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Abstract: This paper researches the identification problem for the unknown parameters of the
multivariate equation-error autoregressive systems. Firstly, the original identification model is
decomposed into several sub-identification models according to the number of system outputs. Then,
based on the characteristic that the information vector and the parameter vector are common among
the sub-identification models, the coupling identification concept is used to propose a partially
coupled generalized stochastic gradient algorithm. Furthermore, by expanding the scalar innovation
of each subsystem model to the innovation vector, a partially coupled multi-innovation generalized
stochastic gradient algorithm is proposed. Finally, the numerical simulations indicate that the
proposed algorithms are effective and have good parameter estimation performances.
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1. Introduction

Parameter estimation is an important part in the field of system identification, which
usually identifies the unknown parameters in the models according to the input and output
data of the system when the model structure of a system is known [1-3]. Parameter
estimation has been used in many fields in recent years, including chemistry, mechanics,
engineering and so on [4-6]. For example, in chemical engineering field, Khalik et al.
applied the parameter estimation approach by using current/voltage data in achieving
physically meaningful parameters of the Doyle-Fuller-Newman model for Lithium-ion
batteries [7]. In mechanics field, Shamrao et al. estimated the terramechanics parameters by
applying dynamic Bayesian estimation techniques on the measurements from simple single-
wheel tests [8]. In engineering, Calasan et al. proposed two algorithms for the transformer
parameter estimation to improve the estimation process and prevent inaccuracies and
parameter mismatch with the real parameters of the transformer [9].

In many identification objects of parameter estimation, multivariate systems is a very
common class [10-12]. The majority of industrial processes are the multivariate sys-
tems [13,14]. It is not easy to estimate the unknown parameters of multivariate systems,
because such systems are quite complex; for example, there are many variables, there is
coupling between variables, or there is time delay [15-17]. In recent years, the identifica-
tion of the multivariate systems has attracted the attention of many scholars. Shafin et al.
studied the angle and delay estimation for 3D massive MIMO systems under a parametric
channel modeling, which was crucial for such systems to realize the predicted capacity
gains [18]. Kawaria et al. designed a Levy shuffled frog leaping algorithm with high pa-
rameter estimation efficiency to estimate the parameters of multiple-input-multiple-output
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bilinear systems [19]. Roy et al. developed an online plant-parameter identification method
for the multi-input-multi-output linear time-invariant systems [20].

The coupling identification concept is a useful identification method that has been
developed in recent decades. It is suitable for parameter estimation problems for the multi-
variate systems with the same parameters among subsystems [21,22]. The identification
algorithm based on the coupling concept has the advantage of lower computation amounts
compared with the traditional identification algorithm for multivariate systems. Cui et al.
combined the Kalman filtering principle and the coupling identification concept to derive
a Kalman filtering-based partially coupled recursive least squares algorithm for jointly
estimating the parameters and the states of the multivariable state-space system; their algo-
rithm had high computational efficiency [23]. The multi-innovation identification theory is
also an effective method that has been used to improve parameter estimation accuracy in
recent years [24-26]. This method not only utilizes the data information of the current time,
but also makes full use of the data information of the previous time [27-29]. Chaudhary et
al. presented a multi-innovation fractional least mean square adaptive algorithm for the
input-nonlinear systems by expanding the scalar innovation into a vector innovation by
using the multi-innovation identification theory [30]. This method can also be applied to
the parameter estimation of the multivariate systems.

We have studied the parameter identification problems of multivariate systems in the
past. In [31], the colored noise of the original system was filtered into white noise by using
the data filtering technique. In [32], the original identification system was decomposed into
two sub-identification systems, where one contains the system model parameter vector
and the other contains the noise model parameter matrix by applying the decomposition
method. However, the coupling identification concept used in this paper is different from
the previous two identification methods, as it decomposes the original system according to
the number of system outputs to obtain several subsystems with partial parameter vectors
and information vectors coupled. It has significant advantages in reducing the compu-
tational cost of the algorithm because it makes the original complex system simplified.
Therefore, this paper presents new identification methods to estimate the parameters of
the multivariate equation-error autoregressive system, which have high computational
efficiency and high parameter estimation accuracy. The main contributions of this paper lie
in the following.

1.  This paper decomposes the multivariate equation-error autoregressive system into
several sub-identification models according to the number of the system outputs.

2. A multivariate partially coupled generalized stochastic gradient (M-PC-GSG) algo-
rithm is proposed for the multivariate equation-error system by utilizing the coupling
identification concept, which can reduce the computation amounts compared with
the traditional stochastic gradient algorithm.

