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Abstract: Variable selection has been a hot topic, with various popular methods including lasso,
SCAD, and elastic net. These penalized regression algorithms remain sensitive to noisy data. Fur-
thermore, “concept drift” fundamentally distinguishes streaming data learning from batch learning.
This article presents a method for noise-resistant regularization and variable selection in noisy data
streams with multicollinearity, dubbed canal-adaptive elastic net, which is similar to elastic net and
encourages grouping effects. In comparison to lasso, the canal adaptive elastic net is especially
advantageous when the number of predictions (p) is significantly larger than the number of observa-
tions (n), and the data are multi-collinear. Numerous simulation experiments have confirmed that
canal-adaptive elastic net has higher prediction accuracy than lasso, ridge regression, and elastic net
in data with multicollinearity and noise.
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1. Introduction

Most traditional algorithms are built on closed-world assumptions and use fixed
training and test sets, which makes it difficult to cope with changeable scenarios, including
the streaming data issue. However, most data in practical applications are provided as data
streams. One of their common characteristics is that the data will continue to grow over
time, and the uncertainty introduced by the new data will influence the original model. As
a result, learning from streaming data has become more essential [1–3] in machine learning
and data mining communities. In this article, we employ the online gradient descent (OGD)
framework proposed by Zinkevich [4]. It is a real-time, streaming online technique that
updates the model on top of the trained model once per piece of data, making the model
time-sensitive. In this article, we will provide a novel noise-resistant variable selection
approach for handling noisy data streams with multicollinearity.

Since the 1960s, the variable selection issue has been much research literature. Since
Hirotugu Akaike [5] introduced the AIC criterion, variable selection techniques have
advanced, including more classic methods such as subset selection and coefficient shrink-
age [6]. Variable selection methods based on penalty functions were developed to optimize
computational efficiency and accuracy. Using a multivariate linear model as an illustra-
tion, e.g.,

y = β0 + x1β1 + ... + xpβp + ε,

where the parameter vector is β = [β0, β1, ..., βp]T , the parameters are estimated by methods
such as OLS and Maximum Likelihood. The penalty function that balances the complexity
of the model is added to this to construct a new penalty objective function. This penalty ob-
jective function is then optimized (maximized or minimized) to obtain parameter estimates.
Its general framework is:

R(β) + Pλ(|β|),
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where R(β) is loss function and Pλ(|β|) is a penalty function. This strategy enables the S/E
(selection/Estimation) phase of the subset selection method to be done concurrently by
compressing part of the coefficients to zero, significantly lowering computing time and
minimizing the chance of the subset selection method becoming unstable. The most often
employed of these are bridge regression [7], ridge regression [8], and lasso [9], with bridge
regression having the following penalty function:

Pλ(|β|) = λ
p

∑
j=1
|β j|m, λ, m > 0,

where λ is an adjustment parameter, since the ridge regression model introduces the `2-
norm, it has a more stable regression effect and outperforms OLS in prediction. While the
lasso method is an ordered, continuous process, it offers the advantages of low comput-
ing effort, quick calculation, parameter estimation continuity, and adaptability to high-
dimensional data. However, lasso has several inherent disadvantages, one being the
absence of the Oracle characteristic [10]. The adaptive lasso approach was proposed by
Zou [11]. Similar to ADS (adaptive Dantzig selector) [12] for DS (Datnzig selector) [13] the
adaptive lasso is an improvement on the lasso method with the same level of coefficient
compression. The adaptive lasso has Oracle properties [11]. According to Zou [11], the
greater the least squares estimate of a variable, the more probable it is to be a variable in the
genuine model. Hence, the penalty for it should be reduced. The adaptive lasso method’s
penalty function is specified as:

Pλ(|β|) = λ
p

∑
j=1

1∣∣β̂ j
∣∣θ ∣∣β j

∣∣, λ, θ > 0,

where λ and θ are adjustment parameters.
With several sets of explanatory variables known to be strongly correlated, the lasso

method is powerless if the researcher wants to keep or remove a certain group of variables.
Therefore, Yuan and Lin [14] proposed the group lasso method in 2006. The basic idea is to
assume that there are J groups of strongly correlated variables, namely G1, · · · , GJ , and the

number of variables in each group is p1, · · · , pJ , and βGj =
(

β j
)j∈Gj as the corresponding

element of the sub-variables. The penalty function for the group Lasso method:

Pλ(|β|) = λ
J

∑
j=1

∣∣∣|βGj

∣∣∣|Kj ,

where
∥∥∥βGj

∥∥∥
Kj

=
(

βT
Gj

KjβGj

)1/2
is the elliptic norm determined by the positive definite

matrix Kj.
Chesneau and Hebiri [15] proposed the grouped variables lasso method and inves-

tigated its theory in 2008. They proved this bound is better in some situations than the
one achieved by the lasso and the Dantzig selector. The group variable lasso exploits the
sparsity of the model more effectively. Percival [16] developed the overlapping groups lasso
approach, demonstrating that permitting overlap does not remove many of the theoretical
features and benefits of lasso and group lasso. This method can encode various structures
as collections of groups, extending the group lasso method. Li, Nan, and Zhu [17] proposed
the MSGLasso (Multivariate Sparse Group Lasso) method. The method can effectively
remove unimportant groups and unimportant individual coefficients within important
groups, especially for the p� n problem. It can flexibly handle a variety of complex group
structures, such as overlapping, nested, or multi-level hierarchies.

The prediction accuracy of the lasso drastically reduces when confronted with multi-
collinear data. A novel regularisation approach dubbed elastic net [18] has been presented
to address these issues. Elastic net estimation may be conceived as a combination of
lasso [9] and ridge regression [8] estimation. Compared to lasso, the elastic net approach
performs better with data of the kind p� n with several co-linearities between variables.
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However, a basic elastic net is incapable of handling noisy data. To address the difficulties
above, we propose canal-adaptive elastic net method in this article. This technique offers
four significant advantages:

1. This model is efficient at handling streaming data. The suggested canal-adaptive
elastic net dynamically updates the regression coefficients β for regularised linear
models in real-time. Each time a batch of data is fetched, the OGD framework enables
updating the original model. Can handle stream data more effectively.

2. The model has a sparse representation. As illustrated in Figure 1, only a tiny subsec-
tion of samples with residuals in the ranges (−ε− δ,−ε) and (ε, ε + δ) are used to
adjust the regression parameters. As a result, the model has perfect scalability and
decreases computing costs.

3. The improved loss function confers on the model a significant level of noise resistance.
By dynamically modifying the δ parameter, noisy data with absolute errors (bigger
than the threshold parameter δ+ ε) are recognized and excluded from being employed
to alter the regression coefficients.

4. The `1-norm and `2-norm are employed. Can handle the scenario of p � n in the
data more effectively. Simultaneous automatic variable selection and continuous
shrinkage and can select groups of related variables. Overcoming the effects of
data multicollinearity.

Figure 1. I. absolute loss; II. ε-insensitive loss; III. canal loss.

