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Abstract: The main goal of this article is to study the behavior of solutions of non-stationary problems
at large timescales, namely, to obtain an asymptotic expansion characterizing the behavior of the
solution of the Cauchy problem for a one-dimensional second-order hyperbolic equation with periodic
coefficients at large values of the time parameter t. To obtain an asymptotic expansion as t→ ∞, the
basic methods of the spectral theory of differential operators are used, as well as the properties of
the spectrum of the Hill operator with periodic coefficients in the case when the operator is positive:
H0 > 0.
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1. Introduction

We study the behavior of the solution for |x| < b and t → ∞ of the following
Cauchy problem:

utt(x, t)− (p(x) ux(x, t))x + q(x) u(x, t) = 0, (x, t) ∈ R× {t > 0}, (1)

u(x, t)|t=0 = 0, ut(x, t)|t=0 = f (x), x ∈ R, (2)

where the functions p(x) and q(x) are periodic with period 1,

p(x + 1) = p(x) ≥ const > 0, q(x + 1) = q(x) ≥ 0.

We also assume that the functions p(x) and q(x) are continuous or have a finite
number of discontinuities of the first kind on the period, f ∈ C∞

0 (R), supp f ⊂ [0, 1], b is
an arbitrary fixed constant.

The behavior (as t → ∞) of solutions to problems similar to the problem (1) and (2)
with p(x) = 1, and of the corresponding multidimensional problems under the condition
that the potential differs from a constant by a finite function tends to a constant sufficiently
fast at infinity, has been studied in many papers, see, for example, [1], and the bibliography
there, as well as other papers.

In this regard, we note the paper [2], in which was received the asymptotic expansion
(for t→ ∞ and |x| < a < ∞ ) of the solution u(x, t) of the following Cauchy problem:

utt(x, t)− uxx(x, t) + (α0 + q0(x))u = 0, (x, t) ∈ R× {t > 0},

u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = ψ(x), x ∈ R,
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where the initial functions are finite, ϕ(x) ∈ C2(R), ψ(x) ∈ C1(R), and under weaker
restrictions on the potential q(x) = α0 + q0(x), where α0 = const and q0(x) is a real-valued
continuous function for all x ∈ R, and for some k ≥ 1, satisfies the condition:∫ +∞

−∞
|x|k|q0(x)| < ∞.

In [3] studied the following Cauchy problem:

utt(x, t)− (a(x) ux(x, t))x = 0, 0 < a0 ≤ a(x) ≤ A0 < +∞, (x, t) ∈ R× {t > 0},

u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = 0, x ∈ R,

for which, under certain assumptions on the tension coefficient a(x), such as:

1
a0

∫ +∞

−∞
|a′(x)| dx < 1,

sufficient conditions for the stabilization of the solution u(x, t) as t→ +∞ uniformly in x
on any compact set, as well as necessary and sufficient conditions for the stabilization of
the solution u(x, t) in the mean where obtained.

In the note [4], it is proved that a perturbed Hill operator with an exponentially
decreasing impurity potential has a resonance (or an odd number of resonances) in every
sufficiently distant lacuna on the second (“non-physical”) sheet.

In [5], the problem of scattering by a one-dimensional periodic lattice p(x) with
impurity potential q(x) is considered. Based on the asymptotics of scattered waves, a
stationary scattering matrix is constructed, its properties are studied, and it is shown that
it coincides with the non-stationary scattering operator defined in the usual way in the
quasi-momentum representation of the unperturbed operator H0. The inverse scattering
problem is also solved, i.e., the problem of recovering q(x) based on p(x) and the scattering
data. Here the author follows the scheme proposed in the paper by V. A. Marchenko and
L. D. Faddeev. However, to solve the inverse problem in the presence of a periodic lattice,
it requires significant modifications of classical arguments. The theory of so-called “global”
quasi-momentum serves as analytic basis. In this article, conditions on the scattering data
are also found, necessary with a finite second moment, and sufficient for the existence of a
unique impurity potential with given scattering characteristics and a finite first moment.

One of the key papers is [6], in which the large-time asymptotic behavior of the
Green’s function for the one-dimensional diffusion equation is found in two cases. In the
first case, when the potential is a function with compact support, the asymptotic behavior
of the Green’s function is expressed in terms of the elements of the scattering matrix of
the corresponding Schrödinger operator for negative energies on the spectral plane. In the
second case, when the potential is a periodic function of the coordinates, the asymptotic
behavior can be expressed in terms of the Floquet–Bloch functions of the corresponding
Hill operator for negative energy values on the spectral plane. The results obtained are
used to study diffusion in layered media at long times. The case of external force is also
considered. In the periodic case, the Seeley coefficients are found.

In [7], the behavior at large time t of the solution of the Cauchy problem for a hyper-
bolic equation with a periodic potential q(x) was studied.

The main difference of this article from the above papers is that the case of periodic
coefficients p(x) and q(x) is considered here. Papers where the coefficients p(x) and
q(x) are periodic were not known until our investigations [8,9] appeared, in which the
main results are published in the form of short communications. In the same papers, the
behavior of the solution of the Cauchy problem for both homogeneous and inhomogeneous
hyperbolic equations, as well as the behavior of the solution of a mixed initial-boundary
value problem for the same equations, are studied.
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Paper [10] deals with the numerical study of the simple one-dimensional Schrödinger
operator − 1

2 ∂xx + αq(x) with α ∈ R, q(x) = cos(x) + ε cos(kx), ε > 0 and k is irrational.
Here the quantum wave function of an independent electron in a crystal lattice perturbed
by some impurities is determined, the dissemination of which induces only a long-range
order, which is transmitted using a quasi-periodic potential q. Here the author numerically
studies what happens for various values of k and ε, and it turns out that for k > 1 and
ε << 1, that is, when more than one impurity appears inside an elementary cell of the
original lattice, “impurity bands” appear, which seem to be k -periodic. When ε grows
bigger than one, the opposite case occurs.

We also note paper [11], which investigates a simple one-dimensional model of an
incommensurable “harmonic crystal” in terms of the spectrum of the corresponding
Schrödinger equation. The paper shows that the lower spectrum of the operator is di-
vided between “Cantor-like bands” and “impurity bands”, which correspond to critical and
extended eigenstates, respectively. Numerical experiments were also carried out, which are
performed both for stationary and non-stationary problems.

The spectral properties of the Hill operator were studied in [4–6,12–16].
In this article, we present the full proofs of the results announced in [8], which were

also presented at the international conference in Cyprus [17] (ICMSQUARE 6: Interna-
tional Conference on Mathematical Modeling in Physical Sciences, 25–29 August, 2017,
Pafos, Cyprus).

Let us describe the scheme of investigation of the Cauchy problem (1) and (2). Using
the Fourier transform, we reduce the Cauchy problem under consideration to a stationary
problem, then we write the solution in terms of the resolvent of the Hill operator and do
the inverse Fourier transform. In the resulting integral, we shift the integration contour
to the lower half-plane, bypassing the branch points of the resolvent of the Hill operator
(these points are at the ends of the spectrum zones), and find the asymptotics of the
resulting integral.

Notations: C∞
0 (Ω) is the space of infinitely differentiable functions in the domain Ω

and compactly supported in Ω; L2(Ω) is the space of measurable functions in Ω for which

||u; L2(Ω)|| =
(∫

Ω
|u|2dx

)1/2
< ∞.

The Sobolev space H1(Ω) in Ω is defined as:

H1(Ω) = {u : u ∈ L2(Ω),∇u ∈ L2(Ω)},

provided with the norm

||u; H1(Ω)||2 = ||u; L2(Ω)||2 + ||∇u; L2(Ω)||2.

2. Definitions and Auxiliary Statements

Definition 1. A function u ∈ C2(R× {t ≥ 0}) is called a periodic (anti-periodic) solution of the
Cauchy problem (1) and (2), if it satisfies the relation:

u(x + 1, t) = (−1)ju(x, t)

for any x ∈ R and t ≥ 0, with j = 0 and j = 1 in the case of periodic and anti-periodic solutions,
respectively.

Spectrum and Green’s Function of the Hill Operator

Continuing the function u(x, t) by zero in the region t < 0, and applying the Fourier
transform with respect to the variable t in the Cauchy problem (1) and (2), for the function

y(x, k) =
∫ ∞

0
u(x, t) eiktdt,
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we obtain the equation

(p(x) y′(x, k))′ + (k2 − q(x)) y(x, k) = − f (x). (3)

For any function g(x) from L2(−∞,+∞), we define its norm in the same space

||g; L2|| = ||g; L2(−∞,+∞)||.

If the function g(x) is defined on the entire axis (−∞,+∞), then by ĝ(x) we denote
the restriction of this function on the segment [0, 1].

Let us present some necessary facts from the spectral theory of differential equations.
For any function g(x, k) we denote by g′ the derivative with respect to x and by gk the
derivative with respect to k

Let {y = θ(x, k), y = ϕ(x, k)} be the fundamental system of solutions of the homoge-
neous (for f (x) ≡ 0) Equation (3) such that:{

θ(0, k) = 1, θ′(0, k) = 0,
ϕ(0, k) = 0, ϕ′(0, k) = 1.

