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Abstract: The widespread application of hybrid nanofluid in real applications has been accompanied
by a large increase in computational and experimental research. Due to the unique characteristics
of hybrid nanofluid, this study aspires to examine the steady two-dimensional mixed convection
stagnation point flow of a hybrid nanofluid past a vertical plate with radiation, Dufour, and Soret
effects, numerically. The formulations of the specific flow model are presented in this study. The
model of fluid flow that is expressed in the form of partial differential equations is simplified into
ordinary differential equations via the transformation of similarity, and then solved numerically
by using the boundary value problem solver known as bvp4c in MATLAB, which implements the
finite difference scheme with the Lobatto IIIa formula. Two possible numerical solutions can be
executed, but only the first solution is stable and meaningful from a physical perspective when being
evaluated via a stability analysis. According to the findings, it is sufficient to prevent the boundary
layer separation by using 2% copper nanoparticles and considering the lesser amount of Dufour and
Soret effects. The heat transfer rate was effectively upgraded by minimizing the volume fraction
of copper and diminishing the Dufour effect. Stronger mixed convection would lead to maximum
skin friction, mass transfer, and heat transfer rates. This important preliminary research will give
engineers and scientists the insight to properly control the flow of fluids in optimizing the related
complicated systems.

Keywords: hybrid nanofluid; stagnation point; Dufour and Soret effects; mixed convection; radiation;
numerical solutions; stability analysis

MSC: 35Q35; 76D10; 80A20

1. Introduction

Over the last few years, researchers and scientists have devoted a significant amount
of attention to the progress made in creating sophisticated heat transfer fluids. In most
industrial and technical applications, common fluids such as oil and water are employed.
However, because of their poor thermal performance, the pace at which these fluids may
transmit heat is restricted. As a result, to address this shortcoming, a singular type of
nanosized particles has been integrated into the conventional fluid, and this fluid has been
given the name “nanofluid”. In 1995, Choi [1] initially presented this fluid to the scientific
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community. According to various thorough reviews on nanofluid, researchers have con-
sistently employed two nanofluid models: (i) Buongiorno [2] and (ii) Tiwari and Das [3],
which have distinct mechanisms. To examine the behavior of nanofluids, Buongiorno
creates a two-phase nanofluid model that considers thermophoresis and Brownian motion
effects in the energy equation. Meanwhile, the nanofluid model established by Tiwari and
Das is a one-phase model that specifically considers the thermophysical properties of the
nanoparticles. Due to the necessity for theoretical and experimental knowledge, researchers
have focused their efforts on this area in recent years. For example, Rizwana et al. [4]
analyzed the unsteady oblique stagnation point flow of nanofluid with the implementation
of Fourier Law to scrutinize the heat flux. Ferdows et al. [5] considered the boundary
layer flow of various nanofluids such as silver–water, copper–water, alumina–water, and
titania–water under the influence of a magnetic field in the non-isothermal and constant
heat flux limits. The rate of entropy generation, heat, and solutal transfer of a nanofluid in
an annular closure has been investigated in the presence of double-diffusive convection by
Swamy et al. [6], and they observe that a shallow annulus may improve the thermal and
solutal performance with minimum entropy production. Batool et al. [7] also considered
the nanofluid in their investigation of fluid flow through the lid-driven cavity with the aim
to improve the heat transfer process. Recently, Sankar et al. [8] explored the alumina–water
nanofluid flow inside the vertical annular geometry with non-uniform heating. The aug-
mentation of thermal transfer is facilitated through the addition of nanoparticles, but this
also causes the flow strength to reduce [8]. However, despite the continuous investigations,
the thermal performance of nanofluids is still limited and this then results towards the
formation of hybrid nanofluid.