The rest of this paper is structured in the following manner. Section 2 reviews some
studies on variable selection, noise-tolerant loss functions, data multicollinearity, and
streaming data. Section 3 summarizes previous work on the penalty aim function and
then introduces the linear regression noise-resistant online learning technique. In Section 4,
we conduct numerical simulations and tests on benchmark datasets to compare the canal-
adaptive elastic net presented in this research to lasso, ridge regression, and elastic net.
Finally, Section 5 presents a concise discussion to conclude the paper.

2. Related Works

Variable selection has always been an important issue in building regression models.
It has been one of the hot topics in statistical research since it was proposed in the 1960s,
generating much literature on variable selection methods. For example, the Japanese
scholar Akaike [5] proposed the AIC criterion based on the maximum likelihood method,
which can be used both for the selection of independent variables and for setting the order
of autoregressive models in time series analysis. Schwarz [19] proposed the BIC criterion
based on the Bayes method. Compared to AIC, BIC strengthens the penalty and thus is
more cautious in selecting variables into the model. All the above methods achieve variable
selection through a two-step S/E (Selection/Estimation) process, i.e., first selecting a subset
of variables in an existing sample according to a criterion. A subset of variables is selected
from the existing sample according to a criterion (Selection). Then the unknown coefficients
are estimated from the sample (Estimation). Because the correct variable is unknown in
advance, the S-step is biased, which increases the risk of the E-step. To overcome this
drawback, Seymour Geisser [20] proposed Cross-validation. Later on, variable selection
methods based on penalty functions emerged. Tibshirani [9] proposed LASSO (Least
Absolute Shrinkage and Selection Operator) inspired by the NG (Nonnegative Garrote)



Mathematics 2022, 10, 2985 4 of 18

method. The lasso method avoids the drawback of over-reliance on the original least
squares estimation of the NG method. As Fan and Li [21] pointed out that lasso does not
possess the Oracle property, they thus proposed a new variable selection method, the SCAD
(Smoothly Clipped Absolute Deviation) method, and proved that it has the Oracle property.
Zou [11] proposed the adaptive lasso method based on the lasso. The variable selection
methods with structured penalties (e.g., features are dependent and/or there are group
structures between features) have become more popular because of the ever-increasing
need to handle complex data, such as elastic net and group lasso [14].

While investigating noise-resistant loss functions, we generated interest in the trun-
cated loss function. The losses generate learning models that are robust to substantial
quantities of noise. Xu et al. [22] demonstrated that truncation could tolerate much higher
noise for enjoying consistency than without truncation. The robust variable selection is a
novel concept that incorporates robust losses from the robust statistics area into the model.
Formed models that perform well empirically in noisy situations [23–25].

The concept of multicollinearity refers to the linear relationships between the indepen-
dent variables in multiple regression analysis. Multicollinearity occurs when the regression
model incorporates variables that are highly connected not only with the dependent vari-
able but also to each other [26]. Some research has explored and discussed the challenges
associated with multicollinearity in regression models, emphasizing that the primary issue
of multicollinearity is uneven and biased standard errors and unworkable interpretations
for the results [27,28]. There are many strategies for handling multicollinearity, one of
which is ridge regression [29,30].

Many studies have been conducted over the last few decades on inductive learning ap-
proaches such as lasso [9], artificial neural networks [31,32]. Support vector regression [33],
among others. These methods have been applied successfully to a variety of real-world
problems. However, their usual implementation causes the simultaneous availability of all
training data [34], making them unsuitable for large-scale data mining applications and
streaming data mining tasks [35,36]. Compared to the traditional batch learning framework,
the online learning algorithm (shown in Figure 2) is another framework for learning sam-
ples in a streaming fashion, which has the advantage of scalability and real-time. In recent
years, great attention has been paid to developing online learning methods in the machine
learning community, such as online ridge regression [37,38], adaptive regularization for
lasso [39], projection [40] and bounded online gradient descent algorithm [41].

Figure 2. An illustration schematic of the online regression learning procedure.

3. Method

Most currently available online regression algorithms learn information from clean
data. Because of flaws in the human labeling process and sensor failures, noisy data are
unavoidable and damaging. In this section, we propose a noise-tolerant online learning
algorithm for the linear regression of streaming data. We employed a noise-resilient loss
function, dubbed canal loss, for regression based on the well-known ε-insensitive loss,
inspired by the ramp loss designed for classification problems. In addition, we will use a
novel method to adjust the ε and δ dynamics of the canal loss parameters.
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3.1. Canal-Adaptive Elastic Net

For a given n-group of data{(xi, yi)}n
i=1, yi ∈ R, we consider a simple liner regres-

sion model:
y = Xβ + ε,

where y = (y1, y2, · · · , yn)
T is the response and X =

(
x1, x2, · · · , xp

)
is the models column

full rank design matrix, xj =
(

x1j, x2j, · · · , xnj
)T , j = 1, 2, · · · , p is the n-dimensional ex-

planatory variable, β =
(

β1, β2, · · · , βp
)T is the associated vector of regression coefficient,

ε are i.i.d random errors vector with mean of 0. Without losing generality we can assume
that the response is centered and the predictors are standardized after a location and
scale transformation,

n

∑
i=1

yi = 0,
n

∑
i=1

xij = 0,
n

∑
i=1

x2
ij = 1, j = 1, 2, . . . , p.

However, if X is not column full rank, or if the linear correlation between some
columns is significant, the determinant of XTX is close to 0, i.e., XTX is close to singular. The
traditional OLS method lacks stability and reliability. To solve the above problem, Hoerl
and Kennard [20] proposed ridge regression:

Ridge Regression : L(β) =
n

∑
i=1

(yi − xiβ)
2 + λ

p

∑
j=1

β2
j .

The penalty technique improves OLS by transforming the unfit problem into a fit
problem. It loses the unbiasedness of OLS in exchange for higher numerical stability and
obtains higher computational accuracy. Although ridge regression can effectively overcome
the high correlation between variables and improve the prediction accuracy, model selection
cannot be made with ridge regression alone. Therefore, Tibshirani [9] proposed the primary
lasso criterion:

Lasso : L(β) =
n

∑
i=1

(yi − xiβ)
2 + λ

p

∑
j=1
|βi|,

where λ > 0 is a fixed adjustment parameter. Lasso is a penalized ordinary least squares
method. Based on the singularity of the derivative of the penalty function at zero, the
coefficients of the insignificant variables are compressed to zero, and a lighter compression
is given to the significant independent variables with larger estimates. The accuracy of the
parameter estimates is ensured.

However, lasso also has some inherent drawbacks: lasso does not have the Oracle
property. It has the disadvantage of selecting at most n variables when considering data
of sample size (p > n). Where numerous characteristics are interrelated, lasso selects
one of these characteristics. Lasso is less effective than ridge regression when handing
independent variables with multicollinearity. Therefore, Zou and Hastie proposed the
elastic net:

Elastic Net : L(λ1, λ2, β) =
n

∑
i=1

(yi − xiβ)
2 + λ2

p

∑
j=1

β2
j + λ1

p

∑
j=1

∣∣β j
∣∣.

