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Abstract: The transferability of adversarial examples allows the attacker to fool deep neural networks
(DNNs) without knowing any information about the target models. The current input transformation-
based method generates adversarial examples by transforming the image in the input space, which
implicitly integrates a set of models by concatenating image transformation into the trained model.
However, the input transformation-based methods ignore the manifold embedding and hardly ex-
tract intrinsic information from high-dimensional data. To this end, we propose a novel feature
transformation-based method (FTM), which conducts feature transformation in the feature space.
FTM can improve the robustness of adversarial example by transforming the features of data. Com-
bining with FTM, the intrinsic features of adversarial examples are extracted to generate transferable
adversarial examples. The experimental results on two benchmark datasets show that FTM could
effectively improve the attack success rate (ASR) of the state-of-the-art (SOTA) methods. FTM im-
proves the attack success rate of the Scale-Invariant Method on Inception_v3 from 62.6% to 75.1% on
ImageNet, which is a large margin of 12.5%.

Keywords: adversarial example; feature transformation; black-box attack; ensemble attack; deep
neural network

MSC: 68T10

1. Introduction

DNNs have been shown to perform well in many fields, for example, image clas-
sification [1–3], human recognition [4], image segmentation [5], image fusion [6], visual
object tracking [7,8], super-resolution [9], etc [10]. The ultimate goal of these studies is
to make DNN-based applications more practicable and efficient. However, the existence
of adversarial examples presents a concern for security of many applications, such as
autonomous driving [11], face recognition [12–14], etc.

Adversarial examples [15], generated by adding indistinguishable perturbations to
the raw images, can lead the DNNs to make completely different predictions. They can
even take effect for completely unknown models, which is called the transferability of
adversarial examples. In addition to this, there are several studies on universal adversarial
perturbations [16,17], which are able to take effect on any image. Some studies are devoted
to the application of adversarial examples to real-world scenarios, such as face recognition,
autonomous driving, etc. [18–22]. Studying both adversarial attack and defense [23–26] is
of significance, not only in revealing the vulnerability of DNNs, but also in improving the
robustness of DNNs.

Many white-box attack methods have been proposed, such as Fast Gradient Sign
Method (FGSM) [27], Basic Iterative Method (BIM) [28], etc. However, it is difficult for an
attacker to obtain the structure and other parameters of the target model in the real-world
situation. Therefore, various approaches have emerged to enhance the transferability of
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adversarial examples for black-box attack. Ensemble Attack [29] is an effective method to
enhance the transferability of adversarial examples. Lin et al. [30] proposed Scale-Invariant
Method (SIM), which utilizes input transformation to obtain a new model. A set of models
can be obtained by using different transformations several times. With this approach, they
can perform an ensemble attack with only one trained model, which is an implicit ensemble
attack. Input transformation-based methods are successfully used for an adversarial attack,
such as Diverse Input Method (DIM) [31], Translation-Invariant Method (TIM) [32], Admix
Attack Method (Admix) [33], etc. However, these methods ignore the manifold structure of
adversarial examples and few works focus on feature transformation. To this end, this work
proposes a feature transformation-based method (FTM) to improve the transferability of
adversarial examples. Compared with the input transformation, our approach transforms
the intrinsic features of data instead of the input images. FTM is an implicit ensemble
attack that can simultaneously attack multiple models that extract different features. It can
improve the robustness of the adversarial example at the feature level. This work proposes
several feature transformation strategies. FTM could effectively improve the performance
of the SOTA adversarial attacks. Our contributions can be summarized as follows.

• This work proposes a novel feature transformation-based method (FTM) for enhancing
the transferability of adversarial examples.

• We propose several feature transformation strategies and comprehensively analyze
the hyper-parameters of them.

• The experimental results on two benchmark datasets show that FTM could effectively
improve the attack success rate of the SOTA methods.

The structure of the paper is organized as follows. Section 2 introduces related work.
Section 3 details the proposed FTM. Section 4 shows the experimental results. Section 5
gives a summary of this work.

2. Related Work
2.1. Adversarial Example and Transferability

It is firstly pointed out by Szegedy et al. [15] that DNNs are vulnerable to adversarial
examples, which are generated by adding imperceptible noises to raw images.

