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Abstract: To address the problem of damage to adjacent buildings (structures) caused by bench
blasting construction, blasting in a sand and gravel mine in Guizhou Province was used as the
background. Through on-site monitoring and numerical simulation, the blasting vibration propa-
gation law and dynamic effect characteristics under the joint action of different bench heights and
horizontal distances were studied. The regression model was established. The results show that:
the peak vibration speed in all three directions with the increase in the horizontal distance of the
burst center is a decaying trend, and the field measurements are basically consistent with the safe
vibration speed and do not exceed 1.5 cm/s, so the house is in a safe state; shear stress with the
increase in the horizontal distance of the burst center strictly decays, so the source of the shear stress
and vibration speed decay faster in the near zone, with the slow decay in the far zone; analysis found
that the shear stress and vibration speed are quadratic and exponential. Through the analysis of the
regression model, it is obtained that there is no co-linearity among the influencing factors, which has
a significant effect on the regression equation and regression coefficient, and so the multiple linear
regression equation fits well. The model can predict the blast vibration intensity, which can be used
as a safety criterion for buildings under the action of blasting, and provides a reference for blast
vibration control, hole network parameters, and the design index.

Keywords: beach blasting; field monitoring; numerical simulation; propagation law; dynamic effect

MSC: 65E05

1. Introduction

In open pit mining, road excavation, and other slope projects, bench blasting exca-
vation technology can significantly improve the construction efficiency and velocity of
the project progress. However, the bench blasting vibration effect seriously affects the
safety of the surrounding buildings (structures) and the stability of the rock structure of
the slope. Theoretical analyses, field tests, and numerical simulations have been used to
research bench blasting vibration. To clarify the impact of blast vibration on buildings and
provide a reference basis for blast vibration control and prediction of whether the structure
is damaged, based on Sadovsky’s empirical formula, experts have proposed an elevation
correction formula considering the high slope conditions.

In recent years, scholars at home and abroad have mainly focused on the vibration
velocity of blasting seismic waves. The empirical formulae for the variation of blasting
vibration velocity with explosive quantity and blast core distance have been summarized
by using the method for dimensional analysis, and the prediction and assessment of blast
vibration have been carried out accordingly [1–3]. In terms of the propagation law of
blasting vibration, Yin et al. [4] investigated the attenuation law of blast vibration waves in
nodal slopes using blast vibration signals monitored in situ from the blasting of different
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rock masses. Yu et al. [5] and Tan et al. [6] studied the blasting vibration variations in
the slope areas of mines and reservoir projects and summarized the variations of blasting
velocity inside the slope. Li et al. [7] derived the blasting vibration response law of slopes
in quarries by the regression analysis of many vibration test data. Wan et al. [8] studied
the propagation law of seismic waves in blasting of hydropower station projects through
blasting vibration tests. Rafael Rodríguez et al. [9] proposed a user-friendly methodology
for determining the behavior of vibrations generated in any rock mass. Zhu et al. [10]
proposed a new method to predict the vibration velocity of multi-hole trenching blasting of
laminated rock masses, which can be used for optimizing engineering blasting design and
the blasting of the slope. In order to study the propagation law of blast vibration in soft
rock tunnels, Chen et al. [11] carried out an analysis and research on the measured data
by blast vibration tests and used nonlinear regression and Fourier transform methods to
provide a reference for the optimization of blast design in the Muzhailing tunnel or similar
soft rock tunnels; Lin et al. [12] proposed a superposition prediction method based on the
propagation and superposition principles of blast vibration signals; Xiao et al. [13] obtained
the slope blasting vibration propagation law by fitting the Sadovsky formula based on field
blasting vibration monitoring data; Gao et al. [14] used regression analysis for the Sadovsky
and the CRSRI blast vibration velocity prediction models during onsite operations; Zhang
et al. [15], through field blasting vibration monitoring and numerical simulation, proposed
the propagation law of blasting vibration velocity in the high side wall, elucidated the
local elevation amplification effect of blasting vibration velocity, and modified Sadovsky’s
formula; Tian et al. [16] used MATLAB to compile a signal processing program to analyze
the propagation law of blast vibration in the stratum of shallow buried tunnels with
oversized cross-sections. In terms of the research of dynamic response. Yan et al. [17]
studied the blasting vibration response law of slopes at different elevations by modifying
the elevation formula and numerical simulation. Xie et al. [18] used a modified DDA
method to study the dynamic response of rocks under blast loads. Deng et al. [19] derived
an attenuation formula for the propagation velocity of elastic stress waves in elastomers
based on the stress wave theory, which provides a reference for similar excavation blasting
and vibration control methods to provide a reference for similar excavation blasting and
vibration control methods. The blasting data measured and obtained in the actual project
is complicated, time consuming, inconvenient, and has great limitations. Therefore, most
scholars use finite element numerical simulation software to analyze the dynamic effect
from seismic wave blasting, and then judge whether the buildings are damaged and
destroyed from the structural material properties, providing reference for the blasting
vibration control, hole network parameters, and design indicators [20–27]. Zhang et al. [28]
analyzed the propagation law of vibration in the civil air defense tunnel through field
tests and numerical simulations and established a model for the relationship between
peak vibration velocity and effective stress; Xu Wu et al. [29] studied, based on theoretical
analysis and numerical simulations, the effect of bench height on blasting seismic waves;
Yang et al. [30] used numerical simulations to study the vibration characteristics of slopes
under blasting loads; Blair et al. [31] used numerical models to study the dynamic response
of the shaft wall under blasting loads at the bottom of the shaft wall; Jiang et al. [32]
analyzed literature on the study of the dynamic response law of pipelines using field tests,
outdoor tests, and numerical simulations. In terms of the impact of blasting vibration
on surface buildings, Esmatkhah et al. [33] studied the settlement and damage caused by
subway tunnel excavation through onsite monitoring and numerical simulation; Chaudhary
et al. [34] conducted a comparative assessment on the performance of conventional and
advanced tunnel lining materials subjected to blast loading and used a three-dimensional
nonlinear finite element analysis procedure. Tsang et al. [35] presented a practical structural
vulnerability assessment method for mine blast-induced vibrations. In general, blast
vibration has been studied in-depth and a wealth of research results have been obtained.
However, there are few reports on the research on vibration propagation law and the
dynamic effect of bench blasting, and it is not comprehensive enough. Therefore, in order
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to ensure the safety of surrounding buildings (structures) during blasting, it is necessary to
comprehensively and systematically study the vibration propagation laws and dynamic
effects under the combined action of horizontal distance and elevation.