3. A multivariate partially coupled multi-innovation generalized stochastic gradient (M-
PC-MI-GSG) algorithm is proposed by using the multi-innovation identification theory,
which has higher parameter estimation accuracy than the M-PC-GSG algorithm.

The rest of this paper is organized as follows. Section 2 presents a multivariate
equation-error autoregressive system and describes its identification difficulties. Section 3
proposes a partially coupled generalized stochastic gradient algorithm and gives its schematic
diagram. Section 4 proposes a partially coupled multi-innovation generalized stochastic
gradient algorithm. Section 5 presents two numerical examples to indicate that the proposed
algorithms are effective. Finally, we offer some concluding remarks in Section 6.

2. System Description and Identification Model

First of all, we give some notation in this paper. I, denotes an identity matrix of
size m x m; 1, stands for an n-dimensional column vector whose elements are 1, that
is1, =[1,1,---,1]" € R"; 1, represents a matrix of size m x n whose elements are
1; the norm of a matrix X is defined by [|X||? := tr[XX"], the superscript T stands
for the matrix/vector transpose, the symbol ® represents Kronecker product, for ex-
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ample, A := [a;] € R™*", B := [b;] € RF*7, A® B = [4;;B] € R(mP)*(n9) in general,
A®B # B® A; col[X] is defined as a vector consisting of all columns of matrix X ar-
ranged in order, for example, X := [x1,xp,- - x,] € R™" x; € R" (i = 1,2,---,n),
col[X] := [x],x5,- - - xp,]" € R™™.

Consider the following multivariate equation-error autoregressive system,

y(t) = ds(H)0+ C 1 (2)v(t), 1)

where y(t) := [y1(t), y2(t),- -, ym(t)]" € R™ is the system output vector, @s(t) € R"*" is
the system information matrix consisting of the input-output data, 8 € R” is the system
parameter vector to be identified, v(t) := [v1(t),02(t), - - ,om(t)]" € R™ is a white noise
process with zero mean, C(z) € R"*™ is a polynomial matrix in the unit backward shift
operator [z 1y(t) = y(t — 1)]:

C(z) =TI+ Cz '+ Cz 2+ +Cpz ", C €R™M
Define the noise model,
w(t) := C l(z)o(t) € R™. (2)
Assume that the orders m, n and n, are known, and y(t) = 0, ®s(t) = 0, w(t) = 0 and

v(t) =0fort <O0.
Define the parameter matrix 7y and the information vector ¢ (t) as

o= [C, G-, Cp] € RMXIMNE),
o(t) = [~w'(t—1),—w'(t—2), -, —w'(t —n)]" € R"™e,

From Equation (2), we have

w(t) = [Ly—C(z)|w(t) +o(t),
= (=Ciz7 =Gz 2= = Cpz ") w(t) +o(t)
= —Cuw(t—-1)—CQuw(t—2)— - —Cpw(t—nc)+o(t).
= 7o) +ob). ®)

Then, the multivariate equation-error autoregressive system in (1) can be transformed
into the following identification model,

y(t) = D5(1)0 +w(t) @)
= @s(t)0+'p(t) +o(t). ®)

For the identification model in (5), the objective of this paper is to identify the unknown
parameters 0 and -y by researching some identification methods. Currently, the observable
data are y(t) and ®s(t). Certainly, the most direct identification method is to integrate the
information vector 6 and the information matrix v into a new information matrix ¢, and
the parameter matrix @ (t) and the parameter vector ¢ (f) into a new parameter matrix
®(t), then we can obtain the following identification model:

y(t) = @) +o(t), 6)

D(t) = [Ds(t), [ @P"(t)] €R™™, ng:=n+m’n, (7)
0 1o

0 = [ col[7] ] e R", (8)

However, the information matrix @(¢) in model (6) contains a large number of zero
elements because it is calculated from the Kronecker product, which results in redundant
computation amounts in the identification processes. Therefore, it is necessary to find
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an alternative method with less computation amounts to estimate the identification model
in (5). In this paper, two efficient algorithms with good performances are proposed to solve
this problem by applying the coupling identification concept and the multi-innovation
identification theory.

Suppose that X(#) is the estimate of X at time t. That is to say ¢;(t), 4(t) and @(t) are
estimates of c;, ¥ and w at time ¢, respectively.