Let x be a clean image, y = f (x; θ) be the output label predicted by the model with
parameters θ, and || · · · ||p denotes the p-norm. The adversarial example is an image xadv

whose output label f (xadv, θ) 6= f (x, θ), and the Lp norm of the adversarial perturbation
xadv − x is smaller than a threshold ε as ||xadv − x|| ≤ ε. p = ∞ is used to limit the
distortion. Many methods are proposed to improve the attack success rate (ASR) of
adversarial examples. These methods can be divided into two branches: advanced gradient
calculation and input transformations.

2.2. Advanced Gradient Calculation

This branch exploits better gradient calculation algorithms to enhance the performance
of adversarial examples in both white-box settings and black-box settings.

Fast Gradient Sign Method (FGSM): Szegedy et al. [27] make the point that linear
behavior in high-dimensional spaces is sufficient to cause adversarial examples. According
to this point, they propose the FGSM, which generates an adversarial example xadv by
maximizing the loss function J(xadv, y; θ) with a one-step update:

xadv = x + ε · sign(∇x J(x, y, θ)) (1)

where J(x, y : θ) denotes the loss function of classifier f (x : θ), ∇x J(x, y, θ) is the gradient
of loss function with regard to x and sign(·) is the sign function to make the perturbation
meet the Lp norm bound.
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Basic Iterative Method (BIM): Kurakin et al. [28] extend FGSM to an iterative version
by iteratively applying gradient updates multiple times with a small step size α. BIM can
be expressed as:

xadv
t+1 = Clipε

x{xadv
t + α · sign(∇x J(x, y, θ))} (2)

where x0 = x and Cilpε
x(·) restricts generated adversarial examples to be within the ε-ball

of x.
Momentum Iterative Fast Gradient Sign Method (MI-FGSM): To reduce the varia-

tion in update direction and avoid local minima, Dong et al. [34] introduce momentum into
the BIM. The update procedure is formulated as follows:

gt+1 = µ · gt +
∇x J(x, y, θ)

||∇x J(x, y, θ)||1
(3)

xadv
t+1 = Clipε

x{xadv
t + α · sign(gt+1)} (4)

where gt gathers the gradient of the first t iterations with a decay factor µ.
Nesterov Iterative Fast Gradient Sign Method (NI-FGSM): NI-FGSM [30] adopts

Nesterov’s accelerated gradient to improve the transferability of MI-FGSM. This method
replaces xadv

t in Equation (4) with xnest, while xnest can be formulated as follows:

xnest = xadv
t + α · µ · gt (5)

2.3. Input Transformations

Various input transformation-based methods, such as DIM, TIM, SIM, and Admix, are
proposed to generate transferable adversarial examples.

Diverse Input Method (DIM): Inspired by the facts that data augmentation is effective
to prevent networks from overfitting, Xie et al. [31] apply random resizing and random
padding to the inputs to improve the transferability of adversarial examples.

Translation-Invariant Method (TIM): Dong et al. [32] propose to replace the gradient
on the original image with the average value of multiple translated images for the update.
Inspired by the translation-invariant property, they approximate this process by convolving
the gradient with a predefined kernel matrix to avoid introducing much more computations.

Scale-Invariant Method (SIM): Lin et al. [30] discover the scale-invariant property of
deep learning models and introduce the definition of loss-preserving transformation and
model augmentation. Accordingly, they present SIM that calculates the average gradient
on the scaled copies of the original image for the update.

Admix Attack Method (Admix): Admix is proposed by [33] to enhance the transfer-
ability of the adversarial examples. It integrates gradient information of different categories
of images for the update. Specifically, Admix randomly selects a number of different
categories of images and then admix the sampled image with a minor weight to the original
input image. It calculates the gradient on the mixed image for update.

2.4. Adversarial Defense

In addition to adversarial attacks, many works on adversarial defense have been
proposed to improve the robustness of the classifiers. The current defense methods can be
divided into two categories.

One category aims to improve the robustness of the classifier itself, such as adversarial
training [27,35]. It adds adversarial examples to the training set during the training of the
model, making it immune to the adversarial examples. This is a popular and effective
defense method and has many great following works [36,37]. However, its effectiveness is
largely limited by the method of generation of the added adversarial examples.

