshold since the driver does not have sufficient time to avoid the
potential crash due to driver response limitations and braking limitations. Once a threshold
is selected to define risky conditions, the TTC threshold value will not be affected by the
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dynamic traffic conditions. The TTC of a rear vehicle i with respect to the leading vehicle
i− 1 at time step t can be calculated as follows:

TTCi(t) =

{
xi−1(t)−xi(t)−Li−1

vi(t)−vi−1(t)
, i f vi(t) > vi−1(t)

∞ , i f vi(t) ≤ vi−1(t)
, (22)

where xi−1 and vi−1 denote the current position and speed of the preceding vehicle, respec-
tively; xi and vi represent the current position and speed of the rear vehicle, respectively;
and Li−1 is the length of preceding vehicle.

According to the definition of TTC, the TTC value varies at each timestamp. To
measure the safety level over a certain period, the aggregated TET and TIT are utilized to
represent the time-aggregated crash risk, which can be calculated as:

TET(t) = ∑M
i=1 δt·∆t, δt =

{
1, ∀0 < TTCi(t) ≤ TTC∗

0, else
, (23)

TET = ∑TI
t=1 TET(t), (24)

TIT(t) = ∑M
i=1[TTC∗ − TTCi(t)]·∆t, ∀0 < TTCi(t) ≤ TTC∗, (25)

TIT = ∑TI
t=1 TIT(t), (26)

where δt represents the switching variable at time t; ∆t is the time step; M denotes the
number of involved vehicles; TI is time interval; TTC∗ denotes the threshold of TTC to
identify risky car-following situations from safe ones, which is set as 2 s following the
previous studies [51–53].

It is possible that VSL control may increase the travel time and therefore deteriorate the
efficiency, since relatively lower traffic flow speed would be obtained when implementing
speed limits. In this study, the average total travel time (TTT) is also applied to quantify
the travel efficiency for the proposed VSL strategy, which can be calculated as follows:

TTT =
∑M

i=1 Ti

M
, (27)

where Ti is the travel time of vehicle i.

4. Simulation Experiment Design

The simulation experiments are conducted based on Python since it is flexible to
incorporate the various microscopic driving models and complex simulation parameter
settings considered. Furthermore, using Python can save much time in rendering and
animation compared with some simulation software, especially considering the heavy
simulation workload for this study. As shown in Figure 2, a 9 km three-lane freeway
section is established, and there is an on-ramp entrance at 6.5 km, forming a typical freeway
bottleneck scenario [54]. The main lane is divided into nine basic sections by loop detectors
spaced one kilometer apart. A total of 24 VMSs are deployed at the corresponding positions
of 24 (8 × 3) loop detectors in the upstream, while loop detectors are only used to collect
traffic flow data. A low-speed driving zone is set up after the 8.5 km section. The established
roadway would provide a generalized testing background for VSL strategy evaluation.
Conversely, the proposed VSL method can be easily adapted to similar real-world roadway
sections if relevant high-resolution data such as roadway geometry are available.
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The simulation experiments are then conducted to examine the safety performance
and efficiency performance of the proposed VSL control strategy. It is also assumed that
HDVs and CAVs will comply with the posted speed limits. The VSL strategy is tested with
the assumed situation to demonstrate the optimal performance and greatest potential for
safety improvements. The average safe time gap is set to be 1.1, 1.6 and 2.2 s. The same
average safety gap is set for HDVs and CAVs. There are two main reasons why the same
gaps are set for HDVs and CAVs. First, the average safety gap may have a significant
impact on the safety performance of VSL. Hence, this parameter should be controlled when
evaluating VSL strategies and different CAVs market penetration rates. Otherwise, it is hard
to identify whether the safety improvements are because of the VSL or the increment of
CAV MPR. Second, CAVs platoon with smaller safety gaps in the mainstream will prevent
the ramp vehicles from merging into the mainstream, leading to a queue on the ramp. The
traffic may be re-organized for some critical areas, such as the typical freeway bottlenecks.
The CAVs may simulate human driver and follows the same driving behavior as HDVs
to ensure the normal operation of critical road sections. The initial speed of individual
vehicles is set to be 30 m/s. Vehicles are expected to slow down their operating speed to
5 m/s when reaching the low-speed area at the freeway bottleneck. The leading vehicle
brakes to the preset bottleneck speed and hence forms a shock wave propagating back
upstream. Six market penetration rates are tested, i.e., 0%, 10%, 20%, 30%, 40%, and 50%,
which ensure that HDVs still dominate in the mixed traffic flow. Each single simulation run
ends up when the last car passes through the low-speed area, with the first 5 minutes taken
as the warm-up period. Excluding the warm-up period, the average simulation length for
an individual simulation run is about 1.5 hours in this study. Other parameter settings are
presented in Table 1, which are selected based on previous studies [39,42,51,52]. Note that a
more specific scenario is defined by three factors, including the three VSL implementations,
three different average safety gaps and six CAV market penetration rates. For each specific
scenario, ten individual simulation runs are repeated with different random seeds to obtain
an average performance of VSL implementation. Therefore, the total time of simulation for
each VSL scenario is equal to 180 times (3 average safety gaps × 6 CAV MPR × 10 repeated
runs = 180).