The elastic net uses both `1-norm and `2-norm as linear regression models with a
priori canonical terms. It combines the advantages of lasso and ridge regression. It is a
method to solve the group variable selection with unknown variable grouping. Compared
with the lasso, elastic net also improves handling data with sample size (p > n) and
data with multicollinearity among variables. Unfortunately, because of the loss function’s
shortcomings, the elastic net cannot erase the effects caused by noisy data.

To obtain a noise-resilient elastic net-type estimator. Based on the classical ε-insensitive
loss function lε(z)=max{0, |z| − ε}. Canal loss with noise-resilient parameter δ is proposed:

lδ
ε(zi) = min{δ, max{0, |zi| − ε}}
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where zi = yi − xiβ, ε > 0 and δ > 0 are the threshold tuning parameter. The canal loss
function’s upper bound is maintained as a constant, i.e., δ, which considerably reduces
the negative influence of outliers and makes it a noise-resistant loss function. Using the
advantages of canal loss, we modify the elastic net and propose the canal-adaptive elastic
net as a new method. We define the canal-adaptive elastic net as:

Canal − Adaptive Elastic Net : L(λ1, λ2, β) =
n

∑
i=1

lδ
ε(zi) + λ2

p

∑
j=1

β2
j + λ1

p

∑
j=1

ŵj
∣∣β j
∣∣,

where λ1, λ2 > 0, ŵj =
∣∣β̂ j(en)

∣∣−γ
for j = 1, · · · , p, γ is a positive constant. We can also

define ŵj = ∞ when β̂ j(en) = 0. β̂ j(en) is the weight to correct the regression coefficient β j.
We define β̂(en) as:

β̂(en) = argmin
β

n

∑
i=1

lδ
ε(zi),

where β̂(en) =
(

β̂1(en), β̂2(en), · · · , β̂p(en)
)T

.
The canal loss approximates the absolute loss in the process of ε → 0 and δ → +∞,

which is more clearly expressed as:

lim
ε→0,δ→+∞

`δ
ε(zi) = lim

ε→0,δ→+∞
min{δ, max{0, |zi| − ε}} = |zi|.

The proposed canal-adaptive elastic net is predicted to be robust to outliers and to
have the property of sparse representation.

3.2. Online Learning Algorithm for Canal-Adaptive Elastic Net

We employed the online gradient descent algorithm (OGD) and presented the min-
imization optimization strategy to solve the canal-adaptive elastic net model efficiently

L(λ1, λ2, β) =
n

∑
t=1

lδ
ε(zt) + λ2

p

∑
j=1

β2
j + λ1

p

∑
j=1

ŵj
∣∣β j
∣∣, (1)

where zt = yt − xtβ.
First, the literature has proposed numerous methods for estimating the regularisation

parameter, including cross-validation, AIC, and BIC. We minimize the BIC-type objective
function to optimize the regularisation parameter, which makes the calculation quicker and
ensures consistency in variable selection, i.e.,

min
λ

n

∑
t=1

lδ
ε(zt) + λ2

p

∑
j=1

β2
j + λ1

p

∑
j=1

ŵj
∣∣β j
∣∣− log(λ1 + λ2)log(n).

Second, although Equation (1) is not a convex optimization problem, it can be restated
as a difference in convex (DC) programming issue. This problem may be solved using the
Concave-Convex Procedure (CCCP). However, because CCCP is a batch learning algorithm,
it does not meet real-time processing requirements when handling streaming data. We
used the well-known OGD framework in our work to arrive at a near-optimal solution.
This is a compromise between accuracy and scalability. To minimize Equation (1) by OGD,
we reformulate it as:

argminL(β)
β

⇔ argmin
β

n

∑
t=1

[
lδ
ε(zt) + λ2

p

∑
j=1

β2
j + λ1

p

∑
j=1

ŵj
∣∣β j
∣∣]

︸ ︷︷ ︸
Jt(β)

,

and then, based on the basic structure of the OGD algorithm, we solve this optimiza-
tion problem,

β(t) = β(t−1) − ηt∇β Jt(β)
∣∣∣β=β(t−1). (2)

Here, ηt is the t-th step that satisfies the following constraints ∑n
t=1 η2

t < ∞ and
∑n

t=1 ηt = ∞. when n → ∞ [42]. Unlike the exact computation of the full gradient of
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L(λ1, λ2, β), the notation ∇β Jt(β)| β=β(t−1) denotes the derivative of Jt(β) with respect to

β = β(t−1) of the derivative. We can deduce ∇β Jt(β)| β=β(t−1) as following:

∇β Jt(β)| β=β(t−1) =



−xt + 2λ2β(t−1) + λ1(−γ
∣∣∣β(t−1)

∣∣∣−γ−1
sign(β(t−1))

∣∣∣β(t−1)
∣∣∣+ ∣∣∣β(t−1)

∣∣∣−γ
sign(β(t−1))),

if − ε− δ < zt < −ε,

xt + 2λ2β(t−1) + λ1(−γ
∣∣∣β(t−1)

∣∣∣−γ−1
sign(β(t−1))

∣∣∣β(t−1)
∣∣∣+ ∣∣∣β(t−1)

∣∣∣−γ
sign(β(t−1))),

if ε < zt < ε + δ,

2λ2β(t−1) + λ1(−γ
∣∣∣β(t−1)

∣∣∣−γ−1
sign(β(t−1))

∣∣∣β(t−1)
∣∣∣+ ∣∣∣β(t−1)

∣∣∣−γ
sign(β(t−1))),

otherwise,

(3)

where zt = yt − xtβ
(t−1), substituting the gradient Equation (3) into Equation (2),

β(t) =


β(t−1) − ηt(−xtsign(zt) + 2λ2β(t−1) + λ1(−γ

∣∣∣β(t−1)
∣∣∣−γ−1

sign(β(t−1))
∣∣∣β(t−1)

∣∣∣+ ∣∣∣β(t−1)
∣∣∣−γ

sign(β(t−1)))),

if ε < |zt| < ε + δ,

β(t−1) − ηt(2λ2β(t−1) + λ1(−γ
∣∣∣β(t−1)

∣∣∣−γ−1
sign(β(t−1))

∣∣∣β(t−1)
∣∣∣+ ∣∣∣β(t−1)

∣∣∣−γ
sign(β(t−1)))),

otherwise.

(4)

Finally, as shown in Equation (3), the proposed canal-adaptive elastic net contains
a sparsity parameter ε ≥ 0 and a noise-resilient parameter δ ≥ 0. The parameter ε
determines the sparsity of the proposed model, whereas δ indicates the level of noise
elasticity. Proposing a strategy for adjusting the channel loss parameters is a pressing issue.
ε and δ are automatically iterated. In this study, we set the parameters:{

ε = ζ ×mean{|ŷt|, |yt|},
δ = γ×mean{|ŷt|, |yt|}

(5)

Adjusting ε and δ parameters is equivalent to adjusting ζ and γ. When γ is set to 0,
the algorithm does not learn any examples of {(xt, yt)}n

t=1 and instead updates β according
to the regularization term. If γ is sufficiently big, our canal-adaptive elastic net will
withstand noisy data. The proposed canal-adaptive elastic net algorithm is summarized as
Algorithm 1.