(4)

It is known [16] that θ(x, k) and ϕ(x, k) are entire functions in k real on the real axis,
and for |k| → ∞ have the form:{

θ(x, k) = cos kx + O(|k|−1e|τ|x),
ϕ(x, k) = 1

k sin kx + O(|k|−2e|τ|x), τ = Im k,
(5)

uniformly in x ∈ [−b, b]. These expansions can be differentiated with respect to x and with
respect to k.

Let us denote θ(k) = θ(1, k), θ′(k) = θ′(1, k), ϕ(k) = ϕ(1, k), ϕ′(k) = ϕ′(1, k) and
F(k) ≡ θ(k) + ϕ′(k). The functions θ(k), θ′(k), ϕ(k), ϕ′(k) and F(k) are even on the real
axis of the complex plane of the variable k.

The Hill operator is the minimal closed differential operator,

H0 := − d
dx

(
p(x)

d
dx

)
+ q(x),

generated in the Hilbert space L2(R) by the operation

Λ0y := −(p(x) y′)′ + q(x) y,

where the functions p(x) and q(x) are periodic with period 1.
The spectrum σ(H0) of the Hill operator H0 is absolutely continuous and is a finite or

infinite sequence of isolated segments (zones) separated by lacunae going to infinity.
Note that the Hill operator has only a continuous spectrum, which lies on the real axis

and is left semi-bounded [16]. Let us replace the spectral parameter λ by k2 so that the
spectrum σ(H0) of the operator H0 on the complex plane of the variable k consists of points
for which H0 − k2 does not have bounded inverse on an everywhere dense set in L2(R).

For a more detailed characterization of the spectrum σ(H0) of the Hill operator H0,
consider the following periodic (anti-periodic) Sturm–Liouville problems.

Let v̂(x, λn) be an eigenfunction of the periodic Sturm–Liouville problem:

−(p(x)y′)′ + q(x)y = λny, x ∈ [0, 1],
y(0) = y(1), y′(0) = y′(1),

(6)

normalized by the condition ||v̂; L2([0, 1])|| = 1, and v̂(x, µn) is the eigenfunction of the
anti-periodic Sturm–Liouville problem:
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−(p(x)y′)′ + q(x)y = µny, x ∈ [0, 1],
y(0) = −y(1), y′(0) = −y′(1),

(7)

normalized in L2([0, 1]), where λn and µn, n = 0, 1, 2, . . . , are eigenvalues of the cor-
responding problems, which are numbered in ascending order, taking into account the
multiplicity.

Continuing the function v̂(x, λn) (or v̂(x, µn)) to the entire real axis, in a periodic (or
anti-periodic) way, we get a function, which we denote by v(x, λn) (or v(x, µn)).

It is known ([16], § 21.4) that if the Hill operator H0 is positive, then all eigenvalues of
the periodic (anti-periodic) Sturm–Liouville problem are positive. In addition, between the
numbers λn and µn, n = 0, 1, 2, . . . there is a relation,

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤, . . . (8)

Based on the results of the paper [12], we can state that:
(i) The set M1 is a union of segments on the real axis, extending in both directions to

infinity

[−λ2n+1,−µ2n+1], [−µ2n,−λ2n], [λ2n, µ2n], [µ2n+1, λ2n+1], n = 0, 1, 2. . . . ;

(ii) The set M2 consists of those values λn for which the homogeneous (for f (x) ≡ 0)
Equation (3) has a bounded solution in −∞ < x < +∞;

(iii) The set M3 consists of those values λn (or k) for which |F(k)| ≤ 2.
Hence [12], if the Hill operator H0 is positive, then the spectrum of σ(H0) coincides

with the sets M1, M2, M3, i.e.,

σ(H0) = M1 = M2 = M3.

The set of points ±λn coincides with the set of roots of the equation F(k) = 2 (corre-
spondingly, ±µn coincides with the set of roots of the equation F(k) = −2 ), n = 0, 1, 2, . . . .

Gaps in the spectrum, that is, intervals not included in the spectrum,

(−µ2n+1,−µ2n), (−λ2n+2,−λ2n+1), (µ2n, µ2n+1), (λ2n+1, λ2n+2), n = 0, 1, 2. . . . ,

for which µ2n 6= µ2n+1, λ2n+1 6= λ2n+2, are called lacunae.
If λn (or µn) are ends of a lacunae, then (8) implies that ±λn are simple roots of the

equation F(k) = 2 (or ±µn are the roots of the equation F(k) = −2), n = 0, 1, 2, . . . , ([12]).
As is known [16], if λn (or µn) are the ends of a lacuna, then λn (or µn) are simple

proper values of the periodic (or anti-periodic) Sturm–Liouville problem (6) (or (7)).
Note that each lacuna contains exactly one simple zero of the function Fk(k), and the

functions ϕ(k) and θ′(k) have one simple zero in the closure of each lacuna.
If λ = λ2n = λ2n+1 (or µ = µ2n = µ2n+1), n ≥ 0, then λ (or µ) is the simple zero of the

functions ϕ(k) and θ′(k) ([16]).
Denote by C′ the complex plane of the variable k with cuts along the vertical rays

lying in the lower half-plane and starting at the ends of the lacunae.
Let us put

m1(k) =
ϕ′(k)− θ(k)

2ϕ(k)
+

√
(θ(k) + ϕ′(k))2 − 4

2ϕ(k)
, k ∈ C′,

m2(k) =
ϕ′(k)− θ(k)

2ϕ(k)
−

√
(θ(k) + ϕ′(k))2 − 4

2ϕ(k)
, k ∈ C′,

where the branch of the root is determined by the condition
√

F(k)2 − 4 > 0 for k = 0.
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Note that the function
√

F(k)2 − 4 has branching only at the ends of the lacunae [16],
so m1(k) and m2(k) are single-valued in C′. Then for any k, Im k > 0

ψ1(x, k) ≡ θ(x, k) + m1(k) ϕ(x, k) ∈ L2(−∞, 0),

ψ2(x, k) ≡ θ(x, k) + m2(k) ϕ(x, k) ∈ L2(0,+∞).
(9)

Define the Green function of the Equation (3) for k from the upper half-plane,

Γ(x, ξ, k) =


ψ1(ξ,k)ψ2(x,k)
m2(k)−m1(k)

for ξ < x,

ψ1(x,k)ψ2(ξ,k)
m2(k)−m1(k)

for ξ > x,

and, taking into account the identities (9) and the equality,

θ(x, k) ϕ′(x, k)− θ′(x, k) ϕ(x, k) = 1, x ∈ R1, (10)

we get

Γ(x, ξ, k) =


− h(x,ξ,k)√

F(k)2−4
+ 1

2 (θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k)) for ξ < x,

− h(x,ξ,k)√
F(k)2−4

+ 1
2 (θ(x, k) ϕ(ξ, k)− θ(ξ, k) ϕ(x, k)) for ξ > x,

(11)

where
h(x, ξ, k) = ϕ(k) θ(x, k) θ(ξ, k)− θ′(k) ϕ(ξ, k)ϕ(x, k)+

+ ϕ′(k)−θ(k)
2 (θ(ξ, k) ϕ(x, k) + θ(x, k) ϕ(ξ, k)).

(12)

The solution of the Equation (3) for Im k > 0 using the Green’s function is defined as:

y(x, t) = −
∫ 1

0
Γ(x, ξ, k) f (ξ) dξ,

and the solution to the problem (1) and (2) has the form:

u(x, t) = − 1
2π

∫
Im k=a

∫ 1

0
Γ(x, ξ, k) f (ξ) e−iktdξ dk, (13)

where a is some positive constant.
Note that the Green’s function Γ(x, ξ, k) for every x, ξ ∈ [−b, b] continues analytically

to C′.
To study the properties of the integral (13), we introduce some notation.
Denote by L+ (and L−) the line Im k = a, a > 0 (and Im k = −d, d > 0) , and ql is the

segment Re k = lπ + π
3 ,−d ≤ Im k ≤ a, l is any real number .

Consider the integral,

J1 ≡ −
∫

L+

∫ x

0
(θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k)) f (ξ) e−iktdξ dk, x ∈ [−b, b]. (14)

From the relations (5), it follows that:∫
ql

∫ x

0
(θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k)) f (ξ) e−iktdξ dk→ 0 as |l| → ∞,

moreover, |l| can tend to infinity in any way, so in (14) one can replace the line L+ by L−.
According to (5), we have:

θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k) = S1(x, ξ, k) + S2(x, ξ, k),
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where
S1(x, ξ, k) =

1
k

cos kξ sin kx− 1
k

cos kx sin kξ

is an entire function k ∈ C′ for each x, ξ ∈ [−b, b], and the function S2(x, ξ, k) for k → ∞
uniformly in x, ξ ∈ [−b, b] has the form:

S2(x, ξ, k) = O
(
|k|−2e|τ|(x+ξ)

)
.