The discovery of hybrid nanofluid has contributed to the progress of nanotechnology
and sparked researchers’ attention, motivating them to extend their experimental and
numerical research. Suresh et al. [9] have experimentally explored the thermal performance
of copper-alumina/water hybrid nanofluid. Their experiment noted that despite the poor
thermal performance of alumina, its chemical inertness might help to preserve the stability
of the fluid. Further, research on convective hybrid nanofluid flow in circular tubes was
accomplished by Suresh et al. [10], at Re = 1730, the findings showed a 13.56% of incre-
ment in the Nusselt number. Moreover, in a review study conducted by Huminic and
Huminic [11], it was also reported that hybrid nanofluid has great thermal performance and
can improve the heat transfer in heat exchangers. This capability of hybrid nanofluid has
been proven by experimental and computational studies [12,13]. Better heat transmission
mechanisms are predicted to be developed using hybrid nanofluids, which are made up
of a homogenous suspension of multiple nanoparticles attached by both chemical and
physical bonds. Due to its usefulness in a variety of thermal applications (e.g., in pharma-
ceutical processes, fuel cells, and hybrid-powered engines), this novel kind of nanofluid’s
primary goal is to improve the heat transmission, thermophysical, and hydrodynamic
characteristics (see Shenoy et al. [14]). However, further research is needed to examine the
alternative hybridizations of nanoparticles, their stability and mixing ratio, and the proce-
dures that aid in the improvement of heat transfer. As a result of this, scientists are working
incessantly to implement new hybrid nanofluids that have substantially greater thermal
conductivities than typical viscous fluids (see Shenoy et al. [14] and Merkin et al. [15]).
After browsing through the relevant literature, it is found that the hybrid nanofluid flow
with various involvement of pertinent effects has been actively explored by several re-
searchers, such as Abbas et al. [16,17] (for the hybrid nanofluid stagnation point flow with
slip); Tulu and Ibrahim [18] (for the second-order velocity slip flow of hybrid nanofluid);
Mahabaleshwar et al. [19] (for the stretching/shrinking flow); Khan et al. [20] (for the
mixed convective flow); and Reddy et al. [21] (for the flow inside a heated annulus). In
these mentioned studies, it seems that the nanofluid model by Tiwari and Das [3] has
been mostly used in the formulations, while the hybrid nanofluid model that considers
the Buongiorno [2] two-phase nanofluid model with the consideration of concentration
equation is still limited in the literature.
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An energy flux may be formed by concentration and temperature gradients when the
mass and heat transfer happen concurrently. The Dufour (diffusion-thermo) effect refers
to the energy flow that results from concentration gradients (see Rastogi and Madan [22]).
Meanwhile, the Soret (thermal-diffusion) effect occurs due to the temperature gradi-
ents [23,24]. Due to their smaller-order magnitude, thermal-diffusion and diffusion-thermo
processes are frequently overlooked in the heat transfer processes. However, as asserted
by Seid et al. [25], these effects cannot be disregarded in flow systems that have large
concentration and temperature gradients, which mostly occur in engineering processes
such as in the process of chemical manufacture, material insulation, and foam combustion.
Considering this fact, several researchers believed it would be beneficial to analyze the Du-
four and Soret effects on a variety system of fluid flow. It is scrutinized by Salleh et al. [26]
that in a specific range of velocity ratio, the heat transmission can be augmented when
a stronger Soret effect is inserted, while concurrently lowering the Dufour effect. The
impacts of Dufour and Soret towards the fluid flow past a vertical porous plate are inves-
tigated by Kumar et al. [27]. They report that the Soret effect increases the concentration
profile but oppositely for the Dufour effect. The same conclusion has also been drawn by
Jawad et al. [28] in their research on Darcy–Forchheimer radiative nanofluid flow with
Marangoni convection. Meanwhile, in the study performed by Khan et al. [29] towards
the non-Newtonian micropolar fluid flow of an expandable cylinder, the boost of the Du-
four effect negatively impacted the temperature profile. Several other recent works of
research regarding Dufour and Soret effects can be retrieved in the studies conducted by
Salmi et al. [30], Yinusa et al. [31], Pal et al. [32], and Sheri et al. [33]. However, in most
of these studies, the impact of Soret and Dufour effects towards the boundary layer flow
separation is not reported and discussed.

Inspired by the previous studies while trying to bridge the research gap, the authors
are inspired to examine the radiative mixed convection stagnation point flow of alumina-
copper/water hybrid nanofluid past a vertical flat plate with Dufour and Soret effects, while
extending the previous study reported by Srinivasacharya and RamReddy [34]. Several
improvements and modifications that have been considered towards the model are listed
as below:

• The model used by the previous study is modified towards the Tiwari and Das [3]
nanofluid model.

• The fluid is upgraded to hybrid nanofluid by using the thermophysical correlations
suggested by Takabi and Salehi [35] and the properties provided by Oztop and Abu-
Nada [36].

• New additional effects such as the stagnation point flow, thermal radiation, and
convective heated boundary condition are inserted towards the present model.

• The equations of the flow model are solved via a sophisticated solver known as bvp4c
in MATLAB that could provide a better numerical solution.

• Two different alternative solutions are provided in the present study and the stability
analysis has also been derived and reported to analyze the stability feature of the
generated numerical solutions.

• The preferable value of parameters to control the skin friction, heat transfer, and mass
transfer rates as well as the boundary layer separation process for the present model
are highlighted and discussed in the findings.

Therefore, it is believed that this exploratory research is significant for the future
benchmarking of real-world industrial processes and applications. Several applications
of hybrid nanofluid that can be mentioned here are its use in heat exchangers and heat
pipes; coolants in machining and manufacturing; generator cooling; refrigeration; solar
collectors; and heating, ventilation, and air conditioning (HVAC) application [37]. It should
also be noted here that the stagnation point flow is also important in many applications,
for instance, in polymer extrusion, wire and plastic sheet drawing, nuclear reactor cooling,
and other hydrodynamic applications [38]. Many industrial processes also consider the
mixed convection flow, such as for the heating of material traveling between a feed roll and
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a wind-up roll or a conveyer belt, the extrusion of steel, the cooling of a large metallic plate
in a bath, and liquid films in condensation processes [39]. Thus, the current results may
give an insight, especially to the scientists working with nanofluids—specifically, those
related to the flow with a mixed convection and stagnation point.