Algorithm 1 Noise-Resilient Online Canal-adaptive Elastic Net Algorithm.

Input: Initial β(0) = [1, 1, . . . , 1︸ ︷︷ ︸
d+1

]T estimate number of examples n and instance sequences

xt(t = 1, . . .).
Output: Predict ŷt(t = 1, . . .)
1:Xt = [1 xt]

T = [1, x1t, x2t, . . . , xdt]
T

2: for t = 1, . . . do
3: Receive instance Xt
4: Predict value ŷt = XT

t β(t−1)

5: Receive true value yt
6: Update canal loss parameter ε and δ according to Equation (5)
7: Compute residual error zt = ŷt − yt
8: if ε ≤ |zt| < ε + δ
9: Update β(t) = β(t−1) − ηt

(
−xt sign(zt) + 2λ2β(t−1) + λ1

(
−γ
∣∣∣β(t−1)

∣∣∣−γ−1
sign

(
β(t−1)

)∣∣∣β(t−1)
∣∣∣+ ∣∣∣β(t−1)

∣∣∣−γ
sign

(
β(t−1)

)))
,

according to Equation (4).
10: else
11: Update β(t) = β(t−1) − ηt

(
2λ2β(t−1) + λ1

(
−γ
∣∣∣β(t−1)

∣∣∣−γ−1
sign

(
β(t−1)

)∣∣∣β(t−1)
∣∣∣+ ∣∣∣β(t−1)

∣∣∣−γ
sign

(
β(t−1)

)))
,

according to Equation (4).
12: end if
13: end for
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4. Experiments

In this part, we perform experiments to evaluate the canal-adaptive elastic net algo-
rithm performs. First, simulation studies on synthetic data with multicollinearity and noise
are used to verify the method’s efficiency. Second, the model’s resistance to noise and the
variable selection accuracy is evaluated using data sets with different noise proportions.
Finally, we run thorough tests to assess the proposed algorithm’s performance on four
benchmark prediction tasks. The benchmark datasets used in the experiments are available
from the UCI Machine Learning repository and LIBSVMP website.

4.1. Simulation Settings

We evaluate the proposed noise-resilient online regression algorithm on synthetic data
sets with noise and multicollinearity. We examine the proposed canal-adaptive elastic net
method’s effectiveness in handling noisy and multi-collinear input and output data. In
addition, we evaluated the canal-adaptive elastic net method’s performance in simulation
trials with and without multicollinearity datasets. The simulation experiment is described
in detail below.

4.1.1. The Case of Both Multicollinearity and Noise

This experiment indicates that canal-adaptive elastic net on streaming data outper-
forms lasso, ridge regression, and elastic net in handling multicollinearity data and is a
suitable variable selection procedure for handling noisy data than the other three methods.

We simulate 200 observations in each example and set the feature dimension d as 10.
We let β j = 0.85 for all j. The correlation coefficients between xi and xj were greater than
0.8 in their absolute values. We trained the model on 70% of the data and then tested it on
30% of the data. We conducted 20 randomized trials and determined the MAE, RMSE, the
number of discards, discard rate, and average computation time of the model on the test
data set using varied noise proportions for x and y.

We generated simulated the data from the true model,

yt = xtβ + ρεt, ε ∼ N(0, 1), (6)

where ρ = 3 and εt is generated by the normal distribution N(0, 1). For a given t, the
covariate xt is constructed using a standard d-dimensional multivariate normal distribution,
which assures that the components of xt are independent and standard normal. Here, we
change the noise ratio σ from {0, 0.1, 0.2, 0.3}. To be more precise, we randomly select some
samples {xt, yt} with the ratio of σ, change the 6th explanatory variable of xt to 0 in the
training set, and then evaluate the learning model on real test datasets. Table 1 contains the
results. Furthermore, to find out the effect of the noisy response variable y. We randomly
altered the response variable y to 0 in the training set at a rate of σ and then tested the
learning model with the real test sample. Table 2 summarizes the corresponding findings.
To make a comparison, the compared models are solved using the online gradient descent
(OGD) method, i.e., lasso, ridge regression, elastic net, and canal-adaptive elastic net. In
the simulated experiments, we set the two hyper-parameters ε = 0.1 and δ = 2.0.

First, we show that the canal-adaptive elastic net can avoid interfering with the
explanatory variable x. Analysis of RMSE and MAE indicates lasso deviates significantly
from the true value. In contrast, canal-adaptive elastic net, ridge regression, performs
admirably. Lasso is sensitive to multicollinearity in the data because of its nature. In the
presence of noise, the proposed canal-adaptive elastic net method outperforms the other
three competing methods. In particular, canal-adaptive elastic net significantly outperforms
lasso, ridge regression, elastic net, and in the presence of high noise level (σ = 0.3). Because
of the inherent drawbacks of the elastic net, its loss function can reduce the impact of noisy
data to some extent. However, the negative impact of noisy data is still serious. Figure 3a
illustrates the predictive performance of different algorithms. It can be observed that when
data are multicollinearity and noisy, the canal-adaptive elastic net outperforms lasso, ridge
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regression, and elastic net. This shows that the canal-adaptive elastic net is a method
capable of overcoming multicollinearity and is noise-resistant.

Table 1. Results of simulations of noisy explanatory variable x in the presence of data multicollinearity.

σ Method RMSE MAE Discarded Samples Discarded Rate Time (s)

0 Lasso 1.7274 ± 0.2074 9.6486 ± 2.2035 0 0.00% 0.0011
Elastic Net 1.7739 ± 0.2324 9.8651 ± 3.6694 0 0.00% 0.0013

Ridge Regression 1.6251 ± 0.2599 7.7511 ± 1.6699 0 0.00% 0.0012
Canal-Adaptive Elastic Net 1.6109 ± 0.1826 7.0687 ± 1.8752 0 0.00% 0.0014

0.1 Lasso 2.1554 ± 0.3275 15.2898 ± 4.9195 0 0.00% 0.0011
Elastic Net 1.7073 ± 0.2796 9.3282 ± 2.8530 0 0.00% 0.0013

Ridge Regression 1.6610 ± 0.2693 8.2822 ± 2.5765 0 0.00% 0.0012
Canal-Adaptive Elastic Net 1.5942 ± 0.2684 7.2797 ± 2.5177 26.000 ± 2.000 13.00% 0.0015

0.2 Lasso 2.3174 ± 0.2899 18.0449 ± 4.7368 0 0.00% 0.0012
Elastic Net 2.1440 ± 0.3066 15.3115 ± 4.7714 0 0.00% 0.0013

Ridge Regression 1.5664 ± 0.1476 7.7189 ± 1.4264 0 0.00% 0.0011
Canal-Adaptive Elastic Net 1.4850 ± 0.1959 7.0048 ± 1.3591 44.000 ± 4.000 22.00% 0.0015

0.3 Lasso 2.3753 ± 0.3360 18.8495 ± 4.6064 0 0.00% 0.0012
Elastic Net 2.2583 ± 0.2608 16.8451 ± 3.7473 0 0.00% 0.0013

Ridge Regression 1.7206 ± 0.1009 9.0645 ± 1.7891 0 0.00% 0.0012
Canal-Adaptive Elastic Net 1.6157 ± 0.1340 8.0100 ± 2.1617 72.000 ± 7.000 36.00% 0.0015

Table 2. Results of simulations of noise response variables y in the presence of data multicollinearity.