Thus,
J1 = J(1)1 + J(2)1 + J(3)1 ,

where

J(1)1 = −
∫

L−

∫ x

0

1
k

cos kξ sin kx f (ξ) e−iktdξ dk, J(2)1 =
∫

L−

∫ x

0

1
k

cos kx sin kξ f (ξ) e−iktdξ dk,

and
J(3)1 = −

∫
L−

∫ x

0
S2(x, ξ, k) f (ξ) e−iktdξ dk.

Let us explore these integrals. Putting k = σ− id with k ∈ L−, we get:

J(1)1 = −
∫ +∞

−∞

1
σ− id

sin(σ− id)x e−iσ te−dtΦ(σ, x) dσ, x ∈ [−b, b], (15)

where

Φ(σ, x) ≡
∫ x

0
cos(σ− id)ξ f (ξ) dξ =

1
2

∫ x

0
eiσξedξ f (ξ) dξ +

1
2

∫ x

0
e−iσξ e−dξ f (ξ) dξ. (16)

Let us examine the first term in (16). Consider the function,

w(x, ξ) =

{
edξ f (ξ) for ξ < x,

0 for ξ > x.

For any fixed x ∈ [−b, b], we have w ∈ L2(−∞,+∞) and

||w; L2|| =
(∫ x

0
e2dξ f 2(ξ) dξ

)1/2
≤
(∫ 1

0
e2dξ f 2(ξ) dξ

)1/2

≤ C1|| f ; L2||,

where C1 does not depend on f and x.
For all x ∈ [−b, b], due to the Parseval equality for the Fourier transform, we have:

||
∫ x

0
eiσξedξ f (ξ) dξ; L2(R1

σ)|| =
√

2π||w; L2(R1
ξ)|| ≤ C1

√
2π|| f ; L2||.

The second term of the equality (16) is studied in a similar way. Therefore, for any
fixed x ∈ [−b, b],

||Φ(σ, x); L2(R1
σ)|| ≤ C2|| f ; L2||,

where C2 does not depend on f and x.
By the Cauchy–Bunyakovskii–Schwartz inequality and the last inequality, from (15)

we obtain:
|J(1)1 | ≤ C3e−td|| f ; L2||,

where C3 depends only on b.
In the same way we get:

|J(2)1 | ≤ C4e−td|| f ; L2||,
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where C4 depends only on b.
To investigate J(3)1 , we note that:

J(3)1 = −
∫

L−

∫ x

0
S2(x, ξ, k) f (ξ) e−iktdξ dk =

= −
∫ +∞

−∞

1
σ− id

e−iσ te−dt

(∫ x

0
f (ξ)O

(
ed(x+ξ)

|σ− id|

)
dξ

)
dσ.

It is easy to show that:∣∣∣∣∣
∫ x

0
f (ξ)O

(
ed(x+ξ)

|σ− id|

)
dξ

∣∣∣∣∣
2

≤ C
|σ− id|2 || f ; L2||.

By the Cauchy–Bunyakovskii–Schwartz inequality, we obtain the estimate:

|J(3)1 | ≤ C5e−td|| f ; L2||,

where C5 depends only on b.
From the estimates for J(1)1 , J(2)1 , and J(3)1 , it follows that:

|J1| ≤ C(b)e−td|| f ; L2||. (17)

Likewise, for the integral,

J2 ≡ −
∫

L+

∫ 1

x
(θ(x, k) ϕ(ξ, k)− θ(ξ, k) ϕ(x, k)) f (ξ) e−iktdξ dk, x ∈ [−b, b],

we get the estimate
|J2| ≤ C(b)e−td|| f ; L2||. (18)

Thus, we get that the integrals J1 and J2 decrease exponentially as t→ ∞.
From the point k = p lying on the real axis, let us make a vertical cut into the lower

half-plane of the variable k.
Denote by lp the contour going from the point p− id along the left edge of this cut

to the point p, and then from the point p along the right edge of the cut to the point
p− id, d > 0 .

On the plane C′, consider the contour L, which can be represented as:

L = L1 ∪ L2 ∪ L3, (19)

where

L1 =

(
∞⋃

n=0
lλn

)⋃( ∞⋃
n=0

l−λn

)
, L2 =

(
∞⋃

n=0
lµn

)⋃( ∞⋃
n=0

l−µn

)
,

and
L3 = L− ∩C′,

moreover, if λj+1 = λj (or µj+1 = µj) for some non-negative integer j, then these unions do
not include lλj , lλj+1 , l−λj , l−λj+1 (respectively, lµj , lµj+1 , l−µj , l−µj+1 ).

Let δ be some finite contour in C′. Denote by Jδ the integral

Jδ =
∫

δ

∫ 1

0

h(x, ξ, k)√
(θ(k) + ϕ′(k))2 − 4

f (ξ) e−iktdξdk, x ∈ [−b, b].
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Now let the contour ∆ be unbounded. Let us put

J∆ = lim
j→∞

Jδ∩{k: |Rek|≤π j+ π
2 }, j ∈ N. (20)

Proposition 1. For the solution of the problem (1) and (2), the following representation is valid:

u(x, t) =
1

2π
JL + v1(x, t),

where the function v1(x, t) for x ∈ [−b, b] and t > 0 satisfies the estimate:

|v1(x, t)| ≤ C(b) e−td|| f ; L2||. (21)

Proof. From the Formulas (11) and (13), and the estimates (17) and (18), it follows that

u(x, t) =
1

2π
JL+ + v1(x, t),

where the estimate (21) is valid for the function v1.
To prove the assertion, it remains to show that:

Jqj → 0 as |j| → ∞, j ∈ N.

From (5) it follows that for |k| → ∞√
(θ(k) + ϕ′(k))2 − 4 = 2

√
−sin2k + O

(
|k|−1e2|τ|

)
(22)

Since | sin k| > C1 > 0 for k ∈ qj, j = 0,±1,±2, . . . , then (22) implies that for
sufficiently large |j|, |j| ∈ N,∣∣∣∣√(θ(k) + ϕ′(k))2 − 4

∣∣∣∣ ≥ C2, k ∈ qj. (23)

It follows from (5), (13) and (23) that the modulus of the integrand in the integral Jqj

for sufficiently large |j| does not exceed C |k|−1edt. Therefore, for any fixed t > 0, we get:

|Jqj | ≤
C

|π j + π
2 |
→ 0 as |j| → ∞, |j| ∈ N.

Let us pass to the investigation of the integral JL = JL1 + JL2 + JL3 .

Proposition 2. For any t > 0 and x ∈ [−b, b] we have the estimate:

|JL3 | ≤ C(b) e−td|| f ; L2||.

Proof. Since there exists C1 > 0 such that | sin k| ≥ C1 > 0 for k ∈ L3, and function
F2(k)− 4 ≡ (θ(k) + ϕ′(k))2 − 4 has zeros only on the real axis, then (22) implies:∣∣∣∣√(θ(k) + ϕ′(k))2 − 4

∣∣∣∣ ≥ C2 > 0 for k ∈ L3.

We represent the function h(x, ξ, k) as

h(x, ξ, k) = g1(x, ξ, k) + g2(x, ξ, k),
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where g1(x, ξ, k) is an entire function k ∈ C′ for every x, ξ ∈ [−b, b], and

g1(x, ξ, k) =
1
k

sin k (cos kx cos kξ + sin kx sin kξ),

and the function g2(x, ξ, k) as |k| → ∞ uniformly with respect to x, ξ ∈ [−b, b] has the form

g2(x, ξ, k) = O
(
|k|−2e|τ|(x+ξ+1)

)
.

It is easy to see that for k = σ− i d,

|JL3 | ≤
∫ ∞

−∞

∣∣∣∣∣∣
∫ 1

0

h(x, ξ, σ− id)√
(θ(σ− id) + ϕ′(σ− id))2 − 4

f (ξ) e−iσte−dtdξ

∣∣∣∣∣∣dσ.

Further, arguing in the same way as when obtaining an estimate for the integral J1, we
can verify the validity of Proposition 2.

Before turning to the investigation of the integrals JL1 and JL2 , we prove some auxiliary
statements.

Denote by B(a) the circle B(a) = {k : |k− πa| ≤ π
4 }.

There exists n1 ∈ N such that, for n > n1, the following representations

λ2n−1 = 2nπ + O
(

1
n

)
, λ2n = 2nπ + O

(
1
n

)
,

µ2n+1 = (2n + 1)π + O
(

1
n

)
, µ2n+1 = (2n + 1)π + O

(
1
n

)
,

(24)

hold (see, [13,16,18]).
Let us choose a number d > 0 involved in the definition of contours L−, l±λi , l±µi

less than π
4 . Then, (24) implies that there exists n2 > n1, n2 ∈ N such that for n > n2 the

contours lλ2n , lλ2n−1 , ( and lµ2n , lµ2n+1 ) belong to the circle B(2n) (corresponding to the circle
B(2n + 1)).

It is obvious that the contours l−λ2n , l−λ2n−1 (and l−µ2n , l−µ2n+1) belong to the circle
B(−2n) (corresponding to the circle B(−(2n + 1))).

Let us denote G(k) ≡ (θ(k) + ϕ′(k))2 − 4.

Proposition 3. The following equalities,
G(k) = (k− λ2m−1)(k− λ2m) g2m(k), |g2m(k)| ≥ C2m > 0 for k ∈ lλ2m−1 ∪ lλ2m ,

G(k) = (k + λ2m+1)(k + λ2m) g−2m(k), |g−2m(k)| ≥ C−2m > 0 for k ∈ l−λ2m−1 ∪ l−λ2m ,
m = 1, 2, 3, . . . ,

G(k) = (k− λ0)(k + λ0)g0(k), g0(k) ≥ C0 > 0 for k ∈ lλ0 ∪ l−λ0 ,


G(k) = (k− µ2m)(k− µ2m+1) g2m+1(k), |g2m+1(k)| ≥ C2m+1 > 0 for k ∈ lµ2m ∪ lµ2m+1 ,

G(k) = (k + µ2m)(k + µ2m+1) g−(2m+1)(k), |g−(2m+1)(k)| ≥ C−(2m+1) > 0 for k ∈ l−µ2m ∪ l−µ2m+1 ,
m = 0, 1, 2, . . . .

are satisfied, where the constants C±2m and C±(2m+1) depend only on m.