3. The Partially Coupled Stochastic Gradient Algorithm

First of all, according to the number of the system outputs, decomposing the identifi-
cation model in (5) into m sub-identification models:

0 wi() 7 o (1)
) | L0 0 |
o) ¥,(0) ” o ()

where 47 € R are the ith row of the parameter matrix 9", and 9! () € R'*" are the
ith row of the information matrix @g(#):

T

Y= [y )t € R,
D(t) = [¢(t), Py(t), -, 9, (t)] € R™"

For the m sub-identification models in (9), it can be seen that the information vector 0
and the parameter vector ¢ (t) are common among the m subsystems. Thus, Equation (5) is
a coupling identification model of partial parameter vectors and partial information vectors.
Equation (9) can be represented as

yi(h) = $i(H)0+vie(t) +vi(t)
= P;()0+ " ()y; +vi(t), i=12,---,m. (10)

For the m sub-identification models in (10), define a gradient criterion function,
J1(8,7:) := [yi(t) — (0 — @"(H)v;]?, i =1,2,--- ,m.

Assuming that 1/7g,(t) and 1/r,,;(t) (i = 1,2,---,m) are the step-size, using the
negative gradient search [33] and minimizing J; (6, ;), we have the gradient relationships:

0 = b1+ B i 0d0 ) - gone-1), A
rei(t) = roi(t=1)+ (DI rei(0) =1, (12)
B0 = =1+ 20— gOde - - g -1,
Pilt) = =D 4[RO 0 =1 19

The problem of identification in (11)—(14) is that the estimates 8(#) and §;(t) can
not be computed because ¢(t) contains the unmeasurable noise terms w(t —i). The
method to solve this problem is to replace the unmeasurable variables w(t — i) with their
corresponding estimates w(t — 7). Thus, the estimate of ¢ (t) can be computed by @ (t — i):

~

() = [~ (t—1),—@ (t—2), -, —@'(t — n)]" € R, (15)

It can be seen that the parameter vector 6 is estimated for m times in (11) and (12),
which will lead to many redundant estimates. Using the estimate 8; to replace the esti-
mate @ in (11) can reduce the redundant computation. At the same time, replacing the



Mathematics 2022, 10, 2955 50f 15

unknown information vector ¢ () with its estimate ¢(t), we can obtain the new gradient

relationships:
) = 8=+ L - 08— - P ONE-1), a6
rei(t) = rei(t=1)+ ;O rei(0) =1, (17)
I e ICRICLIGR I U A
rilt) = it =1+ SO, 7(0) = 1. (19)
Additionally, according to Equations (4), we have
W) = y(t) - Du(H)But). 0)

It is generally believed that the parameter estimate 8;_(t) of the (i — 1)th subsys-
tem at time ¢ is closer to the true value 6 than the parameter estimate 0;(t — 1) of the
ith subsystem at time (t — 1). Replacing 8;(t — 1) on the right-hand of Equation (16)
with 8;_1(t), and replacing 8; (t — 1) of Equation (16) when i = 1 with 8,,(t — 1). Comb-
ing Equations (15) and (20), we can obtain the multivariate partially coupled generalized
stochastic gradient (M-PC-GSG) algorithm as

) = Bn— 1)+ D) - 1000 -1 - FOmG -1 @
() = roult—1)+ [y (D)2, 22)
I A e LG O G R AUCACES
() = r(t—1)+ (0] (24
o) = auw+¢fﬁ<w GHOB 1 (1) — (D7 —1)), 25)
roi(t) = rei1(t)+ |13 (26)
W) = -1+ f&ﬁ[() YO0 - O, @)
ryi(t) = Tyia(t) + 9] (28)
Bo() = [P0 Pal) PO, 29)
pl1) = [@(t—1),—@(t—-2), -~ (t—n)]!, (30)
zi](t) = y(t)_d)s(t)ém(t)r (31)
() = [F1(8), F2(t), - A (B)]. (32)

The schematic diagram of the M-PC-GSG algorithm in (21)—(32) is shown in Figure 1,
and the computation procedures are listed as follows.
1. Lett =1, set the initial values 8,,(0) = 1,/po, 79,(0) = r,,;(0) = 1, 4;(0) = Lyun./ po,
i=12-,mwt—j)=0,j=0,1,---,nc po = 10° and set the data length K.
Collect the observation data ®(t) and y(t), read 9;(t) from ®s(t) using (29).
Construct ¢ (t) using (30).
Compute the step-size 741 (t) and 7, 1 (t) using (22) and (24).
Update the parameter estimates 8, (t) and 7 (t) using (21) and (23).
Wheni=2,3,---,m, compute rg(t) and r, ;(t) using (26) and (28), and update the
parameter estimates 0;(t) and 4;(t) using (25) and (27).
Compute @(t) using (31) and construct 4(t) using (32).
Increase t by 1if t < K, and then go to Step 2. Otherwise, obtain parameter estimates
8(t) and 4(t) and stop computing.