2. Mathematical Model

Generally, a vectorial version of a simple mathematical steady flow model of hybrid
nanofluid may be written as [40,41]:

∇ ·
→
V = 0, (1)

ρhn f

(→
V · ∇

)→
V = −∇→p + µhn f∇2

→
V, (2)

(
ρCp

)
hn f

(→
V · ∇

)
T = khn f∇2T, (3)(→

V · ∇
)

C = Dm∇2C, (4)

where
→
V =

→
u i +

→
v j is the velocity vector, ∇2 is the Laplacian operator,

→
p is the total

pressure force vector, T is temperature, and C is the solutal concentration for the hybrid
nanofluid. Moreover, µhn f is the dynamic viscosity; ρhn f is the density; khn f is the thermal
conductivity; (ρCp)hn f is the heat capacity; and (Cp)hn f is the specific heat capacity for the
hybrid nanofluid.

In this study, the two-dimensional, steady, radiative, mixed convective, stagnation
point flow of hybrid nanofluid (see Figure 1) is considered, where the Cartesian coordinates
of the x-axis are assumed along the vertical plate and the y-axis is normal to it, with the
flow being at y ≥ 0. The velocity of the far (inviscid) flow is ue(x) = ax [42,43], where
a is a positive constant. It is assumed that the variable convective temperature Tf (x)
and variable concentration Cw(x) at the plate are given as Tf (x) = T∞ + T0(x/l) [44]
and Cw(x) = C∞ + C0(x/l) [45], where T0 and C0 are the characteristic temperature and
concentration at the plate, T∞ and C∞ are the ambient temperature and concentration of the
fluid, and l is the characteristic length of the plate. Two distinct nanoparticles are considered
in this study, namely, alumina and copper, diluted in the water base fluid. It is assumed that
the nanoparticles have the same size and shape, and that the volume fraction considered
would not result in collisional interactions. Presumably, the nanoparticles would not
aggregate since they are uniformly dispersed and very small in size. Several pertinent
effects such as mixed convection, convective boundary condition, thermal radiation, and
Dufour and Soret effects are imposed towards the flow model.
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Therefore, according to the assumptions, the appropriate equations for the present
model can be constructed as follows [34,46]:

∂u
∂x

+
∂v
∂y

= 0, (5)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+

µhn f

ρhn f

∂2u
∂y2 + βhn f (T − T∞)g + βc(C− C∞)g, (6)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 −

1(
ρCp

)
hn f

∂qr

∂y
+

Dm

Cs

kT(
Cp
)

f

∂2C
∂y2 , (7)

u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 +

DmkT
Tm

∂2T
∂y2 , (8)

subject to the boundary conditions

v = u = 0,−khn f
∂T
∂y = h f

(
Tf − T

)
, C(x) = Cw(x) at y = 0,

u→ ue(x) = ax, T → T∞, C → C∞ as y→ ∞,

}
(9)

where ue(due/dx) denote the stagnation point term; βhn f (T − T∞)g denote the mixed
convection term; βc(C − C∞)g denote the buoyancy ratio term; −1/(ρCp)hn f (∂qr/∂y)

denote the thermal radiation term; (DmkT/Cs(Cp) f )(∂
2C/∂y2) denote the Dufour effect

term; and (DmkT/Tm)(∂2T/∂y2) denote the Soret effect term, in which u and v are the
velocity along the x,y-axes; Cs is the concentration susceptibility; βc is the solutal expansion
coefficient; kT is the thermal diffusion ratio; qr is radiative heat flux; g is the acceleration due
to gravity; Tm is the mean hybrid nanofluid temperature; Dm is the solutal diffusivity of the
medium; h f is the convective heat transfer coefficient; and βhn f is the thermal expansion for
the hybrid nanofluid. The correlations relating to the thermophysical properties of hybrid
nanofluid are presentable in Table 1 (see Takabi and Salehi [35]).
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Table 1. Correlations for the thermophysical properties.

Properties Hybrid Nanofluid

Density ρhn f = φAl2O3 ρAl2O3 + φCuρCu + (1− φhn f )ρ f
where φhn f = φAl2O3 + φCu

Heat capacity
(
ρCp

)
hn f = φAl2O3 (ρCp)Al2O3

+ φCu(ρCp)Cu +
(

1− φhn f

)
(ρCp) f

Dynamic viscosity µhn f = µ f

(
1− φhn f

)−2.5

Thermal conductivity khn f
k f

=


(

φAl2O3
kAl2O3

+φCukCu
φhn f

)
+2k f +2(φAl2O3 kAl2O3+φCukCu)−2φhn f k f(

φAl2O3
kAl2O3

+φCukCu
φhn f

)
+2k f−(φAl2O3 kAl2O3+φCukCu)+φhn f k f


Thermal expansion (ρβ)hn f =

(
1− φhn f

)
(ρβ) f + φAl2O3 ρAl2O3 βAl2O3 + φCuρCuβCu

In regards to the formulations in Table 1, φ is the nanoparticle volume fraction, such
that φAl2O3 corresponds to alumina (first solid nanoparticle) volume fraction; φCu corre-
sponds to copper (second solid nanoparticle) volume fraction; and when φAl2O3 = φCu = 0,
the hybrid nanofluid simplifies to the classical base fluid. The subfix of f , Al2O3 and Cu de-
notes the water-based fluid, first (alumina) nanoparticle, and second (copper) nanoparticle,
correspondingly. Based on physical assumptions and the conservation of mass and energy,
it is believed that these formulations are accurate and practicable, which have also been
used by many researchers. The values related to the properties of the hybrid nanofluid are
displayed in Table 2 (see Oztop and Abu-Nada [36]).