Another category of defense methods reduces the impact of adversarial perturbations
by modifying the input images, such as adding noises and compressing the images [38,39].
Xie et al. [40] propose to perform randomized resizing and padding to inputs at inference
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time, which is the top-1 defense solution in the NIPS competition. Nips-r3 fuse multiple
adversarial trained models and perform several input transformations at inference time.
These methods require no additional training computational overhead and are effective
against various attack approaches.

3. Our Approach

A DNN model could be formulated as f (x) = lin(con(x)), where con(·) and lin(·)
denote the convolutional part and the fully connected part, respectively. p = con(x)
denotes the feature extracted by the convolutional part.

To obtain an ensemble of models that extract different features, we propose the feature
transformation denoted as FT(·). Through introducing feature transformation, we can
obtain a new model f ′(x) = lin(p′) = lin(FT(con(x))) extracting different features from
the original model during every iteration. FTM optimizes the adversarial perturbations
over several different transformed features:

arg min
xadv

1
m

m

∑
i=0

J(lin(FTi(con(xadv))), ytrue), (6)

s.t., ‖xadv − x‖∞ ≤ ε, (7)

where m denotes the number of iterations and FT(·) denotes the feature transformation.
Thus, FTM is an implicit ensemble attack that simultaneously attacks m models. The
illustration of the FTM is shown in Figure 1.

Convolution

Feature Transformation

p’1

p’2

p’m LinearInput

p

Feature

r) U(-r,~ 1z

NoiseSpace

r) U(-r,~ 2z

NoiseSpace

r) U(-r,~ mz

NoiseSpace

Loss

Backpropagation

Figure 1. Illustration of the proposed FTM. The feature transformation shown in the illustration is
the Strategy I. The random noise vectors zi sampled from the uniform distribution are added to the
feature p. The average loss of the transformed features is calculated to update the input image.

In this paper, we consider five strategies of feature transformation as follows:
Strategy I: Fixed threshold random noise: Add a random vector z sampled from the

uniform distribution U (−r, r):

FT(p) = p + z (8)

Strategy II: Mean-based threshold random noise: z is a random vector sampled from
the uniform distribution U (−r, r) and p is the mean value of feature p. Adding p · z to
feature p:

FT(p) = p + p · z (9)
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Strategy III: Feature overall scaled: Multiply the features p by a random number k
sampled from the uniform distribution U (−r, r):

FT(p) = k · p (10)

Strategy IV: Each value of feature scaled separately: Multiply feature p by a random
vector z sampled from the uniform distribution U (−r, r):

FT(p) = z · p (11)

Strategy V: Offset mean random noise: Add a random vector z sampled from the
uniform distribution U (−r + s, r + s) to feature p:

FT(p) = p + z (12)

The feature transformation should also be an accuracy-preserving transformation. We
define the accuracy-preserving feature transformation as follows:

Definition 1 (Acc-preserving Feature Transformation). Given a test set X and a classi-
fier f (x) = lin(con(x)), Acc(lin(con(x)), X) denotes the accuracy of model f (x) on data
set X. If there exists an feature transformation FT(·) that satisfies Acc(lin(con(x)), X) ≈
Acc(lin(FT(con(x))), X), we say FT(·) is an accuracy-preserving feature transformation.

We experimentally study the acc-preserving feature transformation strategies in
Section 4.1.2. We determine the magnitude r of uniform distribution to ensure that our
feature transformations are accuracy-preserving transformations. The algorithm of the
FTM attack is summarized in Algorithm 1.

Algorithm 1 Algorithm of FTM.

Input: Original image x, true label ytrue, a classifier f = lin(con(x)), loss function J,
feature transformation FT(·)
Hyper-parameters: Perturbation size ε, maximum iterations T, number of iterations of
feature transformation m
Output: Adversarial example xadv
1: perturbation size in each iteration: α = ε/T
2: while 0 ≤ t < T − 1.
3: if k = 0.
4: x0 = x.
5: end if
6: g = 0
7: while 0 ≤ i < m− 1
8: feature:p = con(x)
9: transformed feature: p′ = FT(p)
10: Get the gradients by ∇x J(lin(p′), ytrue)
11: Update g = g +∇x J(lin(p′), ytrue)
12: end while
13: Get average gradients as g = 1

m · g
14: Update xadv

i+1 = Clipε
x{xadv

i + α · sign(g)}
15: end while
16: return xadv = xadv

T
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4. Experimental Results
4.1. Experiment on ImageNet
4.1.1. Experimental Setup

Dataset. We perform experiments on ImageNet, which is the most common and
challenging image classification dataset. 1000 images from the ImageNet [41] are selected
as our test set. The 1000 benign images belong to 1000 different categories and can be
correctly classified by the tested models.