Proof. The validity of the first of the equalities follows from the fact that the entire function
G(k) on the contours lλ2m and lλ2m−1 has no other zeros, except for λ2m and λ2m−1.

The validity of the remaining equalities is proved similarly.
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Proposition 4. For sufficiently large n > n2, the following equalities,{
G(k) = (k− λ2n−1)(k− λ2n) g2n(k), |g2n(k)| ≥ C > 0 for k ∈ B(2n),

G(k) = (k + λ2n−1)(k + λ2n) g−2n(k), |g−2n(k)| ≥ C > 0 for k ∈ B(−2n),

{
G(k) = (k− µ2n)(k− µ2n+1) g2n+1(k), |g2n+1(k)| ≥ C > 0 for k ∈ B(2n + 1),

G(k) = (k + µ2n)(k + µ2n+1) g−(2n+1)(k), |g−(2n+1)(k)| ≥ C > 0 for k ∈ B(−(2n + 1)),

are satisfied, where the constant C does not depend on n.

Proof. Let us prove the first equality. The rest of the equalities are proved in a similar way.
By the definition of the number n2, for n > n2 the numbers λ2n and λ2n−1 belong to

the circle B(2n), and the function G(k) has no other zeros in this circle [16].
Hence it follows that the function G(k) for k ∈ B(2n) can be written in the form

G(k) = (k− λ2n−1)(k− λ2n) g2n(k),

where g2n(k) 6= 0 for k ∈ B(2n).
In the circle B(0) = {k : |k| ≤ π

4 } the function h0(k) = − 4sin2k
k2 has no zeros, and

therefore there exists C1 > 0 such that |h0(k)| > C1 for k ∈ B(0).
After the change of variable k = k′ + 2nπ, k′ ∈ B(0), the functions G(k) and g2n(k),

become G2n(k′) = G(k′ + 2nπ) and g̃2n(k′) = g2n(k′ + 2nπ).
From the Formula (5) it follows that:

G(k) = −4sin2k + O
(
|k|−1e2|τ|

)
as |k| → ∞,

from here
G2n(k′) = −4sin2k′ + O

(
n−1e2|τ|

)
as n→ ∞. (25)

Further,

g̃2n(k′) = g2n(k′ + 2nπ) =
G(k′ + 2nπ)

(k′ + 2nπ − λ2n−1)(k′ + 2nπ − λ2n)
.

From the Formulas (25) and (24), it follows that on the circle |k′| = π
4 the sequence

g̃2n(k′) tends uniformly to h0(k′) as n→ ∞.

Remark 1. The functions kϕ(k) and 1
k θ′(k) each have one simple zero in the segments [λ2n−1, λ2n],

n ≥ 1 and [µ2n, µ2n+1], n ≥ 0. Therefore, just as in Statement 3, we can prove that for sufficiently
large n ∈ N in the circle B(n), the equalities

k ϕ(k) = (k− k′n) ϕn(k) and
1
k

θ′(k) = (k− k
′′
n) θ′n(k),

are satisfied, where k′n and k
′′
n are the zeros of the functions ϕ(k) and θ′(k), respectively, and

|ϕn(k)| ≤ C, |θ′n(k)| ≤ C for k ∈ B(n).

As is known [16], if λn and µn are the ends of a lacuna, then λ = λn is a simple
eigenvalue of the periodic Sturm–Liouville problem:

−(p(x) y′)′ + q(x) y = λy,
y(0) = y(1), y′(0) = y′(1),

(26)

and λ = µn is a simple eigenvalue of the anti-periodic Sturm–Liouville problem:

−(p(x) y′)′ + q(x) y = λy,
y(0) = −y(1), y′(0) = −y′(1).

(27)
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An eigenfunction corresponding to the eigenvalue λn, we will search in the form

v̂(x, λn) = A θ̂(x, λn) + B ϕ̂(x, λn).

Therefore, we get the following system:{
A (θ(λn)− 1) + B ϕ(λn) = 0,

A θ′(λn) + B (ϕ′(λn)− 1) = 0.
(28)

Since λn are simple eigenvalues of the problem, (26), then the determinant of the
system (28) is equal to zero and all coefficients of the system do not vanish simultaneously.
Together with the equality F(k) ≡ θ(k) + ϕ′(k) = 2 for k = λn, which served as the
definition of the numbers λn, this leads to the fact that at the points λn satisfies one of the
following relations:

A1) θ(λn) 6= 1, θ′(λn) 6= 0, ϕ(λn) 6= 0, ϕ′(λn) 6= 1;

A2) θ(λn) = 1, θ′(λn) 6= 0, ϕ(λn) = 0, ϕ′(λn) = 1;

A3) θ(λn) = 1, θ′(λn) = 0, ϕ(λn) 6= 0, ϕ′(λn) = 1.

Note that for any x, ξ ∈ R1, the functions θ(x, k), ϕ(x, k), h(x, ξ, k) and F2(k)− 4 are
even on the real axis of the complex plane of variable k.

Lemma 1. For points ±λn, n = 0, 1, 2, . . . , if λn are the ends of lacunae (that is, simple zeros of
the function F(k)− 2), then the equalities,

h(x, ξ,±λn) = Cλn v(x, λn) v(ξ, λn), −b ≤ x, ξ ≤ b, (29)

are satisfied, where the function v(x, λn) = v(x,−λn) is the eigenfunction of the periodic Sturm–
Liouville problem, and the numbers Cλn depending on the cases A1), A2), A3) have the form

A1 : Cλn = ϕ(λn)
∫ 1

0

(
θ(x, λn) +

1−θ(λn)
ϕ(λn)

ϕ(x, λn)
)2

dx;

A2 : Cλn = −θ′(λn)
∫ 1

0 (ϕ(x, λn))
2dx;

A3 : Cλn = ϕ(λn)
∫ 1

0 (θ(x, λn))
2dx.

Proof. If a function h depends on x and on ξ, then by ĥ we denote its restriction on the
square 0 ≤ x, ξ ≤ 1.

Consider the case A1); the reasoning for the other cases is similar. From the system
(28) we get:

v̂(x, λn) = A
(

θ̂(x, λn) +
1− θ(λn)

ϕ(λn)
ϕ̂(x, λn)

)
. (30)

Because ||v; L2([0, 1]) = 1, then (30) implies:

A =
1√∫ 1

0

(
θ(x, λn) +

1−θ(λn)
ϕ(λn)

ϕ(x, λn)
)2

dx
. (31)

Since F(k) ≡ ϕ′(k) + θ(k) = 2 for k = λn, then we get:

1− θ(λn) =
ϕ′(λn) + θ(λn)

2
− θ(λn) =

ϕ′(λn)− θ(λn)

2
(32)
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and

(1− θ(λn))2 = (1− θ(λn))(ϕ′(λn)− 1) = ϕ′(λn) + θ(λn)− 1− θ(λn)ϕ′(λn) =
= 1− θ(λn)ϕ′(λn) = −ϕ(λn)θ′(λn).

(33)

The last equality follows from the fact that the Wronskii determinant of the functions
θ and ϕ is equal to one.

From (30) and (31), it follows that the right-hand side of the equality (29) for 0 ≤ x, ξ ≤ 1
is equal to

ϕ(λn)

(
θ̂(x, λn) +

1− θ(λn)

ϕ(λn)
ϕ̂(x, λn)

)(
θ̂(ξ, λn) +

1− θ(λn)

ϕ(λn)
ϕ̂(ξ, λn)

)
.

Further, expanding the brackets and replacing 1− θ(λn) and (1− θ(λn))2 according to the
Formulas (32) and (33), respectively, we obtain that the right-hand side of the equality (29)
coincides with the right-hand side of the equality (12) for 0 ≤ x, ξ ≤ 1, i.e.,

ĥ(x, ξ,±λn) = Cλn v̂(x, λn) v̂(ξ, λn).

To complete the proof of the lemma, we show that the function h(x, ξ,±λn) is a
function periodic in x and ξ with period 1.

We fix x ∈ R1 and consider

h(x, ξ, λn) = ϕ(λn) θ(x, λn) θ(ξ, λn)− θ′(λn) ϕ(x, λn) ϕ(ξ, λn)+

+ ϕ′(λn)−θ(λn)
2 (θ(ξ, λn) ϕ(x, λn) + θ(x, λn) ϕ(ξ, λn)).

Taking into account the relations (4), and since the Wronskii determinant of the func-
tions θ and ϕ does not depend on x, then the identity (10) holds.

By definition of the number λn, we have F(λn) ≡ ϕ′(λn) + θ(λn) = 2, and after
elementary transformations we get that h(x, ξ,±λn) is a periodic function in x and ξ. The
lemma is proven.