Table 2. Thermophysical properties for hybrid nanofluid.

Properties Water (H2O) Alumina (Al2O3) Copper (Cu)

ρ
(

kg/m3
)

997.1 3970 8933

Cp(J/kgK) 4179 765 385
k(W/mK) 0.613 40 400

β(1/K) 21 × 10−5 0.85 × 10−5 1.67 × 10−5

Pr 6.2 - -

The radiative heat flux qr may be easily described as follows, in accordance with the
approximation provided by Rosseland [47] (refer also to [48,49]):

qr = −
4σ∗

3k∗
∂T4

∂y
, (10)

where k∗ and σ∗ denote the coefficient of mean absorption and the constant of Stefan-
Boltzmann, respectively. Utilizing the Taylor series while disregarding the higher-order
terms, an expansion of T4 about T∞ is carried out so that it becomes T4 ≈ 4T3

∞T − 3T4
∞.

With this regard, Equation (7) can be reformulated as

u
∂T
∂x

+ v
∂T
∂y

=
1(

ρCp
)

hn f

(
khn f +

16σ∗T3
∞

3k∗

)
∂2T
∂y2 +

Dm

Cs

kT(
Cp
)

f

∂2C
∂y2 . (11)

Next, the following similarity variables are introduced towards the model equa-
tions [42,46,50]:

u = ax f ′(η), v = −√av f f (η), θ(η) =
T − T∞

Tf (x)− T∞
, h(η) =

C− C∞

Cw(x)− C∞
, η = y

√
a

v f
, (12)

where the prime is the differentiation towards η.
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So, inserting Equation (12) into the governing Equations (6), (8) and (11), the subse-
quent equations are attained,

µhn f /µ f

ρhn f /ρ f
f ′ ′ ′ + f f ′ ′ − f ′2 + 1 +

(
βhn f

β f
θ + Nh

)
λ = 0, (13)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
θ′ ′ + f θ′ − f ′θ + Duh′ ′ = 0, (14)

1
Sc

h′ ′ + f h′ − f ′h + Srθ′ ′ = 0, (15)

subject to the boundary conditions

f (0) = 0, f ′(0) = 0,− khn f
k f

θ′(0) = Bi(1− θ(0)), h(0) = 1,

f ′(η)→ 1, θ(η)→ 0, h(η)→ 0 as η → ∞.

}
(16)

Here, Pr is the Prandtl number, Sc is the Schmidt number, Du is the Dufour effect, Sr
is the Soret effect, Bi is the Biot number, Rd is the radiation parameter, N is the buoyancy
ratio, and λ is the constant parameter of mixed convection, such that λ < 0 is for opposing
flow and λ > 0 is for assisting flow, which are mathematically equated as [34,51]:

Pr =
(vρCp) f

k f
, Sc =

v f
Dm

, Du = DmkTC0
Cs(Cp) f v f T0

, Sr = DmkT T0
TmC0v f

,

Bi =
h f
k f

√
v f
a , Rd = 4σ∗T3

∞
k∗k f

, N = βcC0
β f T0

, λ = Grx
Re2

x
,

 (17)

with Grx = gβ f

(
Tf − T∞

)
x3/v2

f being the local Grashof number and Rex = ue(x)x/v f the
local Reynolds number.

The following physical quantities are considered [34,46,52,53]:

C f =
µhn f

ρ f u2
e (x)

(
∂u
∂y

)
y=0

, Shx = x
Cw(x)−C∞

(
− ∂C

∂y

)
y=0

Nux =
xkhn f

k f (Tf (x)−T∞)

(
− ∂T

∂y

)
y=0

+ x
k f (Tf (x)−T∞)

(qr)y=0

 (18)

which are the skin friction coefficient C f , the local Nusselt number Nux, and the Sherwood
number Shx. Using Equations (12) and (18), the quantities are reformulated as

Re1/2
x C f =

µhn f

µ f
f ′ ′(0), Re−1/2

x Shx = −h′(0), Re−1/2
x Nux = −

(
khn f

k f
+

4
3

Rd

)
θ′(0). (19)

3. Stability Analysis

It is plausible for the system of Equations (13)–(16) to generate several solutions.
Hence, a stability analysis should be conducted. With reference to Merkin [54], who has
carried out excellent work on boundary layer stability analysis, Equations (6)–(8) are set
into the unsteady version with time t, as the following

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+

µhn f

ρhn f

∂2u
∂y2 + βhn f (T − T∞)g + βc(C− C∞)g, (20)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 −

1(
ρCp

)
hn f

∂qr

∂y
+

Dm

Cs

kT(
Cp
)

f

∂2C
∂y2 , (21)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= Dm
∂2C
∂y2 +

DmkT
Tm

∂2T
∂y2 . (22)
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Then, the non-dimensional time variable τ is proposed, and the variables for similarity
transformation are

u = ax ∂ f
∂η (η, τ), v = −√av f f (η, τ), θ(η, τ) = T−T∞

Tf (x)−T∞
, h(η, τ) = C−C∞

Cw(x)−C∞
,

η = y
√

a
v f

, τ = at.