Table 1. Parameter settings of simulation experiments.

Parameter Meaning Value
HDV CAV

d (m) Sight distance 100 100
β (m/s2) Desire deceleration 2 2

ta (s) Perception–reaction time 1 0
L (m) Average vehicle length 5 5

αm (m/s2) Max acceleration 1 1
v0 (m/s) Desire speed 30 30

s0 (m) Minimum gap at standstill 0 0
T (s) Safe time gap 1.1, 1.6, 2.2 1.1, 1.6, 2.2
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Table 1. Cont.

Parameter Meaning Value
HDV CAV

∆T (s) Data aggregation interval 30 30
∆t (s) Simulation step 0.1 0.1
palt Altruistic factor 0 1
∆a Lane changing threshold 1 1

abias Asymmetric lane changing parameter 0 0

5. Simulation Results and Discussions
5.1. The Influence of Safe Time Gap

In this section, the impacts of different safe time gaps under the VSL control are
investigated. Three types of safe time gap commonly used by commercial ACC are selected,
which are 1.1, 1.6 and 2.2 s. In each set of experiments, the time gap of HDV and CAV is set
to be equal to avoid the influence of the time gap difference on the experimental results.
Simulation experiments are conducted under different CAV market penetration rates, and
the results are shown in Figure 3. The TET and TIT values decrease significantly with the
increase in safe time gap under different CAV market penetration rates, indicating that the
increasing time gap can effectively reduce the rear-end collision risks. The TET and TIT
values increase with the increase in CAVs MPR. The underlying causes of this phenomenon
can be explained from two aspects:

(1) Most of the CAVs will be downgraded to ACC ones in the situation of low CAV market
penetration rates. Assuming that the market penetration rate of CAV is ρ, the market
penetration rate of human-driven vehicles is (1 − ρ ). Then, the theoretical probability
of CAV operating in CACC mode is ρ ∗ ρ and that in ACC mode is ρ ∗ (1− ρ). When
ρ < 50%, the theoretical probability of CAV vehicles operating in ACC mode increases
with the rise of CAV MPR. Meanwhile, it has been proven that the ACC vehicles are
unstable, amplifying the speed variations of preceding vehicles [42];

(2) The initial equilibrium formulas of CAVs and HDVs are shown as follows:
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hHDV =
v0

2vT√
v04 − v4

+ L, (28)

hCAV = vT + L, (29)

where hHDV represents the headway that should be maintained between the car-following
pair when the following vehicle is manually driven; hCAV represents the headway that
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should be maintained between the car-following pair in steady-state when the following
vehicle is CAV.

As for v0
2√

v0
4−v4

>1, which means hHDV > hCAV , the larger the distance between the

car-following pair in steady state, the smaller the disturbance to the main-lane vehicles
will be when the on-ramp vehicle merges. When the on-ramp vehicle merges between
two consecutive CAVs, there will form a drastic shocking wave, which has a negative
impact on the safety level of the main-lane vehicles. If the on-ramp vehicle is HDV, it will
further cause degradation of CAV and the formation of a more intense shocking wave.
Therefore, with the increase in CAV MPR, the value of surrogate safety measures rises.

5.2. The Performance of VSL Control Strategy Derived from Secondary Collision Risks
Reduction Strategy

In this section, the safety improvement performance of the VSL control strategy (VSL1)
derived from secondary collision risks reduction [14] was tested for comparison. The safe
time gaps of HDVs and CAVs are both set as 1.1 s. First, the simulations are conducted
in scenarios without VSL control and with 0% CAV MPR. The results are used as the
benchmark. Then, the safety performances with and without VSL control are further
tested at different CAV MPRs. The simulation results are shown in Figure 4. Six different
CAV MPRs are tested in the simulation, ranging from 0% to 50%, with an interval of 10%.
The safety performance of VSL1 control is improved to a certain extent in the scenario of
all HDVs when compared with that of no VSL control, and the TET and TIT values are
decreased by 13.3% and 36.4%, respectively. When the CAV MPR is 50%, the values of TET
and TIT are reduced by 7.7% and 20.8%, respectively. Furthermore, with the VSL1 control,
the values of TET and TIT are decreased by 12.2% and 28.0% on average, respectively, with
the CAV MPRs ranging from 0% to 50%. The aforementioned results indicate that the safety
improvement performance of VSL1 is quite limited.
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5.3. The Performance of VSL Control Strategy Derived from Collision Avoidance Theory