In view of this, based on the existing research, field tests and numerical calculations
are carried out with the background of a step blasting project in a gravel mine in Guizhou
Province, and regression analysis is carried out with the least squares method and SPSS
software to study, more comprehensively and systematically, the vibration propagation law
and dynamic effect under the joint action of horizontal distance and elevation, to provide
a reference basis for controlling blasting vibration and predicting whether the structure
is damaged.

2. Basic Theory of Blasting Vibration
2.1. Attenuation Law of Blasting Seismic Wave

Many field measurements and test results show that blasting vibration intensity is
closely related to the horizontal distance from the explosive center, charge, geotechnical
properties, topographic condition, and other factors. The calculation formula of peak
vibration velocity attenuation is Sadovsky’s formula recommended in safety regulations
for blasting (GB6722-2014) in China.

V = K(
3
√

Q
R

)α (1)

It is believed that elevation is an important factor that cannot be ignored in the
vibration propagation attenuation law of buildings, and the influence of elevation influ-
ence coefficients and blast-related coefficients on blast vibration wave propagation and
attenuation cannot be ignored, and so it is urgent to strengthen the research on vibration
propagation law. Considering the high side slope conditions, experts from Changjiang
River Scientific Research Institute (CRSRI) have proposed an elevation correction formula,
as follows.

v = K
( 3
√

Q
R

)α( 3
√

Q
H

)β

(2)

In Formulas (1) and (2).
v is particle vibration velocity, cm/s;
Q is the maximum dose, kg;
H is the height difference between explosive source and measuring point, m;
R is the horizontal distance from explosive source to measuring point, m;
K,α are parameters related to terrain and geological conditions;
β is the elevation influence coefficient.
For bench blasting with changing vertical distance from the explosive center, there

is stronger compatibility for the formula of the peak vibration velocity propagation law
proposed by the elevation correction formula developed by CRSRI. Therefore, the elevation
correction formula is used to analyze the field vibration velocity in this study.

The left and right sides of Formula (2) (taking logarithm, respectively) to obtain
Formula (3).

lgV = lgK + αlg(
3
√

Q
R

) + βlg(
3
√

Q
R

) (3)

Suppose z = lgV, a = lgK, b = α, x = lg(
3√Q
R ), c = β, y = lg(

3√Q
H )

Then, the Formula (3) can be written

Z = a + bx + cy (4)
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2.2. Influence of Blasting Vibration on Buildings

Suppose the building is considered an elastomer or only its deformation in the elastic
phase under blasting. The relationship between stress σ and strain ε when the building
(structure) vibrates is as follows.