 (23)

Plugging Equation (23) into Equations (20)–(22), the following equations are obtained

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ 1 +

(
βhn f

β f
θ + Nh

)
λ− ∂2 f

∂η∂τ
= 0, (24)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
∂2θ

∂η2 + f
∂θ

∂η
− ∂ f

∂η
θ + Du

∂2h
∂η2 −

∂θ

∂τ
= 0, (25)

1
Sc

∂2h
∂η2 + f

∂h
∂η
− ∂ f

∂η
h + Sr

∂2θ

∂η2 −
∂h
∂τ

= 0, (26)

subject to the boundary conditions

f (0, τ) = 0, ∂ f
∂η (0, τ) = 0,− khn f

k f
∂θ
∂η (0, τ) = Bi(1− θ(0, τ)), h(0, τ) = 1,

∂ f
∂η (η, τ)→ 1, θ(η, τ)→ 0, h(η, τ)→ 0 as η → ∞.

 (27)

Weidman et al. [55] pointed out that the deterioration or initial developments of
a system can be used to figure out how stable a solution is. This can be achieved by
considering the subsequent perturbation equations

f (η, τ) = f0(η) + e−γτ F(η, τ),
θ(η, τ) = θ0(η) + e−γτQ(η, τ),
h(η, τ) = h0(η) + e−γτ H(η, τ),

 (28)

where γ is the unknown eigenvalue, and F(η, τ), Q(η, τ), H(η, τ) are the small relatives to
f0(η), θ0(η), h0(η), respectively. Finally, the following linearized equations are yielded by
inserting Equation (28) into Equations (24)–(26),

µhn f /µ f

ρhn f /ρ f
F′ ′ ′ +

(
F f0
′ ′ + f0F′ ′

)
−
(
2F′ f0

′)+( βhn f

β f
Q + NH

)
λ + γF′ = 0, (29)

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
Q′ ′ +

(
Fθ0
′ + f0Q′

)
−
(

F′θ0 + f0
′Q
)
+ DuH′ ′ + γQ = 0, (30)

1
Sc

H′ ′ +
(

Fh0
′ + f0H′

)
−
(

F′h0 + f0
′H
)
+ SrQ′ ′ + γH = 0, (31)

subject to the linearized boundary conditions

F(0) = 0, F′(0) = 0,
khn f
k f

Q′(0) = BiQ(0), H(0) = 0,

F′(η)→ 0, Q(η)→ 0, H(η)→ 0 as η → ∞.

}
(32)

The unlimited set of eigenvalues γ1 < γ2 < γ3 . . . is executed by solving Equations (29)–(32)
via bvp4c MATLAB. According to prior research by Harris et al. [56], the potential eigenval-
ues may be identified by resting a far-field boundary condition. So, F′(η∞)→ 0 is chosen
to be relaxed and be substituted with F′ ′(0) = 1. The flow is only regarded as stable if the
generated γ1 is positive, signifying that the perturbation deteriorated over time.
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4. Results and Discussion

This section includes the results and a discussion of the achieved findings. The bvp4c
MATLAB solver was employed to complete the calculations. This solver operates using a
finite-difference technique with Lobatto IIIa formula, which is a collocation formula [57,58].
The collocation polynomial would yield a continuous solution that is precise to the fourth-
order accuracy. Initial approximations for the solutions are essential to be supplied in order
to generate the possible solutions, thus, several trial-and-error processes are performed.
For the present study, the validity of the findings was established by comparing them with
the data that had been previously published by: Khashi’ie et al. [59], Wahid et al. [60],
Ishak et al. [61], Roşca et al. [62], and Ramachandran et al. [63]. In this regard, Tables 3–6
validate the values for certain limiting cases, and the comparison proves an excellent
level of agreement between them. Thus, we believe that the numerical procedure and
the findings that have been obtained are adequate and reliable. Several numerical (data)
findings of the present study are also tabulated in Table 7 for future reference.

Table 3. Values of f ′ ′(0) when N = Rd = Du = Sc = Sr = φ1 = φ2 = 0 and Bi→ ∞ .

Pr
λ=1 λ=−1

Present Khashi’ie et al. [59];
Ishak et al. [61] Present Roşca et al. [62];

Ramachandran et al. [63]

0.7 1.706322692
(1.238727738)

1.7063
(1.2387)

0.691661306
(−0.285049030) 0.6917

6.2 1.526774663
(0.613170553) - 0.913106146

(−0.371891985) -

7 1.517912618
(0.582400958)

1.5179
(0.5824)

0.923481290
(−0.375336817) 0.9235

20 1.448482926
(0.343640272)

1.4485
(0.3436)

1.003108154
(−0.400012699) 1.0031

Note: ( ) is for the second solution.

Table 4. Values of −θ′(0) when N = Rd = Du = Sc = Sr = φ1 = φ2 = 0 and Bi→ ∞ .