σ Method RMSE MAE Discarded Samples Discarded Rate Time (s)

0 Lasso 2.1554 ± 0.3275 15.2898 ± 4.9195 0 0.00% 0.0011
Elastic Net 1.7739 ± 0.2324 9.8651 ± 3.6694 0 0.00% 0.0013

Ridge Regression 1.6251 ± 0.2599 8.0043 ± 1.6699 0 0.00% 0.0012
Canal-Adaptive Elastic Net 1.6109 ± 0.1826 7.6687 ± 1.8752 0 0.00% 0.0014

0.1 Lasso 2.2082 ± 0.3966 14.8886 ± 5.2407 0 0.00% 0.0012
Elastic Net 1.8817 ± 0.2330 10.2875 ± 3.9768 0 0.00% 0.0015

Ridge Regression 1.7057 ± 0.1853 9.0843 ± 2.6754 0 0.00% 0.0012
Canal-Adaptive Elastic Net 1.6013 ± 0.1743 7.0020 ± 2.3720 76.000 ± 7.000 38.00% 0.0016

0.2 Lasso 2.3659 ± 0.3966 18.9535 ± 3.2407 0 0.00% 0.0012
Elastic Net 1.9372 ± 0.2960 13.1065 ± 4.0957 0 0.00% 0.0013

Ridge Regression 1.8668 ± 0.2369 9.8637 ± 2.8419 0 0.00% 0.0012
Canal-Adaptive Elastic Net 1.6585 ± 0.2178 7.7834 ± 2.0399 84.000 ± 8.000 42.00% 0.0015

0.3 Lasso 2.4068 ± 0.2157 19.7197 ± 3.5115 0 0.00% 0.0011
Elastic Net 2.0314 ± 0.2787 14.2434 ± 4.9863 0 0.00% 0.0014

Ridge Regression 2.0668 ± 0.1779 14.4463 ± 1.6615 0 0.00% 0.0012
Canal-Adaptive Elastic Net 1.7624 ± 0.3057 8.6620 ± 2.7414 90.000 ± 0.800 45.00% 0.0015

Each coefficient may have an influence when noisy data are present in the response
variable y. In the presence of multicollinearity in the data, the proposed canal-adaptive
elastic net significantly outperforms lasso, ridge regression, and elastic net. Due to the lasso
itself, it does not predict data containing multicollinearity very well. The estimation of β
deviates far from the true coefficient β than the other three methods. Compared with the
lasso, ridge regression and elastic nets effectively overcome the effects of data with multi-
collinearity. However, their performance suffers when a certain level of noise is introduced.
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The prediction performance of the different models is provided in Figure 3b for a more
detailed comparison of the models. Canal-adaptive elastic net outperforms the other three
approaches in the presence of noisy data and data with multicollinearity. The results show
that the canal-adaptive elastic net is a successful technique for overcoming multicollinearity
and handling noisy data when the response variable y contains considerable noise.

 Canal-Adaptive Elastic Net  % (5)

(a)

 Canal-Adaptive Elastic Net  % (5)

(b)
Figure 3. Results of simulations of noisy explanatory variable x and noise response variables y in
the presence of data multicollinearity. (a) The noise explanatory variable x. (b) The noise response
variable y.

4.1.2. The Case of Noise

In this subsection, we present simulation experiments comparing the performance of
canal-adaptive elastic nets with three competing approaches (lasso, ridge regression, and
elastic net) on a limited sample of streaming noise data (n = 5000, 10,000). This experiment
explores the performance of the four methods for group variable selection with unknown
variable grouping. Because of its nature, group lasso cannot be included in this experiment.
In addition, we set the β to (1, −2, 3, −4, 5, −6, 0, 0, . . . , 0). Where the feature dimension
d is 50, the first six regression coefficients are significant, whereas the following 44 are
insignificant. The covariate xt is created for a given t using a standard d-dimensional
multivariate normal distribution, which ensures that the components of xt are independent
and standard normal. The response variables are generated according to Equation (6)
where ρ = 0.5 and εt are generated from the normal distribution N (0,1).

Also, to investigate the effects of the noisy response variable y and the explanatory
variable x, we applied a certain percentage of noise to the training dataset in the same way
as in Section 4.1.1. We then tested the learning model with real test samples. Tables 3 and 4
indicate the related results. For each parameter setting, 20 random experiments were
conducted to evaluate the average performance on datasets with sample sizes n equal
to 5000 and 10,000, respectively. For comparison, lasso, ridge regression, elastic net, and
canal-adaptive elastic net models were solved using the online gradient descent (OGD)
method. After that, performing these approaches is compared by determining the MAE,
RMSE, the number of discards, discard rate, and average computing time for the models
on the test data. We pre-set the parameters to ε = 0.01 and σ = 0.8.

To begin, we show that the canal-adaptive elastic net is unaffected by the explanatory
variable x. All four methods perform well in the presence of noise with a rate of σ = 0.
As illustrated in Table 3, performing lasso, elastic net, and ridge regression under noisy
data deviates significantly from the true value. In particular, when σ = 0.2 or 0.3, the
canal-adaptive elastic net significantly outperforms the other three competing approaches.
Because of the shortcomings of the loss functions of the lasso, elastic net, and ridge re-
gression, these three methods are susceptible to noisy data. Figure 4 provides a complete
comparison of the prediction performance of several algorithms. In the presence of noisy
data input, the results show that canal-adaptive elastic net beats lasso, ridge regression,
and elastic net on average.
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 Canal-Adaptive Elastic Net

(a)

 Canal-Adaptive Elastic Net

(b)
Figure 4. Simulation results for noisy explanatory variable x. (a) n = 5000. (b) n = 10,000.