σ = Eε (5)

The constant proportionality between stress and strain is known as the coefficient of
elasticity or Young’s modulus, fixed for different materials. The strain can be obtained
according to the particle vibration velocity and the propagation velocity of the seismic
wave in the medium.

ε = V/C (6)

Thus, the maximum velocity and maximum stress of a mass on a building under the ac-
tion of a blast seismic wave are proportional to each other. That is, σmax = EVmax

C . Therefore,
particle vibration velocity can be used to determine the safety of building structures.

3. Field Monitoring and Analysis of Blast Vibration Propagation Law
3.1. Engineering Situations

A sandstone mine in Guizhou Province has good burial conditions and thin overbur-
den and is located above the lowest surface elevation with a bench height of 10 m. The
mine blasting scheme uses deep hole blasting, No. 2 rock emulsion explosives, and deto-
nator detonation. Blasting vibration caused by mining needs to be controlled, so blasting
vibration monitoring is implemented for the nearest 40 m to 100 m of residential buildings
in the blasting operation area from the explosive source.

3.2. Monitoring Content and Methodology

The field test focused on the vibration velocity of blast seismic waves generated during
bench blasting at different bench heights and different horizontal distances. The CBSD-
VM-M01 digital network vibrator was used for blast vibration testing. The site Monitoring
point No.1 layout is shown in Figure 1. Due to space limitations, the site layout plans for
the remaining measurement points are not listed.
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Figure 1. Monitoring point No.1.

According to the purpose and content of the monitoring and site conditions, five
different blasting schemes were used to monitor the site during blasting, with bench
heights between 20–60 m and a bench height difference of 10 m. The horizontal distance
of the measurement points from the explosive source was 40–100 m, and the horizontal
distance of the adjacent measurement points was 15 m. Five monitoring points were
arranged for each scheme. Figure 2 shows the layout of the measurement point monitoring
scheme for bench heights of 60 m and 20 m. (the unit is m.); other monitoring point layout
diagrams are not listed. Table 1 is the monitoring scheme table.
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Figure 2. Monitoring scheme for 60 m and 20 m bench height monitoring points. (a) Bench height is
60 m. (b) Bench height is 20 m.

Table 1. Monitoring scheme.

Monitoring
Points

Vertical
Distance from
the Explosive

Center/m

Horizontal
Distance from
the Explosive

Center/m

Slope Angle Monitoring
Content

No. 1

60/50/40/30/20

40

70◦

vertical vibration
velocity

Tangential
vibration
velocity

Radial Vibration
Velocity

No. 2 55

No. 3 70

No. 4 85

No. 5 100

3.3. Monitoring Results

Blasting vibration monitoring was carried out at elevations of 20~60 m blasting. Five
fixed measurement points were arranged for each test, and a total of five sets of tests were
carried out, with the maximum hazard as the principle, and a set of data on the maximum
vibration velocity of the measurement points was taken as the basis of the study. The results
of blast vibration monitoring are specified in Table 2.

Table 2. The results of blast vibration monitoring.

Number of
Times

Monitoring
Point

Horizontal
Distance
from the

Explosive
Center /R(m)

Vertical
Distance
from the

Explosive
Center
/H(m)

Maximum
Charge/Q

(kg)

Vertical
Vibration
Velocity/V
(cm·s−1)

Horizontal
Tangent

Vibration
Velocity/V
(cm·s−1)

Horizontal
Radial

Vibration
Velocity/V
(cm·s−1)

1

No.1 40

60 18

0.169 0.170 0.171

No.2 55 0.160 0.162 0.143

No.3 70 0.134 0.132 0.120

No.4 85 0.091 0.092 0.093

No.5 100 0.086 0.076 0.078
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Table 2. Cont.