Pr
λ=1 λ=−1

Present Khashi’ie et al. [59];
Ishak et al. [61] Present Roşca et al. [62];

Ramachandran et al. [63]

0.7 0.764063389
(1.022631377)

0.7641
(1.0226)

0.633247080
(−0.222165242) 0.6332

7 1.722381598
(2.219194096)

1.7224
(2.2192)

1.546031855
(−1.285559433) 1.5403

20 2.457590047
(3.164608405)

2.4576
(3.1647)

2.268272410
(−2.573646060) 2.2683

Note: ( ) is for the second solution.

Table 5. Values of Re1/2
x C f when N = Rd = Du = Sc = Sr = λ = 0 and Bi→ ∞ .

φ
Present Wahid et al. [60]; Khashi’ie et al. [59]

Alumina–Water Copper–Water Alumina–Water Copper–Water

0.05 1.408762990 1.553849593 1.4088 1.5538
0.10 1.602056737 1.884323749 1.6020 1.8843
0.15 1.816825555 2.236903962 1.8168 2.2369
0.20 2.058324533 2.622743101 2.0583 2.6227
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Table 6. Values of Re−1/2
x Nux when N = Rd = Du = Sc = Sr = λ = 0 and Bi→ ∞ .

φ
Present Wahid et al. [60]; Khashi’ie et al. [59]

Alumina–Water Copper–Water Alumina–Water Copper–Water

0.05 1.716899309 1.775765930 1.7169 1.7758
0.10 1.860326121 1.969206054 1.8603 1.9692
0.15 2.004503652 2.159313050 2.0045 2.1593
0.20 2.150196604 2.349362585 2.1502 2.3494

Table 7. Values of Re1/2
x C f , Re−1/2

x Nux and Re−1/2
x Shx for different Bi and Sc when

N = Rd = Sr = 1, Du = 0.03, λ = −1, Pr = 6.2 and φ1 = φ2 = 0.01.

Bi Sc Re1/2
x Cf Re−1/2

x Nux Re−1/2
x Shx

0.1 1 0.721828291
(−0.337285448)

0.203868995
(0.220230916)

0.687806632
(−0.379048912)

0.5 1 0.568251544
(−0.236016413)

0.751675151
(1.321437252)

0.553722971
(−0.940825682)

0.7 1 0.513295773
(−0.101330845)

0.924275190
(2.265412293)

0.510747744
(−1.465072866)

0.1 0.5 0.642507875
(−0.318062728)

0.204276266
(0.216204343)

0.524234821
(−0.221922364)

0.1 0.1 0.450361082
(−0.322012008)

0.203299825
(0.208272113)

0.267859211
(−0.072123986)

In addition, the entire composition of alumina and copper volume fractions in this
research is equivalent to 1% of alumina (φAl2O3 = φ1 = 0.01) and 0–2% of copper
(0 ≤ (φCu = φ2) ≤ 0.02). Meanwhile, the Prandtl number is put constant at 6.2 since water
is considered as the base fluid. The availability of the dual solution is attainable, as shown
in Figures 2–19, provided that the parameters are employed within the following allotted
range: mixed convection parameter −2.1 < λ < 0; Dufour effect 0 ≤ Du ≤ 0.2; and Soret
effect (thermo-diffusion) 0 ≤ Sr ≤ 1, while the rest of the parameters remain unchanged
with the following values: Biot number Bi = 0.1, buoyancy ratio N = 1, radiation Rd = 1,
and Schmidt number Sc = 1. These allocations of ranges are important in generating the
possible numerical solutions, especially if multiple solutions are desired to be established
while exploring the critical point for boundary layer separation.

The impact of copper volume fraction φ2 = φCu on the skin friction coefficient Re1/2
x C f ,

local Nusselt number (heat transfer rate) Re−1/2
x Nux, and Sherwood number (mass transfer

rate) Re−1/2
x Shx are illustrated graphically in Figures 2–4, respectively. The first solution

shows that Re1/2
x C f and Re−1/2

x Shx improve when φ2 = φCu increases from 0 to 0.02.
Logically, the increment of the nanoparticles volume fraction would cause the viscosity of
the fluid to increase and enlarge the skin friction, as well as accelerate the mass transfer
rate [44,64]. However, the pattern is contradicted for Re−1/2

x Nux where the heat transfer
rate is decreased as the volume fraction of nanoparticles increases due to the upsurge of
density and conductivity rates in the hybrid nanofluid. This pattern of findings is also
consistent with those reported by Zainal et al. [44]. Meanwhile, for the second solution,
Re1/2

x C f and Re−1/2
x Nux give a declining pattern when φ2 increases, but vice versa for

Re−1/2
x Shx. This non-unique and different pattern given by the solutions necessitates the

stability analysis to be conducted to check whether the solution is stable or non-stable. The
findings of the stability analysis are provided and discussed at the end of this section.
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Mathematics 2022, 10, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 4. 1/2Rex xSh

−  for varied 2φ  when 1N Rd Sc Sr= = = = , 0.03Du = , and 0.1Bi = . 