In the same way as for the relations A1), A2), A3), it is proved that at the ends of
lacunae µn one of the relations holds:

B1) θ(µn) 6= −1, θ′(µn) 6= 0, ϕ(µn) 6= 0, ϕ′(µn) 6= −1;

B2) θ(µn) = −1, θ′(µn) 6= 0, ϕ(µn) = 0, ϕ′(µn) = −1;

B3) θ(µn) = −1, θ′(µn) = 0, ϕ(µn) 6= 0, ϕ′(µn) = −1.

Lemma 2. For points ±µn, n = 0, 1, 2, . . . , if µn are ends of lacunae (that is, simple zeros of the
function F(k) + 2), then the equalities

h(x, ξ,±µn) = Cµn v(x, µn) v(ξ, µn), −b ≤ x, ξ ≤ b,

are satisfied, where the function v(x,−µn) = v(x, µn) is the eigenfunction of the anti-periodic
Sturm–Liouville problem, and the numbers Cµn depending on the cases B1), B2), B3) have the form

B1 : Cµn = ϕ(µn)
∫ 1

0

(
θ(x, µn) +

1+θ(µn)
ϕ(µn)

ϕ(x, µn)
)2

dx;

B2 : Cµn = −θ′(µn)
∫ 1

0 (ϕ(x, µn))2dx;
B3 : Cµn = ϕ(µn)

∫ 1
0 (θ(x, µn))2dx.

The proof of Lemma 2 is the same as for Lemma 1.
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Lemma 3. If n > n2 and λ2n 6= λ2n−1 (i.e., λ2n and λ2n−1 are the ends of lacunae), then the
following estimates,

|Cλ2n | ≤ C
λ2n − λ2n−1

λ2n−1
, |Cλ2n−1 | ≤ C

λ2n − λ2n−1

λ2n−1
,

hold, where C does not depend on f and b, and the numbers Cλ2n , Cλ2n−1 are defined in Lemma 1.

Proof. Since λ2n and λ2n−1 are the ends of a lacunae, then at each of these points one of
the conditions A1), A2), A3) is satisfied.

Let us prove the lemma for the case A1); in other cases it is proved similarly.
Taking into account the form Cλ2n in case A1), we have,

|Cλ2n | ≤ 2|ϕ(λ2n)|
∫ 1

0 (θ(x, λ2n))
2dx + 2 (1−θ(λ2n))

2

|ϕ(λ2n)|
∫ 1

0 (ϕ(x, λ2n))
2dx =

= 2
λ2n
|λ2n ϕ(λ2n)|

∫ 1
0 (θ(x, λ2n))

2dx− λ2n
ϕ(λ2n) θ′(λ2n)

λ2n |ϕ(λ2n)|
∫ 1

0 (ϕ(x, λ2n))
2dx.

(34)

Note that the last equality in (34) follows from (33). By (5), the first integral
∫ 1

0 (θ(x, λ2n))
2dx

is uniformly bounded, and the integral∫ 1

0
(ϕ(x, λ2n))

2dx ≤ C
λ2

2n
.

Taking into account Remark 1, we get:

|Cλ2n | ≤
C1

λ2n
|λ2n − k′2n|+

C2

λ2n
|λ2n − k

′′
2n| ≤

C
λ2n

(λ2n − λ2n−1) ≤
C

λ2n−1
(λ2n − λ2n−1).

When obtaining the second inequality, it was taken into account that k′2n, k
′′
2n ∈

[λ2n−1, λ2n].
In a similar way, we obtain an estimate for Cλ2n−1 .

Lemma 4. If n ∈ N and µ2n 6= µ2n+1 (i.e., µ2n and µ2n+1 are the ends of lacunae), then the
following estimate:

|Cµ2n | ≤ C
µ2n+1 − µ2n

µ2n
, |Cµ2n+1 | ≤ C

µ2n+1 − µ2n

µ2n
,

hold, where C does not depend on f and b, and the numbers Cµ2n , Cµ2n+1 are defined in Lemma 2.

Let us choose d > 0 so that lλ2n and lλ2n−1 (or l−λ2n and l−λ2n−1) belonged to the circle
B(2n) (respectively, B(−2n)) for sufficiently large n ∈ N, and this choice is possible due
to (24).

The proof of Lemma 4 is carried out in the same way as Lemma 3.

Lemma 5. For any n = 1, 2, . . . , such that λ2n 6= λ2n−1, and for n = 0 the equalities,

Jl±λ2n
= − π

i
√

t
b±λ2n aλ2n v(x, λ2n) e∓iλ2nt−i π

4 + b(1)±λ2n
(t) aλ2n v(x, λ2n) + R±λ2n(x, t), (35)

hold, where

aλ2n =
∫ 1

0
f (x) v(x, λ2n)dx, (36)

bλ2n = −
2iCλ2n Γ( 1

2 )

π
· lim

k→λ2n

√
k− λ2n√

G(k)
, b−λ2n = −ibλ2n , (37)
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R±λ2n(x, t) =
∫ 1

0

∫
l±λ2n

(
h(x, ξ, k)
r±2n(k)

− h(x, ξ,±λ2n)

r±2n(±λ2n)

)
f (ξ) e−ikt

√
k∓ λ2n

√
k∓ λ2n−1

dkdξ;

here the function h(x, ξ, k) is defined by (12), and the function r±2n(k) will be defined below (see,
(40)). Moreover, there exists n3 such that for n > n3, and t > 0, x ∈ [−b, b], the following
estimates are true:

|b±λ2n | ≤
C
√

λ2n − λ2n−1

λ2n−1
, |b(1)±λ2n

(t)| ≤ 1
t

C
λ2n−1

, (38)

the constant C depends only on the segment [−b, b], and the numbers Cλ2n are defined in Lemma 1.

Proof. Let us prove the lemma for the case of the following integral,

Jlλ2n
=
∫ 1

0

∫
lλ2n

h(x, ξ, k)√
G(k)

f (ξ)e−iktdkdξ, x ∈ [−b, b].

The integral Jl−λ2n
is investigated in a similar way.

Let n > n2, and by Proposition 4 in the circle B(2n) the function G can be represented
as

G(k) = (k− λ2n) (k− λ2n−1) g2n(k). (39)

Let us choose single-valued branches of the roots of each factor in (39). Denote by√
k− λ2n and

√
k− λ2n−1 the single-valued branches of these roots in C′, defined by the

condition of their positivity for positive values of k− λ2n and k− λ2n−1.
Since the single-valued branch of the function

√
G(k) for k ∈ C′ has been chosen

earlier, then:

r2n(k) =
√

g2n(k), for k ∈ B(2n) ∩C′ (40)

is uniquely defined. Then we have:

Jlλ2n
= J(1)λ2n

+ Rλ2n(x, t), (41)

where

J(1)λ2n
=
∫ 1

0

∫
lλ2n

h(x, ξ, λ2n)

r2n(λ2n)
· 1√

k− λ2n
√

k− λ2n−1
f (ξ) e−iktdkdξ,

Rλ2n(x, t) =
∫ 1

0

∫
lλ2n

(
h(x, ξ, k)

r2n(k)
− h(x, ξ, λ2n)

r2n(λ2n)

)
· 1√

k− λ2n
√

k− λ2n−1
f (ξ) e−iktdkdξ.

We will take into account that k = λ2n + iτ, −d ≤ τ ≤ 0 for k ∈ lλ2n .
It is clear that if k belongs to the left side of the contour lλ2n , then

√
k− λ2n =

√
iτ =

ei 3π
4
√
|τ|; and if k belongs to the right side of the contour lλ2n , then the modulo root has the

same sign.
The values of the roots of the remaining factors on the right side of the Formula (39)

coincide at the corresponding points of the left and right sides of the contour, lλ2n .
Taking into account the Lemma 1, and the fact that τ changes to (−d, 0) on the left side

of the contour lλ2n , and τ changes to (0,−d) on the right side of the contour lλ2n , we get

J(1)λ2n
= 2ie−

3
4 πie−iλ2nt ∫ 1

0
h(x,ξ,λ2n)
r2n(λ2n)

f (ξ)
(∫ 0
−d

etτ√
|τ|
√

(λ2n−λ2n−1)+iτ
dτ

)
dξ =

=
2ie−

3
4 πie−iλ2ntCλ2n aλ2n v(x,λ2n)

r2n(λ2n)

∫ d
0

e−tτ
√

τ
√

(λ2n−λ2n−1)−iτ
dτ,

(42)

where the Fourier coefficients aλ2n are defined by the Formula (36).
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Let us write the last integral from (42) in the form:

∫ d

0

e−tτ
√

τ
√
(λ2n − λ2n−1)− iτ

dτ = J(3)λ2n
+ J(4)λ2n

, (43)

where

J(3)λ2n
=
∫ d

0

e−tτ
√

τ
·
(

1√
(λ2n − λ2n−1)− iτ

− 1√
(λ2n − λ2n−1)

)
dτ,

J(4)λ2n
=

1√
λ2n − λ2n−1

∫ d

0

e−tτ
√

τ
dτ.

We investigate the integrals J(3)λ2n and J(4)λ2n
separately. For the integral J(3)λ2n

, we have

J(3)λ2n =
∫ d

0

e−tτ
√

τ
·
√

λ2n − λ2n−1 −
√
(λ2n − λ2n−1)− iτ√

(λ2n − λ2n−1)− iτ
√

λ2n − λ2n−1
dτ =

= i
∫ d

0

1√
(λ2n − λ2n−1)− iτ

√
λ2n − λ2n−1

·
√

τe−tτ√
(λ2n − λ2n−1)− iτ +

√
λ2n − λ2n−1

dτ.