Number of
Times

Monitoring
Point

Horizontal
Distance
from the

Explosive
Center /R(m)

Vertical
Distance
from the

Explosive
Center
/H(m)

Maximum
Charge/Q

(kg)

Vertical
Vibration
Velocity/V
(cm·s−1)

Horizontal
Tangent

Vibration
Velocity/V
(cm·s−1)

Horizontal
Radial

Vibration
Velocity/V
(cm·s−1)

2

No.1 40

50 18

0.183 0.175 0.182

No.2 55 0.170 0.165 0.156

No.3 70 0.150 0.149 0.130

No.4 85 0.109 0.105 0.111

No.5 100 0.090 0.085 0.095

3

No.1 40

40 18

0.190 0.185 0.187

No.2 55 0.175 0.171 0.159

No.3 70 0.154 0.152 0.135

No.4 85 0.113 0.111 0.115

No.5 100 0.094 0.096 0.105

4

No.1 40

30 18

0.202 0.195 0.199

No.2 55 0.176 0.175 0.160

No.3 70 0.155 0.154 0.139

No.4 85 0.109 0.119 0.120

No.5 100 0.088 0.097 0.108

5

No.1 40

20 18

0.248 0.225 0.310

No.2 55 0.224 0.210 0.250

No.3 70 0.185 0.180 0.210

No.4 85 0.169 0.153 0.204

No.5 100 0.163 0.136 0.184

In the above site monitoring data, the elevation is 20 m and the maximum measured
vibration velocity is 0.310 cm/s. According to the safety regulations for blasting (GB6722-
2014), the permissible safe vibration velocity of general civil buildings does not exceed
1.5 cm/s, and so the civil house is in a safe state.

3.4. Analysis of Blasting Vibration Propagation Law
3.4.1. Blasting Vibration Attenuation Law

Substitute the data in Table 2 into Equation (4) to find a, b, c using Origin software
least-squares multivariate linear algorithm to fit the solution, resulting in an elevation of
20 m. The vertical vibration velocity with the horizontal distance and vertical distance from
the explosive center propagation law is as follows.

V = 8.60102(
3
√

Q
R

)0.49546(
3
√

Q
H

)1.07416 (7)

When the elevation is 20 m, the propagation law of horizontal tangent vibration
velocity with horizontal and vertical distance from the explosive center is as follows.

V = 9.21000(
3
√

Q
R

)0.56679(
3
√

Q
H

)1.0405 (8)
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When the elevation is 20 m, the propagation law of horizontal radial vibration velocity
with horizontal and vertical distance from the explosive center is as follows.

V = 10.28987 (
3
√

Q
R

)0.55874(
3
√

Q
H

)0.98594 (9)

When the elevation H = 20 m, the regression diagram of horizontal radial vibration
velocity is shown in Figure 3.
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We need to obtain the same blast with different vibration velocities of horizontal
distance from the explosive center to study the blast vibration peak vibration decay law.
However, it is not possible to monitor multiple points because of the limited monitoring
equipment. To the principle of maximum hazard, the largest set of five schemes is now
taken to approximate the vibration velocity as a blast at different elevations and horizontal
locations of vibration velocity. As can be seen from Table 2, the maximum vibration velocity
occurs at an elevation of 20 m, the horizontal radial vibration velocity. Therefore, when the
elevation is 20 m, the data of the horizontal radial vibration velocity are fitted and analyzed,
and the general decay trend of the vibration velocity of the surface residential buildings
can be derived, as shown in Figure 4.
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As can be seen from Figure 4: the vibration velocity of the surface houses decreases
with the increase in the horizontal distance from the explosive center; the overall decay
velocity decreases faster in areas closer to the explosive source and becomes slower in areas
further away from the source.

From Table 2, the radial, tangential, and vertical vibration velocities are plotted with
bench height as shown in Figures 5–7 below.
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From Figures 5–7 above, it can be seen that the horizontal radial, tangential, and
vertical vibration velocity with the increase in bench height is generally a decreasing trend.
It decays faster in the early stage, slowly decays in the middle stage, and is relatively
flat in the later stage. The least-squares fitting analysis yields vibration velocity and the
relationship between the horizontal distance of the explosive center.

V = 0.53171− 0.00705r + 3.61905E− 5r2 (10)

In this project, the maximum safe vibration velocity of the nearest residential build-
ing can be obtained by knowing the distance between the residential building and the
explosive center.

3.4.2. Multivariate Linear Regression Analysis Using SPSS Software

(1) the establishment of multiple regression models

Equation (2) mainly responds to the blast vibration peak velocity, a single section of
the maximum detonation charge and burst heart flat distance, and burst heart of the close
relationship between the four, with a common form to express.

V = KQmRn Hl (11)

where m, n, and l are parameters that reflect the blasting method used, the geological
conditions, and the ground conditions, respectively.

The multiple linear regression theory was used to establish a multiple linear regression
equation for the decay of blasting seismic wave velocities, taking the logarithm of both
sides of the above empirical equation to obtain the following function.

ln V = ln K + m ln Q + n ln R + l ln H (12)

Letting ln V = E(V), ln K = A, ln Q = x1, ln R = x2, ln H = x3, gives the regression
equation for its multiple linear regression model.