 

Figure 5. 1/2Rex fC  for varied Du  when 1N Rd Sc Sr= = = = , 2 0.01φ = , and 0.1Bi = . 

 

-2 -1.5 -1 -0.5 0 0.5 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e x-1

/2
 S

h x

First solution Second solution

-2.01 -2 -1.99 -1.98
0.425

0.43

0.435

0.44

2
= 0.00, 0.01, 0.02

c1c3

c2

c1
=   1.9929

c2
=   1.9976

c3
=   2.0016

-

-

-

-2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

R
e x1/

2  C
f

First solution Second solution

c1
c3

c2

Du = 0.03, 0.1, 0.2

c1
=   1.9976

c2
=   1.9592

c3
=   1.9108

-

-

-

Figure 5. Re1/2
x C f for varied Du when N = Rd = Sc = Sr = 1, φ2 = 0.01, and Bi = 0.1.



Mathematics 2022, 10, 2966 13 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 6. 1/2Rex xNu−  for varied Du  when 1N Rd Sc Sr= = = = , 2 0.01φ = , and 0.1Bi = . 

 
Figure 7. 1/2Rex xSh

−  for varied Du  when 1N Rd Sc Sr= = = = , 2 0.01φ = , and 0.1Bi = . 

 

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

R
e x-1

/2
 N

u x

First solution Second solution

Du = 0.03, 0.1, 0.2

c2
=   1.9592

c3
=   1.9108

-
c1

=   1.9976

-

-

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e x-1

/2
 S

h x

First solution Second solution

Du = 0.03, 0.1, 0.2

c1
c3

c2

c1
=   1.9976

c2
=   1.9592

c3
=   1.9108

-

-

-

Figure 6. Re−1/2
x Nux for varied Du when N = Rd = Sc = Sr = 1, φ2 = 0.01, and Bi = 0.1.
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x C f for varied Sr when N = Rd = Sc = 1, φ2 = 0.01, Du = 0.03, and Bi = 0.1.
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x Nux for varied Sr when N = Rd = Sc = 1, φ2 = 0.01, Du = 0.03, and Bi = 0.1.
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Figure 10. Re−1/2
x Shx for varied Sr when N = Rd = Sc = 1, φ2 = 0.01, Du = 0.03, and Bi = 0.1.
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Figure 19. Plots of h(η) for varied Sr when N = Rd = Sc = 1, Du = 0.03, λ = −1, Bi = 0.1, and
φ2 = 0.01.

Moreover, from Figures 2–4, we can also identify the occurrence point for the boundary
layer separation, which is the transition of the flow phase from laminar to turbulent. This
occurrence can be determined through the existence of a critical point λc (flow separation
point). Since we are only concerned with the laminar flow, the solution can only exist
when λ > λc. Meanwhile, beyond this critical point (λ < λc), no feasible solution exists
implying that the flow is no longer laminar. In addition, this critical point also becomes
the turning point that differentiates the first and the second solution. In Figures 2–4,
the critical point λc is recognized to be eventuated at the negative value of the mixed
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convection parameter λ, which is at the opposing mixed convective flow region, that is
at: λc1 = −1.9929 when φ2 = φCu = 0.00; λc2 = −1.9976 when φ2 = φCu = 0.01; and
λc3 = −2.0016 when φ2 = φCu = 0.02. On a side note, the mentioned “opposing mixed
convective flow” describes a situation in which the forcing convection flows in the opposite
direction of thermal buoyancy, while for “assisting mixed convective flow”, it is vice versa,
in which the forcing convection flows in the same direction of thermal buoyancy. From
these critical points, it seems that the higher value of φ2 = φCu—which at most is 2% in this
case—causes the magnitude of the critical point to be expanded and causes the boundary
layer separation to be efficiently delayed compared to the provided lesser value (φ2 < 0.02).
Hence, to maintain the flow in a laminar state, 2% of copper volume fraction is preferable.
Moreover, it is also noticed that as λ increases, the physical quantities for the first solution
also increase, and the value for the physical quantities for the second solution is lesser than
the first.

Figures 5–7 visualize the influence of Dufour effect Du on Re1/2
x C f , Re−1/2

x Nux, and
Re−1/2

x Shx, respectively. By increasing Du from 0.03 to 0.2, it is found that there are two
patterns of findings for Re1/2

x C f and Re−1/2
x Shx from the first solutions (see Figures 5 and 7),

which means there exists a conflicting point that causes the pattern to change across the
range of λ. Therefore, the adjustment of the physical quantities through Du should also
depend on the value of λ, as a different value of Du has a different impact on the quantities
when a different range of λ is considered. However, it is observable that the increase in
Du causes the first solution of Re1/2

x C f and Re−1/2
x Shx to decrease, especially when λ(< 0)

is closer to λc, while Re−1/2
x Nux shows a negative impact when Du enlarges, but without

being limited by λ. A stronger Du causes the temperature of the fluid to increase (proven
by Figure 15), thus, causing the decline in the heat transfer rate. Unlike the copper volume
fraction parameter, the Dufour effect has different impacts on the boundary layer separation
point. The increment of Du does not delay the separation process but, oppositely, promotes
it. Therefore, it is suggested that this parameter be reduced in order to preserve the laminar
flow phase in the fluid.