This section compares the performance of the VSL1 control strategy derived from
secondary collision risks reducing in the previous study [15] and the proposed VSL control
strategy based on collision avoidance theory in this study (VSL2). Figure 5 shows results
of two sets of VSL control strategies. When T = 1.1 s, the average decreasing rates of TET
and TIT under different CAV market penetration rates are 12.2% and 28.0% for VSL1, and
the average decreasing rates of TET and TIT are 62.1% and 73.1% for VSL2. Similarly,
when T = 1.6 s, the average decreasing rates of TET and TIT for VSL1 are 58.3%, 69.7%,
respectively, and 64.8% (TET), 73.3% (TIT) for VSL2. When T = 2.2 s, the average decreasing
rates of TET and TIT for VSL1 are 56.4%, 68.9% and 64.0% (TET), 73.1% (TIT) for VSL2. It
can be found that under different safe time gaps, the two control strategies can improve
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freeway safety, and the VSL2 control strategy has a better safety improvement effect than
the VSL1 control strategy. It can also be observed that the safe time gap will affect the TIT
and TET value and the safety improvement magnitude of the VSL control strategy. With
the increase in safe time gap, the safety improvement of the VSL2 control strategy weakens
since the larger gap provides a safer traffic environment.
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Figure 6 shows the comparison results of efficiency evaluation indexes of two sets of
VSL control strategies with different CAV market penetration rates. NO-VSL serves as a
benchmark for evaluating the impacts of the proposed VSL strategies on travel efficiency.
The vertical axes represent the increment rate of TTT compared to NO-VSL for better
observing the efficiency changes. The curves of NO-VSL are overlapped with the x-axis.
When T = 1.1 s, the average increasing proportion of total travel time (TTT) with VSL1 and
VSL2 control strategies is about 10.5% and 22.3%, respectively. When T = 1.6 s, the average
increasing rate of TTT is about 5.5% and 8.8%, respectively. When T = 2.2 s, the average
increasing rate of TTT is about 3.1% and 4.0% for the two sets of VSL control strategies
under different CAV market penetration rates. The VSL2 control strategy significantly
improves the level of road safety compared with the VSL1 control strategy, but it also
increases the total travel time. However, in terms of its safety improvements, the increase
in travel times is still within an acceptable level. In general, the VSL2 control strategy
proposed in this study has better comprehensive performance and can effectively reduce
the risk of rear-end collisions near freeway bottlenecks.
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6. Conclusions

Admittedly, there is still a long way to go before full automation and a high market
penetration rate of CAVs. In the current stage, CAVs have a considerable number of
technical and safety issues to be resolved, for example, robust perception and prediction,
data security and network security. These issues will also exist in the foreseeable future.
Consequently, it is believed that the mixed flow of CAVs and HDVs will occur in the near
future and will last for the long term instead of a fast transition to the transportation system
with a high CAVs market penetration rate. Considering the traffic management system in
the foreseeable future, there is an urgent need to investigate the proactive traffic control
strategy under different CAV MPRs. This study developed a control strategy of VSL to
reduce the rear-end collision risk near freeway bottlenecks considering a mixed traffic flow.
Four microscopic car-following models, one lane-changing model and VSL based on the
microscopic collision avoidance theory are considered to try to provide a dynamic driving
process close to real traffic conditions. The simulation experiments including scenarios and
parameter settings are carefully designed following previous studies. More specifically, the
occurrence condition of rear-end collision based on the classical car-following model IDM
was first analyzed. Then, a reliable VSL control strategy was proposed to dynamically adjust
the speed limits based on collision avoidance theory, and it was further compared with
the previous one based on secondary collision risk reduction. Surrogate safety measures
including TTC, TET, TIT, and efficiency evaluation index TTT were used to evaluate the
safety performance and efficiency performance of VSL control strategy. Scenarios with
different safe time gaps and CAVs MPR were considered in the simulation experiments.
Meanwhile, the two VSL control strategies are also compared in the above scenarios.

According to the experimental results, the VSL control strategy proposed in this study
can effectively improve the safety performance near freeway bottlenecks at an acceptable
efficiency level. The proposed VSL control strategy based on the theory of car-following
collision avoidance shows good performance in the dynamic driving scenarios considering
car following and lane changing. However, there are still many issues that need to be
addressed. First, the rear-end collision risk caused by the small steady-state car-following
gap of CAV in the on-ramp scenario should be avoided by applying reasonable control
strategies. Second, modeling compliance to speed limit is an interesting and important
topic for VSL studies. Future works can consider heterogeneous compliance of drivers for
VSL strategy evaluation at the initial stage of CAV popularization when the compliance
distribution can be obtained. It is also believed that developing VSL strategies that consider
the heterogeneous behaviors regarding car following and lane changing specific to the
freeway section will be a promising research direction. One viable way to consider this
might be to first obtain the high-resolution trajectory data specific to a road section by
drones and then calibrate the car-following models and lane-changing models based on
the real-world trajectory data. Furthermore, the degradation of CAVs in mixed flow is
also worth further study. The authors recommend these issues as future directions for
follow-up studies.