Therefore, the yield failure depth (h) of floor rock caused by stress concentration in
coal seam mining can be obtained as follows.

E(V) = A + mx1 + nx2 + lx3 (13)

(2) Preprocessing of blast vibration measurement data

Table 3 is measured and preprocessed blast vibration data.

Table 3. Measured and preprocessed blast vibration data.

Frequency Measurement
Points

Horizontal
Distance from

the
Explosive

Center R(m)

Vertical
Distance
from the

Explosive
Center
H(m)

Maximum
Charge/Q

(kg)

Peak
vibration
velocity/V
(cm·s−1)

E(V) x1 x2 x3

1

No.1 40

60 18

0.171 −1.77

2.89

3.69 4.09

No.2 55 0.162 −1.82 4.01 4.09

No.3 70 0.134 −2.01 4.25 4.09

No.4 85 0.093 −2.38 4.44 4.09

No.5 100 0.086 −2.45 4.61 4.09
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Table 3. Cont.

Frequency Measurement
Points

Horizontal
Distance from

the
Explosive

Center R(m)

Vertical
Distance
from the

Explosive
Center
H(m)

Maximum
Charge/Q

(kg)

Peak
vibration
velocity/V
(cm·s−1)

E(V) x1 x2 x3

2

No.1 40

50 18

0.183 −1.70

2.89

3.69 3.91

No.2 55 0.17 −1.77 4.01 3.91

No.3 70 0.15 −1.90 4.25 3.91

No.4 85 0.111 −2.20 4.44 3.91

No.5 100 0.095 −2.35 4.61 3.91

3

No.1 40

40 18

0.19 −1.66

2.89

3.69 3.69

No.2 55 0.175 −1.74 4.01 3.69

No.3 70 0.154 −1.87 4.25 3.69

No.4 85 0.115 −2.16 4.44 3.69

No.5 100 0.105 −2.25 4.61 3.69

4

No.1 40

30 18

0.202 −1.60

2.89

3.69 3.40

No.2 55 0.176 −1.74 4.01 3.40

No.3 70 0.155 −1.86 4.25 3.40

No.4 85 0.12 −2.12 4.44 3.40

No.5 100 0.108 −2.23 4.61 3.40

5

No.1 40

20 18

0.31 −1.17

2.89

3.69 3.00

No.2 55 0.25 −1.39 4.01 3.00

No.3 70 0.21 −1.56 4.25 3.00

No.4 85 0.204 −1.59 4.44 3.00

No.5 100 0.184 −1.69 4.61 3.00

(3) Regression analysis

The dependent variable is E(V). The independent variables are x1, x2, and x3. Since
the maximum amount of material in a single section remains the same when blasting, only
x2 and x3 are considered as independent variables, which are analyzed by ordinary linear
regression using SPSS software to establish a multiple linear regression model. The test of
the regression model consisted of three aspects: a significance test of the multiple linear
regression equation, the regression coefficients, and the goodness of fit. Table 4 shows the
model summary, which summarizes the approximate model fit of the surface model.

Table 4. Summary of models C.

Model R R2 Adjusted
R2

Errors in
Standard

Estimation

Change of statistics

Amount
of

Change
in the R2

Amount
of

Change
of F

Degree of
Freedom

1

Degree of
Freedom

2

Significant
Amount

of F
Change

Durbin
Watson

1 0.940 b 0.884 0.874 0.11496 0.884 83.918 2 22 0.000 0.974

The C represents the dependent variable E(V), and b represents the constants x1,x2.

1© The better the fit (R2) is, the better the fit of the regression equation to the sample
observations, which is usually tested by the sample coefficient of determination. R2 is in
the closed interval between 0 and 1, and the closer its value is to 1, the better the fitting
effect; the closer it is to 0, the worse the fit. As can be seen from Table 4: R2 = 0.884 and



Mathematics 2022, 10, 2951 11 of 21

the adjusted value R2 = 0.874, indicating that the regression equation is a good fit for the
sample observations.

2© Analysis of variance (ANOVA). The regression fitting process of ANOVA results
are shown in Table 5. The f-test is a significance test of the regression equation, indicating
the degree of combined influence of multiple factors, the significance value less than 0.05
to be meaningful. SPSS software for the model for the F-test, and the significance value of
0.000 b, less than 0.05, indicating that the burst heart flat distance, burst vertical distance
from the overall of the dependent variable peak vibration speed has a significant impact,
the overall regression equation is significant, there is a linear relationship, statistically
significant, but does not reflect the strength of each independent variable on the overall
impact. A statistically significant model does not mean that all the variables within the
model are statistically significant and further testing of the respective variables is required.