Figures 8–10 demonstrate the quantities of Re1/2
x C f , Re−1/2

x Nux, and Re−1/2
x Shx when

varied Soret effects Sr are considered. It is noticed that the first solution for Re1/2
x C f and

Re−1/2
x Nux is reduced when Sr increases, but the pattern is conflicted within a certain

range of λ, especially when λ moves towards the assisting flow (see Figures 8 and 9).
Meanwhile, a greater Re−1/2

x Shx is witnessed from the first solution when zero/smaller
Sr is considered, and there is no conflicting pattern for this quantity. Logically, the mass
transfer would decay when a greater Sr is considered due to the increment of concentration
gradient, which is supported by Figure 19. In terms of boundary layer separation, the
critical point is also plotted at the opposing mixed convective flow region of λ, such that:
λc1 = −2.0738 when Sr = 0; λc2 = −2.0353 when Sr = 0.5; and λc3 = −1.9976 when
Sr = 1. This kind of critical point placement as Sr increases signifies that the flow transition
is quickened and causes the turbulent flow to take over. Thus, smaller to no Sr is suggested
to delay the flow transition.

Moreover, instead of computing the physical quantities, the velocity f ′(η), temperature
θ(η), and concentration h(η) profiles are also provided for different values of φ, Du, and Sr
when λ = −1 (Figures 11–19). As probing towards the first solution, it is observable that
the increase in Du and Sr causes f ′(η) to decrease, but an adverse pattern is noticed for the
increment of φ. This kind of pattern is aligned with the pattern provided by Re1/2

x C f (see
Figures 2, 5 and 7), because as φ increases it causes f ′(η) to also increase, which, logically,
as f ′(η) increases, the skin friction is supposed to improve as well (proven by Figure 2) due
to the high flow of the fluid that moves oppositely from the opposing mixed convection
flow. The same reason is also applicable for the effects of Du and Sr.

Figures 12 and 13 exhibit the effect of φ2 = φCu on θ(η) and h(η). The first solution
of θ(η) and h(η) gives a declining result when φ2 = φCu enlarges while satisfying the
far-field condition, whereas the second solution gives the opposite result. The effects of
Du and Sr on θ(η) and h(η) are shown in Figures 15, 16, 18 and 19, correspondingly. The
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presence of Du gives a positive impact towards the first solution of θ(η) but differently
for Sr. This is realistic because the Dufour and Soret effects should act in ways that are
completely contradictory to one another. However, the presence of both enhances the
concentration h(η) profile that is given by the first solution. This is somehow consistent
with the Sherwood number/mass transfer Re−1/2

x Shx findings provided in Figures 7 and 10.
The increment of Du and Sr causes Re−1/2

x Shx to reduce as the mass transfer process occurs
ineffectively, which consequently causes the fluid to become more concentrated, as proven
by Figures 16 and 19.

For the stability analysis, the result is confirmed through the plot of γ1 with λ as
illustrated in Figure 20. The first solution gives a positive γ1; meanwhile, the second
solution gives a negative γ1. Hence, only the first solution is stable as the disturbance
lessens with time, while the second solution is non-stable due to the disturbance growth.
Even though the non-stable solution may lack physical relevance, it is still important since
it is a solution to the differential equations. There may be occasions when the presence of
this non-stable solution is more valued.
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5. Conclusions

This study successfully examines the radiative mixed convective stagnation point flow
of a hybrid nanofluid past a vertical flat plate with Dufour and Soret effects. When mixed
convection and the free stream flow are in different directions, numerical findings show
that two solutions exist, but a singular solution is produced when they flow in a similar
direction. The flow problem can be solved only up to the critical point, which the solutions
stop executing beyond that, and there is no longer any way to solve the problem. To verify
the executed solutions, the stability analysis is performed. The MATLAB bvp4c solver
facilitates all the numerical computations in this study. Thus, the following is a synopsis
of the conclusions obtained, specifically for a static vertical surface under the influence of
mixed convection stagnation point flow (first solution):

• Two solutions exist but only the first solution is stable, as evaluated through the
stability analysis.
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• The boundary layer separation is preventable if 2% of copper is used and lesser Dufour
and Soret effects are considered.

• Heat transfer performance can be amplified by reducing the volume fraction of copper
and lessening the Dufour effect.

• Mass transfer rate is improvable by raising the volume fraction of copper and reducing
the Soret effect.

• The skin friction can be reduced by augmenting the Dufour and Soret effects during
the opposing flow of mixed convection.

• The flow moves at a higher velocity when the hybrid nanofluid is concentrated but
decelerated when stronger Dufour and Soret effects are inserted.

• The fluid temperature is reduceable by considering a greater copper volume fraction
and Soret effect, thus, these two effects can be a coolant factor to the fluid.

However, these mentioned conclusions are specifically limited to the presented flow
model. Different types of nanoparticle imposition and model geometries would lead to
different findings. It is hoped that other researchers will benefit from these novel findings
in determining the necessary factors to optimize the mass and heat transfer processes and
identifying the proper parameters to execute all accessible solutions in controlling the flow.
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