Table 3. Simulation results for noisy explanatory variable x.

n σ Method RMSE MAE Discarded
Samples Discarded Rate Time (s)

5000 0 Lasso 0.1618 ± 0.0018 0.8085 ± 0.0170 0 0.00% 0.1787
Elastic Net 0.1627 ± 0.0014 0.8165 ± 0.0153 0 0.00% 0.3423

Ridge Regression 0.1626 ± 0.0021 0.8154 ± 0.0229 0 0.00% 0.1951
Canal-Adaptive Elastic Net 0.1621 ± 0.0031 0.8122 ± 0.0260 694 ± 32 13.89% 0.2663

0.1 Lasso 0.1955 ± 0.0101 1.1882 ± 0.1182 0 0.00% 0.1702
Elastic Net 0.1885 ± 0.0106 1.1054 ± 0.1214 0 0.00% 0.3072

Ridge Regression 0.1697 ± 0.0047 0.8966 ± 0.0509 0 0.00% 0.186
Canal-Adaptive Elastic Net 0.1693 ± 0.0059 0.8896 ± 0.0620 903 ± 25 18.07% 0.2528

0.2 Lasso 0.2073 ± 0.0103 1.3278 ± 0.1382 0 0.00% 0.1706
Elastic Net 0.2036 ± 0.0091 1.2797 ± 0.1239 0 0.00% 0.2939

Ridge Regression 0.1841 ± 0.0063 1.0430 ± 0.0704 0 0.00% 0.1736
Canal-Adaptive Elastic Net 0.1809 ± 0.0045 1.0084 ± 0.0548 1118 ± 18 22.37% 0.2442

0.3 Lasso 0.2151 ± 0.0109 1.4320 ± 0.1292 0 0.00% 0.1685
Elastic Net 0.2099 ± 0.0046 1.3597 ± 0.0636 0 0.00% 0.3036

Ridge Regression 0.1941 ± 0.0107 1.1614 ± 0.1392 0 0.00% 0.1655
Canal-Adaptive Elastic Net 0.1884 ± 0.0061 1.0968 ± 0.0707 1325 ± 29 26.52% 0.2329

10,000 0 Lasso 0.1354 ± 0.0010 0.8009 ± 0.0159 0 0.00% 0.466
Elastic Net 0.1355 ± 0.0011 0.8010 ± 0.0127 0 0.00% 0.7631

Ridge Regression 0.1358 ± 0.0017 0.8044 ± 0.0159 0 0.00% 0.7302
Canal-Adaptive Elastic Net 0.1358 ± 0.0011 0.8054 ± 0.0138 1353 ± 50 13.54% 0.6464

0.1 Lasso 0.1669 ± 0.0110 1.2193 ± 0.1625 0 0.00% 0.4322
Elastic Net 0.1581 ± 0.0106 1.0950 ± 0.1466 0 0.00% 0.819

Ridge Regression 0.1449 ± 0.0033 0.9172 ± 0.0476 0 0.00% 0.4735
Canal-Adaptive Elastic Net 0.1434 ± 0.0035 0.8981 ± 0.0466 1889 ± 44 18.90% 0.6209

0.2 Lasso 0.1758 ± 0.0048 1.3500 ± 0.0746 0 0.00% 0.4313
Elastic Net 0.1737 ± 0.0075 1.3187 ± 0.1231 0 0.00% 0.778

Ridge Regression 0.1560 ± 0.0087 1.0660 ± 0.1086 0 0.00% 0.4408
Canal-Adaptive Elastic Net 0.1517 ± 0.0069 1.0067 ± 0.0921 2300 ± 34 23.00% 0.587

0.3 Lasso 0.1825 ± 0.0060 1.4521 ± 0.0948 0 0.00% 0.5801
Elastic Net 0.1785 ± 0.0053 1.3895 ± 0.0854 0 0.00% 0.7243

Ridge Regression 0.1656 ± 0.0064 1.1980 ± 0.0919 0 0.00% 0.4343
Canal-Adaptive Elastic Net 0.1603 ± 0.0045 1.1198 ± 0.0599 2661 ± 51 26.61% 0.5867
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Table 4. Simulation results for noisy response variable y.

n σ Method RMSE MAE Discarded Samples Discarded Rate Time (s)

5000 0 Lasso 0.1618 ± 0.0018 0.8085 ± 0.0170 0 0.00% 0.1787
Elastic Net 0.1627 ± 0.0014 0.8165 ± 0.0153 0 0.00% 0.3423

Ridge Regression 0.1626 ± 0.0021 0.8154 ± 0.0229 0 0.00% 0.1951
Canal-Adaptive Elastic Net 0.1621 ± 0.0031 0.8122 ± 0.0260 694 ± 32 13.89% 0.2663

0.1 Lasso 0.6225 ± 0.0767 12.3388 ± 3.0485 0 0.00% 0.1875
Elastic Net 0.4406 ± 0.0607 6.7411 ± 1.8332 0 0.00% 0.3103

Ridge Regression 0.2215 ± 0.0532 1.5738 ± 0.7018 0 0.00% 0.1983
Canal-Adaptive Elastic Net 0.1641 ± 0.0031 0.8260 ± 0.0350 1126 ± 21 22.54% 0.2627

0.2 Lasso 0.8503 ± 0.0511 23.1978 ± 2.9234 0 0.00% 0.1789
Elastic Net 0.6047 ± 0.0648 13.0583 ± 3.1128 0 0.00% 0.3212

Ridge Regression 0.2678 ± 0.0511 2.2870 ± 0.8511 0 0.00% 0.1956
Canal-Adaptive Elastic Net 0.1643 ± 0.0040 0.8354 ± 0.0382 1539 ± 25 30.79% 0.2648

0.3 Lasso 0.9959 ± 0.0761 31.8982 ± 5.2155 0 0.00% 0.1769
Elastic Net 0.6990 ± 0.0836 17.7096 ± 4.2660 0 0.00% 0.2947

Ridge Regression 0.2583 ± 0.0447 2.1066 ± 0.7001 0 0.00% 0.2001
Canal-Adaptive Elastic Net 0.1668 ± 0.0030 0.8548 ± 0.0363 1973 ± 29 39.47% 0.2608

10,000 0 Lasso 0.1354 ± 0.0010 0.8009 ± 0.0159 0 0.00% 0.466
Elastic Net 0.1355 ± 0.0011 0.8010 ± 0.0127 0 0.00% 0.7631

Ridge Regression 0.1358 ± 0.0017 0.8044 ± 0.0159 0 0.00% 0.7302
Canal-Adaptive Elastic Net 0.1358 ± 0.0011 0.8054 ± 0.0138 1353 ± 50 13.54% 0.6464

0.1 Lasso 0.5265 ± 0.0631 12.4175 ± 2.8731 0 0.00% 0.4823
Elastic Net 0.3636 ± 0.0573 6.3646 ± 2.0023 0 0.00% 0.7922

Ridge Regression 0.1549 ± 0.0172 1.0593 ± 0.2253 0 0.00% 0.5049
Canal-Adaptive Elastic Net 0.1360 ± 0.0019 0.8052 ± 0.0173 2274 ± 29 22.74% 0.641

0.2 Lasso 0.6783 ± 0.0658 20.8429 ± 4.3086 0 0.00% 0.4626
Elastic Net 0.4885 ± 0.0612 11.9550 ± 3.0504 0 0.00% 0.7855

Ridge Regression 0.1638 ± 0.0224 1.1977 ± 0.3214 0 0.00% 0.4963
Canal-Adaptive Elastic Net 0.1370 ± 0.0017 0.8204 ± 0.0242 3093 ± 29 30.94% 0.6472