It is easy to see that for τ > 0,

|
√
(λ2n − λ2n−1)− iτ| ≥

√
τ,

|
√
(λ2n − λ2n−1)− iτ +

√
λ2n − λ2n−1| ≥

√
λ2n − λ2n−1.

Hence,

|J(3)λ2n
| ≤ 1

t
1

λ2n − λ2n−1
. (44)

Now we investigate the integral J(4)λ2n
. We have:

J(4)λ2n
=

1√
λ2n − λ2n−1

(∫ ∞

0
−
∫ ∞

d

)
e−tτ
√

τ
dτ =

1√
λ2n − λ2n−1

(
1√

t
· Γ
(

1
2

)
−
∫ ∞

d

e−tτ
√

τ
dτ

)
. (45)

Since λ2n − λ2n−1 → 0 for n→ 0 (see, (24)), then there exists a number n3 > n2 such
that:

λ2n − λ2n−1 < 1 for n > n3.

From the obvious estimate, ∫ ∞

d

e−tτ
√

τ
dτ ≤ C

t

and from the Formulas (44) and (45), it follows that the integral (43) has the form:

1√
λ2n − λ2n−1

1√
t
· Γ
(

1
2

)
+ kλ2n ,

where
|kλ2n | ≤

C
t
· 1

λ2n − λ2n−1
for n > n3, (46)

C does not depend on the function f .
So, according to (42)

J(1)λ2n
=

2ie−
3
4 πie−iλ2ntCλ2n aλ2n v(x, λ2n)Γ

(
1
2

)
r2n(λ2n)

√
λ2n − λ2n−1

· 1√
t
+

2ie−
3
4 πie−iλ2ntCλ2n aλ2n v(x, λ2n)

r2n(λ2n)
kλ2n . (47)
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Let us denote

bλ2n = − 2ie−
3
4 πiCλ2n Γ( 1

2 )ei π
4

πr2n(λ2n)
√

λ2n−λ2n−1
= − 2iCλ2n Γ( 1

2 )
π · limk→λ2n

√
k−λ2n√

G(k)
,

b(1)λ2n
(t) =

2ie−
3
4 πie−iλ2ntCλ2n kλ2n

r2n(λ2n)
.

(48)

Therefore, from (41) and (47), the validity of (35) follows. The correctness of the
estimate (38) follows from the estimates (46) and (48), the Lemma 3, and the Proposition 4.

Thus, for n > n3, for the integral Jlλ2n
, the Lemma 5 is proved.

Applying the Proposition 3 and reasoning similarly, we obtain that the equality (35) is
also valid for 0 ≤ n ≤ n3 . In this case, the estimates (38) are replaced by the estimates,

|b±λ2n | ≤ C±λ2n , |b(1)±λ2n
| ≤

C±λ2n

t
, 0 ≤ n ≤ n3.

Performing similar calculations for the integral Jl−λ2n
and denoting

b−λ2n = −i
2ie−

3
4 πiCλ2n Γ

(
1
2

)
ei π

4

πr2n(λ2n)
√

λ2n − λ2n−1
= −i

2iCλ2n Γ
(

1
2

)
πr2n(λ2n)

√
λ2n − λ2n−1

= −ibλ2n ,

we are convinced of the validity of the Lemma 5.

Lemma 6. For any n = 1, 2, . . . , such that λ2n−1 6= λ2n the following equalities,

Jl±λ2n−1
= − π

i
√

t
b±λ2n−1 aλ2n−1 v(x, λ2n−1)e∓iλ2n−1t+ π

4 i+

+b(1)±λ2n−1
aλ2n−1 v(x, λ2n−1) + R±λ2n−1(x, t),

hold, where

aλ2n−1 =
∫ 1

0
f (x) v(x, λ2n−1)dx,

bλ2n−1 =
2iCλ2n−1

π
lim

k→λ2n−1

√
k− λ2n−1√

G(k)
, b−λ2n−1 = ibλ2n−1 ,

and

R±λ2n−1(x, t) =
∫ 1

0

∫
l±λ2n−1

(
h(x, ξ, k)
r±2n(k)

− h(x, ξ,±λ2n−1)

r±2n(λ2n−1)

)
f (ξ) e−iktdk dξ√

k∓ λ2n
√

k∓ λ2n−1
.

Moreover, there exists n3 such that for n > n3, and t > 0, x ∈ [−b, b], the following estimates
are true:

|b±λ2n−1 | ≤
C
√

λ2n − λ2n−1

λ2n−1
, |b(1)±λ2n−1

(t)| ≤ C
t
· 1

λ2n−1
;

the constant C depends only on the segment [−b, b], and the numbers Cλ2n−1 are defined in Lemma 1.

The proof of Lemma 6 is similar to Lemma 5.

Remark 2. Lemmas 5 and 6 remain valid for all n = 1, 2, . . . if we replace λj with µj−1 in them.
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3. Main Results

Theorem 1. If the Hill operator H0 is positive, p(x) ≥ const > 0 and q(x) ≥ 0, then there exist
compact operators

M1, M3 : L2[0, 1] 7−→ H1[0, 1],

M2, M4 : L2[0, 1] 7−→ L2[0, 1],

such that for |x| < b and t > 0, the solution of the Cauchy problem (1) and (2), has the form

u(x, t) =
1√

t
{u1(x, t) + u2(x, t)}+ v(x, t),

where u1(x, t) is a periodic solution of the Cauchy problem for which

û(x, t)|t=0 = M1 f (x), ût(x, t)|t=0 = M3 f (x),

u2(x, t) is an anti-periodic solution of the Cauchy problem for which

û(x, t)|t=0 = M2 f (x), ût(x, t)|t=0 = M4 f (x),

and for the function v(x, t) for |x| < b and t > 0, the following estimate is valid

|v(x, t)| ≤ C(b)
t
|| f ; L2(R1)||;

the functions u1(x, t) and u2(x, t) have the form:

u1(x, t) =
∞

∑
n=0

bλn aλn v(x, λn) sin(λnt + (−1)n π

4
),

u2(x, t) =
∞

∑
n=0

bµn aµn v(x, µn) sin(µnt + (−1)n+1 π

4
),

where aλn (aµn) are the coefficients of the expansion of the function f (x) in a Fourier series in the
system {v̂(x, λn)} ({v̂(x, µn)}), bλn (bµn) are some constants of order o( 1

n ) as n→ ∞, and they
are given by the Formula (37).

Here the summation is carried out only over those n for which λn (or µn) are simple
eigenvalues of the periodic (or anti-periodic) Sturm–Liouville problem.

Proof. From the Proposition 1, it follows that for x ∈ [−b, b] and t > 0 the solution of the
Cauchy problem (1) and (2), can be represented as:

u(x, t) =
1

2π
JL + v1(x, t),

where for t > 0 the function v1(x, t) satisfies the estimate:

|v1(x, t)| ≤ C(b) e−td|| f ; L2||, x ∈ [−b, b],

and the function JL is defined by the Formula (20).
According to the Formula (19)

JL = JL3 +
∞

∑
n=0

(Jlλn
+ Jl−λn

) +
∞

∑
n=0

(Jlµn
+ Jl−µn

),

moreover, in the second (third) term on the right-hand side, the summation is over those n
for which lλn (respectively, lµn ) is included in L1 (in L2).
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From here and from the Proposition 2, it follows that:

u(x, t) =
1

2π

∞

∑
n=0

(
Jlλn

+ Jl−λn

)
+

∞

∑
n=0

(
Jlµn

+ Jl−µn

)
+ v2(x, t), (49)

where for t > 0 the function v2(x, t) satisfies the following estimate

|v2(x, t)| ≤ C(b) e−td|| f ; L2||, x ∈ [−b, b].

Let us investigate the first term in the Formula (49). Since

b−λ2n = −ibλ2n , b−λ2n−1 = ibλ2n−1 ,

then
−πbλ2n aλ2n v(x, λ2n)e−iλ2nt− π

4 i − πb−λ2n aλ2n v(x, λ2n)eiλ2nt− π
4 i =

= 2πibλ2n aλ2n v(x, λ2n) sin
(

λ2nt +
π

4

)
−

−πbλ2n−1 aλ2n−1 v(x, λ2n−1)e−iλ2n−1t+ π
4 i − πb−λ2n−1 aλ2n−1 v(x, λ2n−1)eiλ2n−1t+ π

4 i =

= 2πibλ2n−1 aλ2n−1 v(x, λ2n−1) sin
(

λ2n−1t− π

4

)
.

These equalities, together with Lemmas 5 and 6, show that the following equality
is true:

1
2π

∞
∑

n=0

(
Jlλn

+ Jl−λn

)
= 1√

t

∞
∑

n=0
bλn aλn v(x, λn) sin

(
λnt + (−1)n π

4
)
+

+ 1
2π

∞
∑

n=0

(
b(1)λn

(t) + b(1)−λn
(t)
)

aλn v(x, λn) +
1

2π

(
Rλ0 + R−λ0

)
+

+ 1
2π

∞
∑

n=1

(
Rλ2n(x, t) + Rλ2n−1(x, t)

)
+ 1

2π

∞
∑

n=1

(
R−λ2n(x, t) + R−λ2n−1(x, t)

)
.