SANRLIE -

® N



Mathematics 2022, 10, 2955 6 of 15

yi(t) (-1 »t) (-1 Ym(t)  Au(t—1)
ém (t — 1) Subsystem 1 91 (t) Subsystem 2 éz(t) ,,,,,, ém*1 (t) Subsystem m ém (t)
l ’?1(t) l ?Z(t) l'Aym(t)

Figure 1. The schematic diagram of the M-PC-GSG algorithm.

4. The Partially Coupled Multi-Innovation Stochastic Gradient Algorithm

In this section, we apply the multi-innovation identification theory based on the M-
PC-GSG algorithm to further improve the parameter estimation accuracy. We introduce
an innovation length p > 1 to expand the innovation scalars of each subsystem models
to the innovation vectors. According to the M-PC-GSG algorithm in (21)—(32), define the
subsystem stacked information matrices Ay (p, t), A;i(p,t) (i =2,3,--- ,m), Z(p,t) and the
subsystem stacked output vectors Y (p,t) and Y;(p,t) (i =2,3,--- ,m) as

A(pit) = [¢1()¢1(—1)/---/¢1(t—P+1)]€R"X”r

Ai(p,t) = [p;(t), p;(t— 1)~~~,1[Jl~(t—p+1)]ER”Xp,i=2,3,---,m
Ept) = (¢ () (t=1),-, @p(t—p+1)] € R™7,

Yi(p,t) = ) yt=1), - ynlt-p+1)] eR?,

Yi(p,t) = [yt yi(t=1),-- yit —p+ D" €R", i =2,3,---,m

In general, define the subsystem innovation scalars e; (t) and ¢;(t) (i = 2,3, -+ ,m) in
the M-PC-GSG algorithm in (21)—(32) as

er(t) == () —i(Bu(t—1) — @' (41 (t—1) €R,
ei(t) == yi(t) —9j()0i1(t) =@ ()7 (t—1) €R, i=2,3,---,m

According to the multi-innovation identification theory, expand the subsystem innova-
tion scalars e1(t) and ¢;(t) (i = 2,3, - - ,m) into the subsystem innovation vectors E; (p, t)
and E;(p,t) (i=2,3,---,m):

El(t)
e1(t—1
apo = | 7
61(t—P+1)
yi(H) = g1 (0t =1) — @ (D41 (t 1)
) (1)~ gl 10t =2) = 9450~ . -
= p ) — It pt DBt~ p)— §'(E— p+ Din(t— )
(Ei(t)l)
eit—
Ei(p,t) = : (i=2,3, , 1)
L ei(t—p+1)
’ vi(t) = P OB (1) — ()7~ 1)
Gilt = 1) — PH(E— 1By (1) — ' (t — 1)4,(t —2)
= : € RP. (34)
Gt p ) gl p DBt p 1) — (- p+ DA p)
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Normally, we reach an agreement that the estimates 8,,,(t — 1) and 4;(t — 1) (i = 1,2, - - ,m)
at time (t — 1) are closer to the true values 6,, and 7, than the estimates 8,,(t — j) and
4;(t — j) at time (t — ) (j > 2). Similarly, the estimate 8;_; (t) at time ¢ is closer to the true
value 6;_; than the estimate 8;_;(t — j) at time (t — j) (j > 2). Therefore, replacing the
terms 8, (t — j), 4;(t — j) and 8;_1(t — j) (j = 2) with 8,,(t — 1), 4;(t — 1) and 8;_1(t) in
(33) and (34), and the subsystem innovation vectors E;(p, t) and E;(p,t) (i =2,3,--- ,m)
are modified into

[ yi(t) — g1 ()0 (t —1) — @TA( ) (t—=1)

yi(t—1) - ¢1(t—1)9m(t—1)—¢(t—l)%(f—l)
Ei(p,t) = :
I yl(t_P+1)_‘I’{(t_r""l)éma_l)_‘i’T(t_P"‘l)'?’l(t_l)
= Yi(pt) = Af(p,)Bu(t —1) —E"(p, )41 (t — 1) € R?, (35)

' yilt) — OB+ (1) — ¢ (),(t — 1)

yi(t—=1) — ¢} (f—l) 1) — @' (t—1D4;(t = 1)
i(pt) = : ,
| vilt—p+ 1) =gl (t—p+1)0i1(t) — @ (t—p+1)F,;(t — 1)

= Yi(pt) - A (p,t)0;_1(t) —E"(p, )4, (t—1) €RP, i=2,3,--- ,m. (36)

Thus, based on the the M-PC-GSG algorithm in (21)—(32), we can obtain the following
multivariate partially coupled multi-innovation generalized stochastic gradient (M-PC-MI-
GSG) algorithm with an innovation length p:

0.(t) = @m(t—1)+A1(p’t)El(p,t), (37)
ro1(t)
Yilp,t) = [yi(t),yi(t=1), -, ;i(t—p+1)]", (38)
A(p,t) = [%()%(f—l) P (t—p+ 1), (39)
E(p,t) = [¢M),¢(t—1),--,¢(t—p+1)], (40)
Ei(p,t) = Ya(pt) —Af(p,)0n(t —1) — E"(p, )4, (t — 1), (41)
roa(t) = rom(t—1)+ [l (0] (42)
) = @1<t—1>+“(’°gt))ﬁl<p, 0, )
ra(t) = mm(t D+ 1¢0)]> (44)
b = B+ reﬂ(t)) Ei(p, 1), 45)
Yi(p,t) = [yi(t),yi(t=1), - ,yi(t—p+1)], (46)
Ai(p,t) = (), ;(t=1),- ,¢p;(t —p+1)], (47)
Ei(p,t) = Yi(p.t)—Aj(p.)0i1(t) — E"(p, t)4;(t — 1), (48)
roi(t) = rei1(t)+ [ (D)]% (49)
W) = %(t—l)ﬁ(’,’('fflsl-(p,t), (50)
'}‘l
r,i(t) = () + 1@ (e))13 (51)
Ds(t) = [ () Po(t), -, (D], (52)
p(t) = [~ (t—-1),-®"(t=2), -, —W'(t —n)|", (53)
w(t) = y(t) — Ds(t)0n(t), (54)
() = [H1(), 42(t), -, Am(B)]. (55)

The computation procedures of the M-PC-MI-GSG algorithm in (37)—(55) are listed
as follows.
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1. Lett = 1, choose an innovation length p, set the initial values ém(O) = n/ po,
16,i(0) = 7,,(0) =1, 4;(0) = Lyun./po, i =1,2,--- ,m, w(t—j) =0,j=0,1,---,n,
po = 10°, and set the data length K.

2. Collect the observation data ®@4(t) and y(t), read 3, (t) from P (t) using (52).

3. Construct ¢ (t) using (53).

4.  Construct Yi(p,t), A1(p, t) and Z(p, t) using (38)—(40).

5. Compute E1(p,t) using (41).

6.  Compute rg(t) and r,, 1 (t) using (42) and (44).

7.  Update the parameter estimates 8; (t) and 7, (t) using (37) and (43).

8. Wheni=23,---,m,construct Y;(p, t) and A;(p, t) using (46) and (47).

9. Compute E;(p, t) using (48).

10. Compute rg;(t) and ., ;(t) using (49) and (51).

11. Update the parameter estimates 8;(t) and 4, (t) using (45) and (50).

12.  Compute @(t) using (54) and construct 4(t) using (55).

13. Increase t by 1if t < K, and then go to Step 2. Otherwise, obtain parameter estimates
8(t) and 4(t) and stop computing.
It can be easily seen that the M-PC-MI-GSG algorithm with the innovation length

p = 1is equal to the M-PC-GSG algorithm. Since the past data information of the system

are utilized sufficiently, the M-PC-MI-GSG algorithm has higher parameter estimation

accuracy than the M-PC-GSG algorithm.

5. The Simulation Examples

In this section, two numerical simulations are given to show the good performances
of the newly proposed algorithms.

Example 1. Consider the following multivariate equation-error autoregressive systems,

y(t) = @5(H)0+C ' (2)o(t),

Byt — { sin(uy (t —2))y1(t—1)  cos(ui(t —1))y1(t —2)
cos(up(t—2))y2(t—1) sin(uy(t —2))y2(t —2)
sin(up(t —2))y2(t — 1) cos(up(t—1))ya(t —2) ]
cos(up(t =2))ya(t—1)  sin(uz(t —1))yi(t=2) |

0 = [61,6,, 05 64" = [0.42,0.93,0.56,031],
c c —-025 0.68 | _
€z = b+ { o om ]Z { ]+ [ ~033 0.44 }Z "

The parameter vector to be estimated is

O = [01,62,603,04c11,C12,C21,C0)"
= [0.42, 0.93,0.56,0.31, —0.25,0.68, —0.33, 0.44]T.

In this simulation, u(t) = { Zl EB } € R? is the input vector, which is a random sequence with
2
zero mean and variance one; y(t) = [ glgt% ] € R2 is the output vector; v(t) = [ 2122 } € R?
2 2

is a white noise vector with zero mean; 0% and o3 are the variances of vy (t) and vy (t). Taking the
noise variances 012 = 0.40% and 022 = 0.30%, using the M-PC-GSG algorithm (i.e., the M-PC-MI-
GSG algorithm with p = 1) and the M-PC-MI-GSG algorithm withp =2, p = 4and p = 8
to estimate the parameters of this example system. We obtain the parameter estimates and their
errors & := ||9(t) — 8|/ ||®| shown in Table 1. The parameter estimation errors versus t are shown
in Figure 2. The parameter estimates 01 (t), 02(t), 03(t), 04(t) and ¢11(t), e12(t), E(t), éxn(t)
versus t of the M-PC-MI-GSG algorithm with p = 8 are shown in Figures 3 and 4.
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Table 1. Parameter estimates and errors ((712 = 0.402, 022 = 0.30%).