0.3 Lasso 0.8442 ± 0.0727 32.6705 ± 5.6883 0 0.00% 0.4569
Elastic Net 0.6067 ± 0.0485 18.8505 ± 2.9166 0 0.00% 0.7683

Ridge Regression 0.1840 ± 0.0378 1.5151 ± 0.5767 0 0.00% 0.4911
Canal-Adaptive Elastic Net 0.1402 ± 0.0025 0.8608 ± 0.0298 3967 ± 23 39.67% 0.6422

Each coefficient may exert an effect if the response variable y contains noisy data.
As illustrated in Table 4, the proposed canal-adaptive elastic net method outperforms the
other three competing methods when dealing with noisy data. Because of the least square
deviation, lasso, ridge regression, and elastic net are highly sensitive to noise. In order to
compare the models more comprehensively, the prediction performance of the different
models is presented in Figure 5. It can be observed that the proposed canal-adaptive elastic
net method significantly outperforms the other three competing methods in all aspects of
the noisy output case.



Mathematics 2022, 10, 2985 13 of 18

 Canal-Adaptive Elastic Net
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Figure 5. Simulation results for noisy response y. (a) n = 5000. (b) n = 10,000.

As seen in Tables 5 and 6, the canal-adaptive elastic net generates sparse solutions.
Canal-adaptive elastic net behaves similarly to “Oracle”. The additional “grouping effect”
capability makes elastic net-type a better variable selection method than Lasso-type.

Table 5. Median of non-zero coefficients in the presence of noisy data in the explanatory variable x.

n Method σ = 0 σ = 0.1 σ = 0.2 σ = 0.3

5000 Lasso 6 6 7 8
Elastic Net 6 8 11 12

Canal-Adaptive Elastic Net 6 7 9 10

10,000 Lasso 6 6 6 7
Elastic Net 7 8 9 11

Canal-Adaptive Elastic Net 7 7 8 9

Table 6. Median of non-zero coefficients in the presence of noisy data in the response variable y.

n Method σ = 0 σ = 0.1 σ = 0.2 σ = 0.3

5000 Lasso 6 8 9 10
Elastic Net 8 10 12 14

Canal-
Adaptive

Elastic Net
7 10 11 11

10,000 Lasso 6 8 9 9
Elastic Net 7 10 10 14

Canal-
Adaptive

Elastic Net
7 9 10 11

4.2. Benchmark Data Sets

We undertake thorough tests in this portion to evaluate the proposed canal-adaptive
elastic net algorithm’s performance in real-world tasks. Four benchmark datasets were
employed for experimental evaluation: “Kin”, “Abalone”, “Pendigits”, and “Letters”.
The The first two datasets are selected from the UCI datasets [43], and the last two are
selected from Chang and Lin [44]. Table 7 summarizes four benchmark datasets. To
demonstrate the statistical features of the various datasets, we created box line plots, as
illustrated in Figure 6. To simulate the setup of the stream data, we replicate the samples
three times. Before conducting the experiments, domain experts need to analyze and
specify the parameter sensitivities of our models. Table 8 displays the parameter settings
for the four benchmark datasets. Each experiment is repeated 20 times randomly, and the
average performance is recorded.
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Table 7. Details of the benchmark datasets.

Dataset #Sample #Features #Train Number #Test Number

Kin 3000 × 3 8 2100 × 3 900 × 3
Abalone 4177 × 3 7 2924 × 3 1253 × 3
Letters 5000 × 3 15 3500 × 3 1500 × 3

Pendigits 7129 × 3 14 4990 × 3 2139 × 3

Table 8. Parameter settings for the four benchmark datasets.

Dataset Kin Abalone Letters Pendigits

ζ 0.1 0.1 0.1 0.1
σ 1.9 2.0 1.5 1.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5
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(a)
1 2 3 4 5 6 7 8
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(b)
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0.0

0.5

1.0

1.5

2.0

2.5

(c)
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(d)

Figure 6. Box plots of four benchmark datasets. (a) Letters. (b) Kin. (c) Abalone. (d) Pendigits.

On the benchmark datasets, Tables 9 and 10 summarize RMSE, MAE, discarded
samples, discarded rate, and average running time of the four comparative methods lasso,
ridge regression, elastic net, and canal-adaptive elastic net. The regression accuracy (RMSE
and MAE) analysis results demonstrate that when data are clean (σ = 0), the performance
of the four comparison methods is comparable. However, for noisy data (σ ≥ 0.1), the
suggested canal adaptive elastic network technique significantly outperforms the other
three approaches regarding noise immunity. As seen in the seventh column, the discard
rate increases as noise σ grow. For a more comprehensive comparison, We give the average
RMSE in Figures 7 and 8. We can see that the canal-adaptive elastic net proposed in this
paper is the most stable of all four datasets.
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Figure 7. Experimental results on the dataset “Kin” and dataset “Abalone”. (a) Kin. (b) Abalone.

Table 9. Experimental results on the dataset “Kin” and dataset “Abalone”.

Dataset σ Method RMSE MAE Discarded
Samples

Discarded
Rate Time (s)

Kin 0 Lasso 0.0683 ± 0.0008 0.1951 ± 0.0052 0 0 0.2258
Elastic Net 0.0684 ± 0.0007 0.1946 ± 0.0045 0 0 0.2821

Ridge Regression 0.0696 ± 0.0019 0.2016 ± 0.0111 0 0 0.2659
Canal-Adaptive Elastic Net 0.0681 ± 0.0011 0.1677 ± 0.0051 1982 ± 126 22.02% 0.3297

0.1 Lasso 0.1074 ± 0.0265 0.4981 ± 0.2223 0 0 0.2222
Elastic Net 0.0911 ± 0.0221 0.3552 ± 0.1579 0 0 0.2891

Ridge Regression 0.0683 ± 0.0015 0.1951 ± 0.0081 0 0 0.2631
Canal-Adaptive Elastic Net 0.0662 ± 0.0014 0.1914 ± 0.0074 2466 ± 153 27.40% 0.3321

0.2 Lasso 0.1365 ± 0.0230 0.8678 ± 0.3194 0 0 0.2184
Elastic Net 0.1036 ± 0.0156 0.4722 ± 0.1389 0 0 0.2877

Ridge Regression 0.0692 ± 0.0023 0.2502 ± 0.0124 0 0 0.2675
Canal-Adaptive Elastic Net 0.0673 ± 0.0026 0.1972 ± 0.0135 2620 ± 110 29.11% 0.3300

0.3 Lasso 0.1695 ± 0.0170 1.3323 ± 0.2765 0 0 0.2232
Elastic Net 0.1242 ± 0.0130 0.6804 ± 0.1548 0 0 0.2809

Ridge Regression 0.0746 ± 0.0029 0.2322 ± 0.0140 0 0 0.2622
Canal-Adaptive Elastic Net 0.0693 ± 0.0050 0.2000 ± 0.0301 2931 ± 420 32.57% 0.3317