(50)

Consider the second term in (50). From Steklov’s theorem on the expansion of a twice
continuously differentiable function in terms of eigenfunctions of the problems (26) and
(27) (see, [18,19]), it follows that:

∞

∑
n=0
|aλn |

2 = || f ; L2([0, 1])||2 = || f ; L2||2. (51)

From the estimates for the coefficients b(1)±λn
(t) and (24), it follows that:

∞
∑

n=0

∣∣∣b(1)λn
(t) + b(1)−λn

(t)
∣∣∣2 =

n3
∑

n=0

∣∣∣b(1)λn
(t) + b(1)−λn

(t)
∣∣∣2 + ∞

∑
n=n3+1

∣∣∣b(1)λn
(t) + b(1)−λn

(t)
∣∣∣2 ≤

≤ C1
t2 + C2

t2

∞
∑

n=n3+1

1
(2n)2 ≤ C3

t2 .
(52)

Taking into account now that the functions v(x, λn) are functions uniformly bounded
with respect to n (see [18]), from (51) and (52) for |x| < b and t > 0, we get:∣∣∣∣∣ 1

2π

∞

∑
n=0

(
b(1)λn

(t) + b(1)−λn
(t)
)

aλn v(x, λn)

∣∣∣∣∣ ≤ C
t
|| f ; L2||, (53)

where C does not depend on a.
Now, from the expansion of (50), we investigate the following term:

1
2π

∞

∑
n=1

(
Rλ2n(x, t) + Rλ2n−1(x, t)

)
,
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writing the first term in the form:

∞

∑
n=1

Rλ2n(x, t) = I1 + I2,

where

I1 =
n3

∑
n=1

Rλ2n(x, t), I2 =
∞

∑
n=n3+1

Rλ2n(x, t).

Applying the same reasoning as in the study of the integral J(1)λ2n
, we rewrite I2 as:

I2 :=
∞
∑

n=n3+1
Rλ2n(x, t) =

∞
∑

n=n3+1

∫ 1
0

∫
lλn

(
h(x,ξ,k)
r2n(k)

− h(x,ξ,λ2n)
r2n(λ2n)

)
· f (ξ) e−iktdk dξ√

k−λ2n
√

k−λ2n−1
=

=
∞
∑

n=n3+1
2ie−

3π
4 ie−iλ2nt

{∫ d
0

∫ 1
0

(
1

r2n(λ2n−iτ) −
1

r2n(λ2n)

)
· h(x,ξ,λ2n−iτ) e−tτdξ dτ√

τ
√

(λ2n−λ2n−1)−iτ
+

+(h(x, ξ, λ2n − iτ)− h(x, ξ, λ2n)) · f (ξ)e−itdξ dτ

r2n(λ2n)
√

τ
√

(λ2n−λ2n−1)−iτ

}
=

= 2ie−
3π
4 i

∞
∑

n=n3+1
e−iλ2nt

{
R(1)

λ2n
(x, t) + R(2)

λ2n
(x, t)

}
.

(54)

We will investigate the first term on the right side of the equality (54)

∞

∑
n=n3+1

e−iλ2ntR(1)
λ2n

(x, t).

Note that in the Proposition 4 the circle B(2n) could be replaced by the circle Bε(2n)
with the same center and radius π

4 + ε, where ε > 0 is sufficiently small. In addition, when
proving Proposition 4, it was possible to obtain, without any additional reasoning, that the
function |g2n(k)| is bounded uniformly in n not only from below, but also from above.

Thus, |g2n(k)| ≤ C for k ∈ Bε(2n). Since the function r2n(k) ≡
√

g2n(k) is holomorphic
in the circle Bε(2n) and the derivatives of the holomorphic function in the circle Bε(2n) are
estimated in terms of the maximum of the modulus of the function in the circle Bε(2n),
then |(r2n(k))k| ≤ C for k ∈ Bε(2n), where C does not depend on n. Since∣∣∣∣∣ τ

√
τ ·
√
(λ2n − λ2n−1)− iτ

∣∣∣∣∣ ≤ 1 for 0 ≤ τ ≤ d, (55)

then, together with the Proposition 4, this argument leads to the inequality,∣∣∣∣∣ (r2n(k))k
r2n(λ2n − iτ) r2n(λ2n)

· iτ
√

τ ·
√
(λ2n − λ2n−1)− iτ

∣∣∣∣∣ ≤ C, (56)

where C does not depend on n, and k = λ2n − iτ, 0 ≤ τ ≤ d.
Just as in the proof of the Preposition 2, we represent the function h(x, ξ, k) in the form:

h(x, ξ, k) =
1
k

sin k cos kx cos kξ +
1
k

sin k sin kx sin kξ + O
(
|k|2e|τ|(ξ+x)

)
(57)

Now, after the above remarks, we have:

∞

∑
n=n3+1

e−iλ2ntR(1)
λ2n

(x, t) = I3 + I4 + I5, (58)
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where

I3 =
∞

∑
n=n3+1

e−iλ2nt
∫ d

0

iτe−tτ

λ2n − iτ
·

(Re r2n(k))k|k=k′2n
+ (Im r2n(k))k|k=k′′2n

r2n(λ2n − iτ)r2n(λ2n)
√

τ
√
(λ2n − λ2n−1)− iτ

×

sin(λ2n − iτ) cos(λ2n − iτ)x ·
(∫ 1

0
f (ξ) cos(λ2n − iτ)ξ dξ

)
dτ,

I4 =
∞

∑
n=n3+1

e−iλ2nt
∫ d

0

−iτe−tτ

λ2n − iτ
·

(Re r2n(k))k|k=k′2n
+ (Im r2n(k))k|k=k′′2n

r2n(λ2n − iτ)r2n(λ2n)
√

τ
√
(λ2n − λ2n−1)− iτ

×

sin (λ2n − iτ) sin (λ2n − iτ)x ·
(∫ 1

0
f (ξ) sin (λ2n − iτ)ξ dξ

)
dτ,

I5 =
∞

∑
n=n3+1

e−iλ2nt
∫ d

0

(Re r2n(k))k|k=k′2n
+ (Im r2n(k))k|k=k′′2n

r2n(λ2n − iτ)r2n(λ2n)
√

τ
√
(λ2n − λ2n−1)− iτ

×

iτe−tτ
(∫ 1

0
f (ξ)O

(
|λ2n − iτ|−2

)
dξ

)
dτ;

here
k′2n = λ2n − iτ′2n, 0 ≤ τ′2n ≤ τ ≤ d,

k
′′
2n = λ2n − iτ

′′
2n, 0 ≤ τ

′′
2n ≤ τ ≤ d.

To investigate I3 in the Formula (58), note that n3 > n2 > n1, and so

λ2n = 2nπ + O
(

1
n

)
.

Let us make elementary transformations∫ 1

0
f (ξ) cos (λ2n − iτ)ξ dξ =

1
2

∫ 1

0
f (ξ) (eiλ2nξ eτξ + e−iλ2nξe−τξ)dξ =

=
1
2

∫ 1

0
f (ξ) eτξei2nπξ dξ +

1
2

∫ 1

0
f (ξ) e−τξe−i2nπξ dξ +

∫ 1

0
f (ξ)O

(
1
n

)
dξ,

and note that the number,

d2n =
∫ 1

0
f (ξ) eτξei2nπξ dξ

(
d−2n =

∫ 1

0
f (ξ) e−τξ e−i2nπξdξ

)
,

is the coefficient of the expansion of the function f (ξ) eτξ (or the function f (ξ) e−τξ) into a
Fourier series with respect to the system {einπ}∞

n=−∞.
It is obvious that: ∣∣∣∣∫ 1

0
f (ξ)O

(
1
n

)
dξ

∣∣∣∣ ≤ C
n
|| f ; L2||,

where C does not depend on n.
Note also that the functions sin(λ2n − iτ) cos(λ2n − iτ)x are uniformly bounded by n

for |x| < b and 0 ≤ τ ≤ d.
After these remarks, from the Cauchy–Bunyakovsky–Schwartz inequality for an infi-

nite sum and (56), for |x| < b and t > 0 we obtain

|I3| ≤ C4

∫ d

0
e−tτ

√√√√ ∞

∑
n=n3+1

1
λ2

2n
·

√√√√ ∞

∑
n=n3+1

(
d2

2n + d2
−2n +

1
n2 || f ; L2||2

)
dτ ≤
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≤ C5

t

√
|| f (ξ)e−τξ : L2([0, 1])||2 + || f (ξ)eτξ ; L2([0, 1])||2 + C6|| f ; L2|| ≤ C

t
|| f ; L2||.

Similarly, for |x| < b and t > 0 we get:

|I4| ≤
C7

t
|| f ; L2||.

From the inequalities (56) and (24), it follows that for |x| < b and t > 0

|I5| ≤
C7

t
|| f ; L2||

∞

∑
n=n3+1

1
λ2

2n
≤ C

t
|| f ; L2||.

From (58) and estimates for I3, I4, I5 for |x| < b and t > 0 we get∣∣∣∣∣ ∞

∑
n=n3+1

e−iλ2ntR(1)
λ2n

(x, t)

∣∣∣∣∣ ≤ C
t

. (59)

Note that the residual function in the Formula (57)

Q(x, ξ, k) = O
(
|k|−2e|τ|(ξ+x+1)

)
is a differentiable function for −b ≤ x, ξ ≤ b and Qk(x, ξ, k) has the same descending order
as |k| → ∞ the function Q(x, ξ, k).