Networks. This work selects four mainstream models, including Inception_v3 (Inc_v3) [42],
Inception_v4 (Inc_v4), Inception-Resnet_v2 (IncRes_v2) [43], and Xception(Xcep) [44].

Attack setting. We follow the setting in Lin et al. [30] with the maximum perturbation
as ε = 16, number of iteration T = 16, and step size α = 1.6, which is a difficult and
challenging attack setting. We adopt the decay factor µ = 1.0 for MI-FGSM. The trans-
formation probability is set to 0.5 for DIM. The number of scale copies is set to m = 5
for SIM. We set m1 = 5 , and randomly sample m2 = 3 images with η = 0.2 for Admix.
The hyper-parameter settings of these attack methods are all consistent with the original
papers.

4.1.2. Accuracy-Preserving Transformation

To investigate accuracy-preserving transformations, we test the accuracy of the models
integrated with the five strategies on the ImageNet dataset. We keep the magnitude r of
uniform distribution in the range of [0, 10].

The magnitude of uniform distribution is an important hyper-parameter of FTM. A
larger magnitude will increase the diversity of the implicit ensemble models and thus
improve the transferability of the adversarial examples. However, too large a magnitude
will make the model invalid and thus lose the ability to guide the generation of AE. As
shown in Figure 2, the accuracy curves are smooth and stable for strategies I, II, and V when
the magnitude is in the range of [0, 4]. They drop significantly after the magnitude exceeds
4. Moreover, the accuracies for strategy III and IV are extremely low when the magnitude
is close to 0. They turn to remain stable after the magnitude exceeds 4. It can be seen
that the feature transformation strategy with scaled operation is more sensitive to small
magnitude, e.g., strategies III and IV. The feature transformation strategy of adding noise is
more sensitive to a large magnitude, e.g., strategies I, II, and V. Based on the experimental
results, the magnitude of uniform distribution is set to 4 in the following experiment to
ensure that the feature transformations are accuracy-preserving transformations.

Figure 2. The average classification accuracy of Inc_v3, Inc_v4, IncRes_v2, and Xcep integrated
with five different feature transformation strategies on ImageNet. The horizontal coordinate is the
magnitude of uniform distribution and the vertical coordinate is the accuracy of the model.
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4.1.3. Feature Transformation Strategies

In this section, we show the experimental results of the proposed FTM with five
feature transformation strategies. We set m = 1 and generate adversarial examples on the
Inc_v3 by FT-FGSM, FT-MI-FGSM, and FT-SIM. The ASRs against the other three black-box
models are presented in Table 1.

Table 1. The black-box ASRs (%) of FT-FGSM, FT-MI-FGSM, and FT-SIM with five strategies on
ImageNet. The adversarial examples are generated on Inc_v3. The highest ASRs are shown in bold.

Method Strategy Inc_v3 Inc_v4 IncRes_v2 Xcep

FT-FGSM

I - 36.1 33.5 35.3
II - 37.3 33.7 35.1
III - 37.0 35.9 37.5
IV - 37.5 32.0 34.7
V - 37.7 33.4 34.4

FT-MI-FGSM

I - 55.1 52.5 59.8
II - 53.0 50.4 54.4
III - 54.9 51.6 57.8
IV - 53.4 50.8 56.5
V - 57.0 53.3 59.2

FT-SIM

I - 43.0 41.3 42.9
II - 38.5 34.9 39.3
III - 42.9 42.6 44.0
IV - 42.2 42.4 43.5
V - 41.1 41.9 42.6

When combined with FT-FGSM, Strategy III achieves the best overall attack perfor-
mance, reaching 35.9% and 37.5% when attacking IncRes_v2 and Xcep, respectively. When
attacking with FT-MI-FGSM, Strategy V attains the best overall attack performance, reach-
ing 57% and 53.3% when attacking Inv_v4 and IncRes_v2, respectively. When FT-SIM is
used to attack IncRes_v2 and Xcep, Strategy III achieves the ASRs of 35.9% and 37.5%, which
outperforms the other strategies. It can be seen that the overall performance of Strategy III
is better and it performs better in the experiments combined with SIM, which is an input
transformation-based method. Thus, we adopt Strategy III in the following experiments.