Algorithms t 100 200 500 1000 2000 3000 True Values
M-PC-GSG 01 0.19022 0.28281 0.33788 0.36637 0.36787 0.36879 0.42000
62 0.77045 0.84529 0.88400 0.91050 0.90956 0.90832 0.93000
03 0.42624 0.49137 0.54550 0.57360 0.57695 0.57314 0.56000
04 0.25045 0.25999 0.29032 0.31802 0.32379 0.32917 0.31000
c11 —0.16279 —0.13896 —0.12959 —0.13205 —0.13608 —0.13540 —0.25000
12 —0.06264 0.01024 0.07393 0.10879 0.14383 0.16385 0.68000
21 —0.18783 —0.21131 —0.22760 —0.22982 —0.23502 —0.23697 —0.33000
€2 0.06255 0.05905 0.07305 0.09172 0.10850 0.12021 0.44000
5 (%) 60.04604 53.54881 48.52141 45.66110 43.08714 41.59002
M-PC-MI-GSG 01 0.24413 0.35242 0.38045 0.39205 0.38805 0.38809 0.42000
(p=2) 02 0.80411 0.89433 0.91071 0.92629 0.92058 0.91797 0.93000
03 0.49437 0.54833 0.57802 0.58115 0.58224 0.57102 0.56000
04 0.30721 0.28679 0.29391 0.32301 0.32347 0.32964 0.31000
c11 —0.05715 —0.06016 —0.08608 —0.10747 —0.13040 —0.13492 —0.25000
12 0.12099 0.22052 0.30492 0.34234 0.38260 0.40361 0.68000
21 —0.23138 —0.26019 —0.26756 —0.26447 —0.26951 —0.27084 —0.33000
2 0.11762 0.11798 0.15107 0.18454 0.20984 0.22701 0.44000
5 (%) 47.51695 39.87369 33.61530 30.01753 26.59647 24.80351
M-PC-MI-GSG 01 0.26824 0.39655 0.39206 0.40527 0.40117 0.40344 0.42000
(r=4 ) 0.81764 0.91822 0.91009 0.93027 0.92223 0.92506 0.93000
03 0.53011 0.56224 0.57291 0.58006 0.58163 0.56221 0.56000
04 0.33781 0.28934 0.27962 0.32670 0.31900 0.33021 0.31000
11 —0.02859 —0.07525 —0.14398 —0.17985 —0.21158 —0.20979 —0.25000
12 0.40063 0.49444 0.57042 0.57794 0.60699 0.61726 0.68000
21 —0.27689 —0.30473 —0.29946 —0.29170 —0.29725 —0.29909 —0.33000
2 0.22503 0.21310 0.25734 0.29682 0.32439 0.34271 0.44000
3 (%) 30.60589 22.77807 16.20218 12.94875 9.87303 8.55799
M-PC-MI-GSG 01 0.22875 0.41123 0.39312 0.41067 0.40847 0.41377 0.42000
(r=298) ) 0.82538 0.91675 0.89962 0.92660 0.91916 0.93461 0.93000
03 0.50062 0.56129 0.56967 0.58480 0.57905 0.55554 0.56000
04 0.34784 0.29455 0.27015 0.32493 0.31639 0.33324 0.31000
c11 —0.08032 —0.14448 —0.22262 —0.25289 —0.27162 —0.25101 —0.25000
12 0.60874 0.66577 0.71758 0.67480 0.69550 0.69273 0.68000
21 —0.31148 —0.33276 —0.30958 —0.29949 —0.30552 —0.31357 —0.33000
2 0.32292 0.26569 0.31977 0.36227 0.39067 0.40749 0.44000
5 (%) 20.99172 13.61264 9.45336 5.90521 4.39162 3.04341

0.6

0.5
p=1(M-PC-GSG)

0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

t

Figure 2. The M-PC-MI-GSG estimation errors versus f.
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Figure 4. Parameter estimates ¢11 (), ¢12(t), €21 (¢), ¢ (t) versus t.