Author Contributions: Conceptualization, C.Y., Y.S. and Y.L.; methodology, C.Y. and Y.S.; software,
B.P.; writing—original draft preparation, C.Y. and Y.S.; writing—review and editing, C.Y. and Y.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(71901223) and the Natural Science Foundation of Hunan Province (2021JJ40746).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 2987 17 of 18

References
1. Carlson, R.C.; Papamichail, I.; Papageorgiou, M. Local feedback-based mainstream traffic flow control on motorways using

variable speed limits. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1261–1276. [CrossRef]
2. Frejo, J.R.D.; Camacho, E.F. Global versus local MPC algorithms in freeway traffic control with ramp metering and variable speed

limits. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1556–1565. [CrossRef]
3. Hegyi, A.; De Schutter, B.; Hellendoorn, J. Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans.

Intell. Transp. Syst. 2005, 6, 102–112. [CrossRef]
4. Li, Z.; Liu, P.; Wang, W.; Xu, C. Development of a control strategy of variable speed limits to reduce rear-end collision risks near

freeway recurrent bottlenecks. IEEE Trans. Intell. Transp. Syst. 2014, 15, 866–877.
5. Müller, E.R.; Carlson, R.C.; Kraus, W.; Papageorgiou, M. Microsimulation analysis of practical aspects of traffic control with

variable speed limits. IEEE Trans. Intell. Transp. Syst. 2015, 16, 512–523. [CrossRef]
6. Zhang, Y.; Ioannou, A.P. Combined variable speed limit and lane change control for highway traffic. IEEE Trans. Intell. Transp.

Syst. 2016, 18, 1812–1823. [CrossRef]
7. Han, Y.; Chen, D.; Ahn, S. Variable speed limit control at fixed freeway bottlenecks using connected vehicles. Transp. Res. Part B:

Methodol. 2017, 98, 113–134. [CrossRef]
8. Khondaker, B.; Kattan. LVariable speed limit: A microscopic analysis in a connected vehicle environment. Transp. Res. Part C

Emerg. Technol. 2015, 58, 146–159. [CrossRef]
9. Mao, P.; Ji, X.; Qu, X.; Li, L.; Ran, B. A Variable Speed Limit Control Based on Variable Cell Transmission Model in the Connecting

Traffic Environment. IEEE Trans. Intell. Transp. Syst. 2022, 1–12. [CrossRef]
10. Wang, M.; Daamen, W.; Hoogendoorn, S.P.; van Arem, B. Connected variable speed limits control and car-following control with

vehicle-infrastructure communication to resolve stop-and-go waves. J. Intell. Transp. Syst. 2016, 20, 559–572. [CrossRef]
11. Wu, Y.; Abdel-Aty, M.; Wang, L.; Rahman, M.S. Combined connected vehicles and variable speed limit strategies to reduce

rear-end crash risk under fog conditions. J. Intell. Transp. Syst. 2020, 24, 494–513. [CrossRef]
12. Zhao, X.; Xu, W.; Ma, J.; Li, H.; Chen, Y.; Rong, J. Effects of connected vehicle-based variable speed limit under different foggy

conditions based on simulated driving. Accid. Anal. Prev. 2019, 128, 206–216. [CrossRef] [PubMed]
13. Boggs, A.M.; Wali, B.; Khattak, A.J. Exploratory analysis of automated vehicle crashes in California: A text analytics & hierarchical

Bayesian heterogeneity-based approach. Accid. Anal. Prev. 2020, 135, 105354.
14. Li, Z.; Li, Y.; Liu, P.; Wang, W.; Xu, C. Development of a variable speed limit strategy to reduce secondary collision risks during

inclement weathers. Accid. Anal. Prev. 2014, 72, 134–145. [CrossRef]
15. Dörschel, L.; Abel, D. Traffic Control on Freeways Using Variable Speed Limits. IFAC-Pap. 2020, 53, 14924–14929. [CrossRef]
16. Frejo, J.R.; Papamichail, I.; Papageorgiou, M.; De Schutter, B. Macroscopic modeling of variable speed limits on freeways. Transp.

Res. Part C Emerg. Technol. 2019, 100, 15–33. [CrossRef]
17. Zhang, Y.; Wang, M.; Liu, T.; Luo, J. An Extended Variable Speed Limit Strategy for Intelligent Freeway Traffic Optimization. In

Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August
2018; IEEE: New York, NY, USA, 2018; pp. 1–6.
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