4.1.4. Attack with Input Transformations

We test the ASRs of MI-FGSM, SIM, DIM, and Admix, respectively. Then we combine
these methods with FTM as FT-MI-FGSM, FT-SIM, FT-DIM, and FT-Admix. Some adver-
sarial examples are shown in Figure 3. We adopt Strategy III, set m = 1, set the magnitude
of uniform distribution r = 4, and then use the generated adversarial examples to attack
the four models. We compare the black-box ASRs of FT-MI-FGSM, FT-SIM, FT-DIM, and
FT-Admix with MI-FGSM, SIM, DIM, and Admix in Tables 2–5. In the tables, the first
columns are the local models, and the first rows are the target models. The values in
the tables are the attack success rates (ASRs) on the target models using the adversarial
examples generated from the local models. The higher ASRs are bolded.

When combined with MI-FGSM, the ASRs is increased by up to 9.4%, from 55%
to 64.4% when attacking Xcep with Inc_v4. When FT-SIM is used to attack IncV3 with
IncRes_v2, the ASR is improved from 62.6% to 75.1%, which outperforms the SIM by 12.5%.
The adversarial examples generated by FT-DIM achieved about 55% ASR against all models.
When FT-Admix is used to attack IncV3 with Xecp, the ASR reaches 72.2%.

According to the reported experimental results, it can be observed that FTM could im-
prove the ASRs of adversarial examples generated by the SOTA black-box attack methods.
It is confirmed that feature transformation can improve the transferability and robustness
of adversarial examples.
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Raw Image

MI-FGSM

FT-MI-FGSM

DIM SIM Admix

FT-AdmixFT-SIMFT-DIM

Figure 3. Adversarial examples generated by MI-FGSM, DIM, SIM, Admix, the proposed FT-MI-
FGSM, FT-DIM, FT-SIM, and FT-Admix on the Inc_v3.

Table 2. The black-box ASRs of MI-FGSM and FT-MI-FGSM on ImageNet. The first column is the
local model, and the first row is the target model. The values in the table are the ASRs (%) on the
target models using the adversarial examples generated with the local models. The higher ASRs are
shown in bold.

Local Model Attack
Method Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 MI-FGSM - 51.3 49.6 53.0
FT-MI-FGSM - 54.9 51.6 57.8

Inc_v4 MI-FGSM 56.0 - 48.5 55.0
FT-MI-FGSM 58.9 - 53.1 64.4

IncRes_v2 MI-FGSM 56.2 51.8 - 55.9
FT-MI-FGSM 64.1 57.4 - 63.0

Xcep MI-FGSM 51.4 50.8 45.3 -
FT-MI-FGSM 54.4 55.0 48.7 -

Table 3. The black-box ASRs of SIM and FT-SIM on ImageNet. The first column is the local model,
and the first row is the target model. The values in the table are the ASRs (%) on the target models
using the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local Model Attack
Method Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 SIM - 37.4 34.7 37.0
FT-SIM - 42.9 42.6 44.0

Inc_v4 SIM 64.0 - 51.9 59.7
FT-SIM 71.0 - 59.0 64.9

IncRes_v2 SIM 62.6 52.8 - 55.2
FT-SIM 75.1 63.4 - 65.2

Xcep SIM 57.9 54.3 50.0 -
FT-SIM 63.4 58.9 53.0 -
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Table 4. The black-box ASRs of DIM and FT-DIM on ImageNet. The first column is the local model,
and the first row is the target model. The values in the table are the ASRs (%) on the target models
using the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local Model Attack
Method Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 DIM - 59.5 55.3 56.3
FT-DIM - 61.8 58.3 60.4

Inc_v4 DIM 59.0 - 52.0 61.7
FT-DIM 63.4 - 56.5 66.6

IncRes_v2 DIM 58.6 57.7 - 60.7
FT-DIM 67.2 66.8 - 66.5

Xcep DIM 57.3 64.3 55.6 -
FT-DIM 61.8 69.1 58.2 -

Table 5. The black-box ASRs of Admix and FT-Admix on ImageNet. The first column is the local
model, and the first row is the target model. The values in the table are the ASRs (%) on the target
models using the adversarial examples generated with the local models. The higher ASRs are shown
in bold.