Example 2. Consider another multivariate equation-error autoregressive systems,

y(t) = @(Ho+C ' (2)o(t),
o) = [ up(t—1)y;(t -2 uy (= 2)up(t —2) uy(t — 1) cos(t)
) up(t=2)y(t =1 yi(t—=2)y2(t—2)  ya(t—1)sin(t)

)
)
cos?(t —1) up(t —2)sin(t —1) cos(uy(t—1)) }
sin?(t — 1) ya(t —2)cos(t—1) sin(y1(t—1)) |’

0 = (01,665 646565 = [~0.36,022,034,045,0.25,0.11]",
. C11 C12 -1 _ 1 0 —041 -048 -1
€k = Iﬁ{cm cn}z _[o 1]+[ 035 —031 |°

The parameter vector to be estimated is

9 = [01,02,03,04,05, 06 c11,c12,C21, C22)"
= [—0.36, 0.22,0.34,0.45,0.25,0.11, —0.41, —0.48, 0.35, —0.31?.

Here, the simulation conditions are similar to Example 1. Taking the noise variances
0% = 02 = 0.502, using the M-PC-GSG algorithm (i.e., the M-PC-MI-GSG algorithm with p = 1)
and the M-PC-MI-GSG algorithm with p = 3 and p = 5 to estimate the parameters of this example
system. The parameter estimates and their errors are shown in Table 2. The parameter estimation
errors versus t are shown in Figure 5. For model validation, we use the estimated model obtained
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by the M-PC-MI-GSG algorithm with p = 5 to predict the system outputs with 200 samples from
t = 3001 to t = 3200. The true output y, (t) and the predicted output 1 (t) as well as their errors
are shown in Figure 6. The true output y,(t) and the predicted output §,(t) as well as their errors
are shown in Figure 7.

Table 2. Parameter estimates and errors ((712 = (722 = 0.502).

Algorithms t 100 200 500 1000 2000 3000 True Values
M-PC-GSG 01 —0.38109 —0.34290 —0.35197 —0.35358 —0.35240 —0.35140 —0.36000
62 0.17154 0.19202 0.22318 0.20571 0.20894 0.20290 0.22000
03 0.52049 0.46240 0.42063 0.40418 0.38885 0.38130 0.34000
04 0.36772 0.39041 0.40431 0.43059 0.44228 0.45084 0.45000
05 0.32582 0.28799 0.27265 0.25708 0.26433 0.26468 0.25000
0 —0.05956 —0.02720 —0.02478 —0.02008 —0.00934 —0.00876 0.11000
11 —0.32562 —0.33413 —0.35093 —0.36678 —0.37198 —0.37339 —0.41000
12 —0.42387 —0.42801 —0.43950 —0.44549 —0.45522 —0.45784 —0.48000
21 —0.07449 —0.04447 0.00357 0.05541 0.08891 0.10599 0.35000
2 0.13315 0.09440 0.04896 0.00007 —0.03206 —0.04982 —0.31000
5 (%) 62.46630 55.62215 48.66825 41.81593 37.21977 34.99402
M-PC-MI-GSG 01 —0.34351 —0.30662 —0.36709 —0.35952 —0.35025 —0.35053 —0.36000
(p=3) 6 0.13616 0.21845 0.24620 0.20140 0.21882 0.20575 0.22000
03 0.46447 0.34810 0.32286 0.33605 0.34131 0.33736 0.34000
04 0.53467 0.51841 0.49198 0.50896 0.49490 0.49143 0.45000
05 0.34052 0.24404 0.24150 0.23199 0.26443 0.26536 0.25000
06 —0.08458 —0.00717 —0.00412 0.01422 0.05155 0.05032 0.11000
11 —0.40747 —0.39750 —0.42113 —0.42870 —0.41996 —0.41446 —0.41000
12 —0.44953 —0.45067 —0.47122 —0.47509 —0.49160 —0.49275 —0.48000
21 —0.00019 0.05273 0.13849 0.22633 0.25865 0.27774 0.35000
20 —0.10619 —0.14079 —0.18170 —0.23788 —0.25384 —0.26009 —0.31000
5 (%) 45.05598 34.25524 25.50852 16.96953 12.12756 10.74341
M-PC-MI-GSG 01 —0.35745 —0.30970 —0.38425 —0.36288 —0.34050 —0.34946 —0.36000
(p=5) ) 0.12136 0.23250 0.25401 0.20572 0.22745 0.20850 0.22000
03 0.40415 0.28647 0.30611 0.33618 0.34589 0.33781 0.34000
04 0.51978 0.48285 0.46617 0.48824 0.46462 0.46024 0.45000
05 0.38782 0.22572 0.22904 0.22473 0.27031 0.26832 0.25000
06 —0.02008 0.06621 0.05334 0.06901 0.10837 0.09507 0.11000
11 —0.41690 —0.39157 —0.43170 —0.43710 —0.42419 —0.41720 —0.41000
c12 —0.46440 —0.45497 —0.48430 —0.48122 —0.50181 —0.49994 —0.48000
21 0.09086 0.14050 0.23086 0.31994 0.33401 0.34857 0.35000
20 —0.24541 —0.23841 —0.25163 —0.30483 —0.29672 —0.29278 —0.31000
5 (%) 32.60246 22.30989 14.47746 6.91170 4.31185 3.73785