Consider now the second term on the right side of the equality (54), i.e.,

∞

∑
n=n3+1

e−iλ2ntR(2)
λ2n

(x, t).

Let us write this sum as:

∞

∑
n=n3+1

e−iλ2ntR(2)
λ2n

(x, t) = F1 + F2 + F3,

where

F1 =
∞

∑
n=n3+1

e−iλ2nt
∫ d

0

∫ 1

0

(
sin(λ2n − iτ) cos(λ2n − iτ)x cos(λ2n − iτ)ξ

λ2n − iτ
−

− sin λ2n cos λ2nx cos λ2nξ

λ2n

)
· f (ξ) e−tτdξ dτ

r2n(λ2n)
√

τ
√
(λ2n − λ2n−1)− iτ

,

F2 =
∞

∑
n=n3+1

e−iλ2nt
∫ d

0

∫ 1

0

(
sin(λ2n − iτ) sin(λ2n − iτ)x sin(λ2n − iτ)ξ

λ2n − iτ
−

− sin λ2n sin λ2nx sin λ2n − iτξ

λ2n

)
· f (ξ) e−tτdξdτ

r2n(λ2n)
√

τ
√
(λ2n − λ2n−1)− iτ

,

and

F3 =
∞

∑
n=n3+1

e−iλ2nt
∫ d

0

∫ 1

0
(Q(x, ξ, λ2n − iτ)−Q(x, ξ, λ2n)) ·

f (ξ) e−tτdξ dτ

r2n(λ2n)
√

τ
√
(λ2n − λ2n−1)− iτ

.
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We first investigate the integral F1. From the obvious equality,

1
λ2n−iτ · sin(λ2n − iτ) cos(λ2n − iτ) cos(λ2n − iτ)ξ − 1

λ2n
sin λ2n cos λ2nx cos λ2nξ =

= 1
λ2n−iτ · sin(λ2n − iτ) cos(λ2n − iτ)x (cos(λ2n − iτ)ξ − cos λ2nξ)+

+ 1
λ2n−iτ · cos λ2nξ sin(λ2n − iτ) (cos(λ2n − iτ)x− cos λ2nx)+
+ 1

λ2n−iτ · cos λ2nξ cos λ2nx (sin(λ2n − iτ)− sin λ2n)+

+
(

1
λ2n−iτ −

1
λ2n

)
· cos λ2nξ cos λ2nx sin λ2n,

(60)
it follows that the left side of the equality (60) can be represented as:

τ

λ2n − iτ
·
(

cos λ2nξ h(1)2n (x, ξ, τ) + sin λ2nξ h(2)2n (x, ξ, τ)
)

,

and besides |h(i)2n (x, ξ, τ)| ≤ C, i = 1, 2, for |x| < b, |ξ| < b, and 0 ≤ τ ≤ d, and C does not
depend on n.

Then, taking into account (55) and Proposition 4, and reasoning in the same way as in
the I3 estimate, we obtain:

|F1| ≤
C
t
|| f ; L2|| for |x| < b, t > 0. (61)

In a similar way we get:

|F2| ≤
C
t
|| f ; L2|| for |x| < b, t > 0. (62)

To estimate F3, note that:

Q(x, ξ, λ2n − iτ)−Q(x, ξ, λ2n) =

= iτ
(
(Re Q(x, ξ, k))k|k=λ2n−iτ(1)2n

+ (Im Q(x, ξ, k))k|k=λ2n−iτ(2)2n

)
,

besides 0 ≤ τ
(1)
2n ≤ τ ≤ d, 0 ≤ τ

(2)
2n ≤ τ ≤ d.

Further, taking into account the fact that:

Qk(x, ξ, k) = O
(
|k|−2e|τ|(x+ξ+1)

)
as |k| → ∞

just as for F1 and F2, we get:

|F3| ≤
C
t
|| f ; L2|| for |x| < b, t > 0. (63)

From (61)–(63) it follows that:∣∣∣∣∣ ∞

∑
n=n3+1

e−iλ2ntR(2)
λ2n

(x, t)

∣∣∣∣∣ ≤ C
t
|| f ; L2||, (64)

where C does not depend on the function f .
From (54), (59) and (64) it follows that:∣∣∣∣∣ ∞

∑
n=n3+1

Rλ2n(x, t)

∣∣∣∣∣ ≤ C
t
|| f ; L2|| for |x| < b, t > 0, (65)

where C does not depend on the function f .
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Applying Proposition 3 and reasoning similarly, it is easy to show that:∣∣∣∣∣Rλ0(x, t) +
n3

∑
n=1

Rλ2n(x, t)

∣∣∣∣∣ ≤ C
t
|| f ; L2|| for |x| < b, t > 0, (66)

As a result, from (65) and (66), it follows that:∣∣∣∣∣Rλ0(x, t) +
∞

∑
n=1

Rλ2n(x, t)

∣∣∣∣∣ ≤ C
t
|| f ; L2|| for |x| < b, t > 0, (67)

In the same way, one can show that:∣∣∣∣∣ ∞

∑
n=1

Rλ2n−1(x, t)

∣∣∣∣∣ ≤ C
t
|| f ; L2|| for |x| < b, t > 0, (68)

and∣∣∣∣∣R−λ0(x, t) +
∞

∑
n=1

(
R−λ2n(x, t) + R−λ2n−1(x, t)

)∣∣∣∣∣ ≤ C
t
|| f ; L2|| for |x| < b, t > 0, (69)

where C does not depend on the function f .
From (50), (53), (67), (68) and (69) it follows that:

1
2π

∞

∑
n=0

(
Jlλ2n

+ Jl−λ2n

)
=

1√
t
u1(x, t) + v3(x, t), (70)

where

u1(x, t) =
∞

∑
n=1

bλn aλn v(x, λn) sin(λnt + (−1)n π

4
),

and for the function v3(x, t) for t > 0, the following estimate is valid:

|v3(x, t)| ≤ C
t
|| f ; L2||, |x| < b;

here C does not depend on the function f .
It is proved similarly that:

1
2π

∞

∑
n=0

(
Jlµ2n

+ Jl−µ2n

)
=

1√
t
u2(x, t) + v4(x, t), (71)

where

u2(x, t) =
∞

∑
n=1

bµn aµn v(x, µn) sin(µnt + (−1)n+1 π

4
),

and for the function v4(x, t) for t > 0, the following estimate is valid

|v4(x, t)| ≤ C
t
|| f ; L2||, |x| < b;

here C does not depend on the function f .
Finally, from (49), (70) and (71), we get

u(x, t) =
1√

t
(u1(x, t) + u2(x, t)) + v(x, t)
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where for the function v(x, t) for t > 0, the following estimate is valid

|v(x, t)| ≤ C(b)
t
|| f ; L2||, |x| < b.

To complete the proof, it remains to note that:

M1 f =
∞

∑
n=0

(−1)n
√

2
2

bλn aλn v̂(x, λn), M2 f =
∞

∑
n=0

√
2

2
λnbλn aλn v̂(x, λn),

M3 f =
∞

∑
n=0

(−1)n+1
√

2
2

bµn aµn v̂(x, µn), M4 f =
∞

∑
n=0

√
2

2
µnbµn aµn v̂(x, µn),

and the compactness of these operators in these spaces is an obvious consequence of the
estimates obtained in Lemmas 5 and 6 for coefficients bλj and bµj .

Remark 3. In the case of a finite-gap potential, the functions u1(x, t) and u2(x, t) are represented
as a finite sum of terms oscillating with respect to t, since the spectrum of the operator H0 has a
band structure, and the ends of the bands coincide with the simple eigenvalues λn and µn [16].

4. Applications

The need to solve the equations of mathematical physics with variable coefficients is
due to the large number of applied problems leading to them. In particular, problems of this
kind are led by current issues of studying the non-stationary interaction of fields of different
nature, in which one-dimensional problems of non-stationary interaction of mechanical
and electromagnetic fields are solved (see, for example, [20,21]). A subtle study of narrower
classes of equations is conditioned by the need to study the behavior of solutions of such
problems during the transition from a non-stationary regime to a steady one.

5. Conclusions

The main difference of this paper from the papers cited in the Introduction and
included in the bibliography is that the case of periodic coefficients p(x) and q(x) is
considered here. In this paper, the periodic coefficients p(x) and q(x) are considered for the
first time. The main results, including the results of this paper, have been published in well-
known scientific journals in the form of short reports, as well as presented at International
Conferences.

As a conclusion, we would like to announce some developments of the problem under
consideration in the following vein:

(1) Study of the asymptotic behavior of the solution of the Cauchy problem (1) and (2),
in the case when the left end of the spectrum of the Hill operator is non-positive;

(2) Obtaining the principle of limiting amplitude for the Cauchy problem (1) and (2);
(3) Study of the asymptotic behavior of the solution of the mixed problem on the

half-axis, that is, the following condition is added to the Cauchy problem (1) and (2):
u(x, t)|x=0 = 0.

We also note papers [22,23], in which the construction of uniform asymptotics is
proposed by the method of resurgent analysis based on the Laplace–Borel transform [24].
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