Local Model Attack
Method Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 Admix - 52.8 49.1 56.2
FT-Admix - 57.3 54.4 60.0

Inc_v4 Admix 70.8 - 61.1 67.2
FT-Admix 72.2 - 64.0 68.3

IncRes_v2 Admix 64.1 57.4 - 60.5
FT-Admix 66.0 58.7 - 60.4

Xcep Admix 70.4 64.3 60.0 -
FT-Admix 72.2 65.2 61.6 -

4.1.5. Attack against Defense Method

In this section, we quantify the effectiveness of FTM against several defense meth-
ods, including random resizing and padding (RandP) [40], JPEG compression (JPEG) [39],
randomized smoothing (RS) [38], and the rank-3 submission in the NIPS-2017 (NIPS-r3).
RandP is the top-1 submission in the NIPS competition, which mitigates the effect of adver-
sarial perturbations by randomized resizing and padding. JPEG is a defensive compression
framework, which could rectify adversarial examples without reducing classification accu-
racy on benign data. RS constructs a “smoothed” classifier from an arbitrary base classifier,
which is more adversarially robust. NIPS-r3 fuses multiple adversarial trained models and
performs several input transformation at inference time.

We choose SIM as the comparison method and generate adversarial examples with
Inc_v3. The average ASRs on Inc_v4, IncRes_v2, and Xcep are shown in Table 6. The
ASRs are improved by a large margin of 9.5% on average. It validates that the adversarial
examples generated by FTM are more robust to fool models with defense mechanisms.

Table 6. The black-box ASRs of SIM and FT-SIM on ImageNet against four defense methods. The
adversarial examples are generated with Inc_v3. The values in the table are the average ASRs (%) on
the Inc_v4, IncRes_v2, and Xcep. The higher ASRs are shown in bold.

Attack Method RandP JPEG RS Nips-r3

SIM 30.3 32.7 25.2 31.6
FT-SIM 38.5 41.0 37.8 39.5
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4.1.6. Parameter Analysis

In this section, we perform additional analysis for the difference among different
numbers of iterations m. The adversarial examples are generated by FT-DIM on Inc_v3.
The number of iterations of feature transformation ranges from 1 to 9.

As shown in Figure 4, the average black-box ASR increases from 59.2% for 1 iteration
to 62.7% for 3 iterations. As the number of iterations increases to 9, the success rate of
the attack increases to 65.3%. It validates that the ASR of FTM increases as the number
of iterations of feature transformation increases. The sensitivity of the attack success
rate gradually decreases as the number of iterations increases. Since a higher number of
iterations results in a larger computational overhead, the trade-off between effectiveness
and overhead needs to be made according to the specific scenario.

Figure 4. The black-box ASRs of FT-DIM attack with different number of iterations on ImageNet.
The adversarial examples are generated on Inc_v3 and the ASRs are the average ASRs on Inc_v4,
IncRes_v2, and Xcep.

4.2. Experiment on Cifar10
Cifar10

To further demonstrate the effectiveness of our approach, we also conducted experi-
ments on the Cifar10 [45] dataset. Cifar10 has 60,000 color images with 32 × 32 pixels and
is divided into 10 categories. We select 1000 images belonging to the 10 categories from
the test set, which are correctly classified by all the experimental models. We compare the
effects of the FTM with the MI-FGSM, SIM and Admix using the ResNet [46] family of
models. The maximum perturbation ε = 4, number of attack iterations T = 4, and the step
size α = 1.