0.6

0.5

=1(M-PC-GSG
0.4l p=1( )

0.3F

0.2

0.1

1 1

1
0 500 1000 1500 2000 2500 3000

O 1 1

t

Figure 5. The M-PC-MI-GSG estimation errors versus t.
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Figure 6. The true output, the predicted output of y; (t) and the prediction error.
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Figure 7. The true output, the predicted output of y,(#) and the prediction error.

From Tables 1 and 2 and Figures 27, the following conclusions are obtained.

From Tables 1 and 2, Figures 2 and 5, it can be shown that the parameter estimation
errors of the M-PC-GSG and the M-PC-MI-GSG algorithms become smaller as the
data length t increases, which means that the proposed algorithms are effective in
parameter estimation for the multivariate autoregressive system.

Figures 2 and 5 show that the M-PC-MI-GSG algorithm has higher parameter es-
timation accuracy than the M-PC-GSG algorithm under the same noise variances
and same data length. Introducing the innovation length p can effectively improve
the parameter estimation accuracy for the M-PC-GSG algorithm, and the parameter
estimates can be more stationary as the innovation length p increases.

It can be seen from Figures 3 and 4 that the M-PC-MI-GSG algorithm can obtain
accurate parameter estimates.

From Figures 6 and 7, we can see that the predicted outputs of the M-PC-MI-GSG
algorithm are very close to the true outputs, which indicates that the estimated model
can capture the dynamics of the system.

Remark 1. In order to show the advantages of the identification performances of the proposed algo-
rithm in this paper, the forgetting factor stochastic gradient identification method proposed in [34]
is compared with the proposed algorithm. The forgetting factor stochastic gradient identification
method is applied to identify the multivariate equation-error autoregressive systems in this paper,
and the multivariate forgetting factor generalized stochastic gradient (M-FF-GSG) algorithm is
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obtained. The M-FF-GSG algorithm is compared with the M-PC-MI-GSG algorithm with p = 5
through simulation, and the simulation experimental conditions are the same as those in Example 2.
The comparison results are shown in Figure 8. It can be seen that the proposed algorithm in this
paper has faster identification speed and higher estimation accuracy.

04 C T T T T i
0.3Ff A
< 02Ff M-FF-GSG
0.1Ff
M-PC-MI-GSG
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

t
Figure 8. The comparison of algorithms M-FF-GSG with M-PC-MI-GSG.

6. Conclusions

Coupling identification concept is an emerging method in the field of system identi-
fication in recent decades, one which is usually used in the parameter estimation of the
multivariate systems. Its main idea is to utilize the parameter-coupling characteristic,
and to identify the parameter of each subsystem model separately and then connected,
which can greatly reduce the calculation amounts in the estimation processes. This paper
combines the coupling identification concept with the stochastic gradient identification
method to propose a new identification algorithm for multivariate equation-error systems.
The proposed algorithm has the advantage of a lower computation than the traditional
stochastic gradient identification algorithm. Additionally, the multi-innovation identifi-
cation theory is also a promising identification method, which makes full use of the data
information collected in the past to identify the unknown parameters. Based on the partially
coupled stochastic gradient algorithm, this paper then introduces the innovation length
by applying the multi-innovation identification theory, and proposes the partially coupled
multi-innovation stochastic gradient algorithm. The new algorithm also has the advantage
of higher parameter estimation accuracy.

The proposed coupling and multi-innovation-based identification methods can be
extended to study other multivariate systems with different structures and disturbance
noises. Meanwhile, the idea of the algorithms can be utilized when the system identification
model has the coupled terms. The future research opportunities are to apply the proposed
algorithms to actual engineering production systems to improve the computational effi-
ciency and accuracy of the system identification in production practice. Additionally, the
proposed methods in the paper can also combine other mathematical tools and statistical
strategies to research the performances of some parameter estimation algorithms for other
linear or nonlinear systems with colored noises.
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The following abbreviations are used in this manuscript:

Abbreviations ~ Explanations
M-PC-GSG the multivariate partially coupled generalized stochastic gradient algorithm
the multivariate partially coupled multi-innovation generalized stochastic

M-PC-MI-GSG . .
gradient algorithm
M-FF-GSG the multivariate forgetting factor generalized stochastic gradient algorithm
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