Abalone 0 Lasso 0.1898 ± 0.0032 1.6091 ± 0.0466 0 0 0.3906
Elastic Net 0.1932 ± 0.0021 1.6553 ± 0.0492 0 0 0.4951

Ridge Regression 0.2015 ± 0.0053 1.6560 ± 0.0513 0 0 0.4873
Canal-Adaptive Elastic Net 0.1939 ± 0.0024 1.7259 ± 0.0415 758 ± 131 6.00% 0.5314

0.1 Lasso 0.4633 ± 0.06548 11.1963 ± 2.6828 0 0 0.3707
Elastic Net 0.3807 ± 0.0552 8.4261 ± 2.4375 0 0 0.4934

Ridge Regression 0.2201 ± 0.0034 2.0897 ± 0.0523 0 0 0.4642
Canal-Adaptive Elastic Net 0.2010 ± 0.0024 1.8987 ± 0.0867 1305 ± 98 10.40% 0.5315

0.2 Lasso 0.6084 ± 0.0468 19.1165 ± 2.9824 0 0 0.3763
Elastic Net 0.5164 ± 0.0808 15.3841 ± 4.4489 0 0 0.4929

Ridge Regression 0.2672 ± 0.0041 3.5966 ± 0.0945 0 0 0.4571
Canal-Adaptive Elastic Net 0.2248 ± 0.0037 2.3715 ± 0.0963 6161 ± 562 28.81% 0.5253

0.3 Lasso 0.7372 ± 0.0543 28.0564 ± 4.3451 0 0 0.3821
Elastic Net 0.6355 ± 0.0751 23.1508 ± 6.1709 0 0 0.4924

Ridge Regression 0.3372 ± 0.0070 6.1546 ± 0.1947 0 0 0.4484
Canal-Adaptive Elastic Net 0.2646 ± 0.0056 3.1383 ± 0.1093 4351 ± 860 34.70% 0.5209
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Table 10. Experimental results on the dataset “Letters” and dataset “Pendigits”.

Dataset σ Method RMSE MAE Discarded
Samples

Discarded
Rate Time(s)

Letters 0 Lasso 0.3463 ± 0.0028 6.5160 ± 0.1389 0 0 0.5545
Elastic Net 0.3478 ± 0.0035 6.3841 ± 0.0890 0 0 0.7206

Ridge Regression 0.3503 ± 0.0024 6.3821 ± 0.1006 0 0 0.6559
Canal-Adaptive Elastic Net 0.3507 ± 0.0030 6.3834 ± 0.0802 2558 ± 211 17.05% 0.7862

0.1 Lasso 0.4708 ± 0.0556 12.1065 ± 2.8283 0 0 0.5841
Elastic Net 0.3905 ± 0.0435 8.2491 ± 1.7055 0 0 0.7142

Ridge Regression 0.3219 ± 0.0069 5.6313 ± 0.2547 0 0 0.6690
Canal-Adaptive Elastic Net 0.3162 ± 0.0023 5.4247 ± 0.0973 3385 ± 162 22.57% 0.7994

0.2 Lasso 0.5841 ± 0.0665 19.5762 ± 4.6320 0 0 0.5656
Elastic Net 0.4731 ± 0.0614 12.7691 ± 3.1076 0 0 0.7180

Ridge Regression 0.3345 ± 0.0097 6.0297 ± 0.2622 0 0 0.6621
Canal-Adaptive Elastic Net 0.3296 ± 0.0029 5.8493 ± 0.0884 4245 ± 143 28.30% 0.8144

0.3 Lasso 0.7574 ± 0.0666 33.8068 ± 6.3160 0 0 0.5730
Elastic Net 0.5822 ± 0.0780 20.2497 ± 5.1140 0 0 0.7283

Ridge Regression 0.3658 ± 0.0151 7.1164 ± 0.5715 0 0 0.6688
Canal-Adaptive Elastic Net 0.3453 ± 0.0052 6.3131 ± 0.1868 4950 ± 116 33.00% 0.7812

Pendigits 0 Lasso 0.1806 ± 0.0014 2.0619 ± 0.0623 0 0 1.0078
Elastic Net 0.1823 ± 0.0017 1.9752 ± 0.0340 0 0 1.3111

Ridge Regression 0.1839 ± 0.0023 1.9378 ± 0.0369 0 0 1.2064
Canal-Adaptive Elastic Net 0.1843 ± 0.0014 1.9436 ± 0.0239 4271 ± 445 19.97% 1.4879

0.1 Lasso 0.2569 ± 0.0356 4.3298 ± 0.9613 0 0 0.976
Elastic Net 0.2041 ± 0.0219 2.6950 ± 0.5324 0 0 1.2822

Ridge Regression 0.1890 ± 0.0021 2.0031 ± 0.0424 0 0 1.2495
Canal-Adaptive Elastic Net 0.1809 ± 0.0018 1.8885 ± 0.0431 5143 ± 356 24.05% 1.4029

0.2 Lasso 0.3089 ± 0.0425 6.2770 ± 1.3394 0 0 0.9855
Elastic Net 0.2477 ± 0.0366 3.9761 ± 1.0450 0 0 1.2542

Ridge Regression 0.2085 ± 0.0018 2.8034 ± 0.0480 0 0 1.2359
Canal-Adaptive Elastic Net 0.1813 ± 0.0014 1.9111 ± 0.0327 6161 ± 562 28.81% 1.3915

0.3 Lasso 0.3736 ± 0.0358 9.5432 ± 2.4227 0 0 0.9999
Elastic Net 0.2625 ± 0.0244 4.4683 ± 0.7597 0 0 1.2752

Ridge Regression 0.2320 ± 0.0024 3.5514 ± 0.0530 0 0 1.2178
Canal-Adaptive Elastic Net 0.1825 ± 0.0023 1.9490 ± 0.0373 7803 ± 429 36.48% 1.4096

 Canal-Adaptive Elastic Net

(a)

 Canal-Adaptive Elastic Net

(b)

Figure 8. Experimental results on the dataset “Letters” and dataset “Pendigits”. (a) Letters. (b) Pendigits.

5. Conclusions

This article presents a novel linear regression model called canal adaptive elastic net
to address the novel challenge of online learning with noisy and multi-collinear data. The
canal-adaptive elastic net generates a sparse model with a high prediction accuracy while



Mathematics 2022, 10, 2985 17 of 18

promoting grouping. Additionally, the canal-adaptive elastic net is also solved using an
efficient approach based on an online gradient descent framework. The empirical data
and simulations demonstrate the canal-adaptive elastic net’s outstanding performance
and superiority over the other three approaches (e.g., Lasso, ridge regression, and elastic
net). Future studies will focus on expanding the linear regression model to a non-linear
regression model through the use of the kernel technique [45].
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