The experimental results for FT-MI-FGSM, FT-SIM, and FT-Admix are shown in Tables 7–9.
The first columns are the local models and the first rows are the target models. It can be
seen that our method improves the ASRs across all experiments. FT-MI-FGSM achieves
83.8% ASR, when attacking Res152 with Res50. FT-SIM improves the ASR of SIM from
66.6% to 73.9%, when attacking Res101 with Res152. FT-Admix boosts the ASR of Admix
attack from 43.1% to 55.1%, when attacking Res101 with Res152.

The experimental results on Cifar10 validate that FTM is effective not only on large
image dataset, but also on small image dataset. Moreover, FTM can significantly improve
the transferability and robustness of the adversarial examples generated by the SOTA
black-box attack methods.
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Table 7. The black-box ASRs of MIM (MI-FGSM) and FT-MIM (FT-MI-FGSM) on Cifar10. The first
column is the local model, and the first row is the target model. The values in the table are the ASRs
(%) on the target models using the adversarial examples generated with the local models. The higher
ASRs are shown in bold.

Local
Model

Attack
Method Res18 Res34 Res50 Res101 Res152

Res18 MIM - 78.3 68.7 67.3 71.1
FT-MIM - 78.8 69.2 70.5 73.4

Res34 MIM 78.7 - 70.0 69.5 72.3
FT-MIM 79.8 - 72.9 71.2 74.1

Res50 MIM 76.5 76.8 - 80.2 82.5
FT-MIM 77.8 78.1 - 82.4 83.8

Res101 MIM 71.4 71.7 76.9 - 80.5
FT-MIM 74.2 73.2 79.3 - 82.6

Res152 MIM 75.2 73.4 76.8 81.0 -
FT-MIM 76.8 74.9 78.7 82.0 -

Table 8. The black-box ASRs of SIM and FT-SIM on Cifar10. The first column is the local model, and
the first row is the target model. The values in the table are the ASRs (%) on the target models using
the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local
Model

Attack
Method Res18 Res34 Res50 Res101 Res152

Res18 SIM - 73.0 60.1 59.5 62.3
FT-SIM - 73.9 62.2 62.9 66.0

Res34 SIM 74.9 - 60.2 60.9 63.3
FT-SIM 76.2 - 61.5 62.8 63.4

Res50 SIM 68.0 69.3 - 70.6 71.9
FT-SIM 72.2 68.2 - 73.9 76.0

Res101 SIM 69.2 67.7 71.0 - 73.9
FT-SIM 71.5 69.9 71.9 - 75.9

Res152 SIM 65.6 62.3 63.8 66.6 -
FT-SIM 69.5 67.9 70.4 73.9 -

Table 9. The black-box ASRs of Admix and FT-Admix on Cifar10. The first column is the local model,
and the first row is the target model. The values in the table are the ASRs (%) on the target models
using the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local
Model

Attack
Method Res18 Res34 Res50 Res101 Res152

Res18 Admix - 49.0 41.9 42.5 45.0
FT-Admix - 56.4 47.3 50.4 51.9

Res34 Admix 52.5 - 42.7 46.5 46.0
FT-Admix 58.5 - 47.5 50.1 50.4

Res50 Admix 48.6 43.9 - 44.9 47.4
FT-Admix 56.1 50.7 - 53.9 54.4

Res101 Admix 48.2 44.6 44.6 - 49.3
FT-Admix 54.0 50.5 50.8 - 57.7

Res152 Admix 45.3 40.6 39.5 43.1 -
FT-Admix 55.0 51.6 50.2 55.1 -
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5. Conclusions

We propose a novel feature transformation-based method (FTM), which effectively
improves the transferability of adversarial examples. Five feature transformation strategies
are proposed and the hyper-parameters of them are comprehensively analyzed. The exper-
imental results on two benchmark datasets show that FTM can improve the transferability
of the adversarial example significantly. It improves the ASRs of the SOTA methods by up
to 12.5% on ImageNet. Our method can be combined with not only any gradient-based
attack methods but also any neural networks that can extract features. However, the tun-
ing of hyper-parameters is difficult, because different models and feature transformation
strategies require a large number of experiments to choose the magnitude of uniform
distribution. In the future, we will explore more feature transformation strategies to im-
prove the transferability of adversarial examples while reducing the difficulty of tuning
hyper-parameters.
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