Table 5. Analysis of variance.

Model Quadratic
Sum Freedom Mean

Square F Significance

regression 2.218 2 1.109 83.918 0.000 b

Residuals 0.291 22 0.013

Total 2.509 24

The b represents the constant x2.

3© Estimation of regression coefficients. The valuation of the model regression coeffi-
cients is shown in Table 6, and substituting the values from Tables 3 and 6 into Equation (13)
yields, m = −0.0018, so the multiple linear regression equation is as follows.

E(V) = 2.864− 0.0018x1 − 0.701x2 − 0.498x3 (14)

where E(V) is the dependent variable and represents the ln value of the peak vibration
velocity; x1 represents the effect of the maximum amount of material in a single section
on the peak vibration velocity; x2 represents the effect of the flat distance from the burst
center on the peak vibration velocity; x3 represents the effect of the vertical distance from
the burst center on the peak vibration velocity.

Table 6. Peak vibration speed regression coefficients.

Model

Unstandardized Factor Standardization
Factor

t Significance Tolerance VIF
B Standard

Errors Beta

(Constants) 2.864 0.368 7.780 0.000

lnR −0.701 0.071 −0.716 −9.861 0.000 1.000 1.000

lnH −0.498 0.059 −0.610 −8.403 0.000 1.000 1.000

4© Regression coefficients as well as significance tests, t-test is a test of significance
for individual independent variables. After the t-test, the significance p-value of the burst
heart flat distance and burst heart vertical distance did not exceed 1, indicating a significant
effect on the regression equation, which is statistically significant and cannot be excluded
from the regression equation.

5© Variance inflation factor (VIF), the value is the inverse of tolerance, the larger the
value of VIF, the more serious the covariance problem, when VIF > 10, there is a strong
covariance problem. Since the VIF of the burst heart flat distance and burst heart flat are
1.000, there is no covariance between the model independent variables.
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6© Analysis of residuals. The purpose of residual analysis is to check and ensure the
quality of the test data and to diagnose the effect of the regression. In regression analysis,
there is a category of test values that are outliers, which are far from other values and
show a large residual, affecting the effect of the fit of the regression equation. As can be
seen from Table 7: standard residuals less than 3 and standard predicted values less than
3 indicate that none of the observed data are outliers and will not affect the regression
equation fitting effect.

Table 7. Residual statistics.

- Minimum
Value

Maximum
Value Average Standard

Deviations No. of Cases

Predicted
values −2.4012 −1.2122 −1.8793 0.30401 25

Residuals −0.18534 0.16341 0.00000 0.11007 25

Standard
predicted

values
−1.717 2.194 0.000 1.000 25

Standard
residuals −1.612 1.421 0.000 0.957 25

7© Scatterplot of regression residuals. Figure 8 shows a scatter plot of the standardized
residuals of the regression. As can be seen in Figure 8: the residuals are generally normally
distributed and the multiple linear regression equation is a good fit.
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The R-test values, F-test values, and p-test values indicate that the dependent variable
lnV has a significant linear correlation with the independent variables lnR and lnH. The
regression coefficients A = 2.864, m = −0.0018, n = −0.701, l = −0.498 can be obtained from
Table 6, which can be solved by substituting into Equation (11).

V = 17.53
Q−0.0018

R0.701 · H0.498 (15)
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Therefore, the conclusion drawn from the multiple linear regression model analysis is
that the blast vibration speed is affected by two main factors, which are horizontal distance
from the explosive center and vertical distance from the explosive center. Since the absolute
value of the standard regression coefficient reflects the degree of impact on blast vibration,
the larger the absolute value, the greater the performance of the control. From Table 6, it
can be seen that the horizontal distance from the explosive center on the degree of impact of
blast vibration is greater than the burst center vertical distance, the overall peak vibration
speed with horizontal distance from the explosive center and vertical distance from the
explosive center increases and tends to decay.

The peak vibration velocity propagation laws in the three directions in the results
of this section are basically consistent with the results of previous related studies. The
horizontal radial, tangential, and vertical vibration velocity with the increase in bench
height is generally a decreasing trend. It decays faster in the early stage, slowly decays in
the middle stage, and is relatively flat in the later stage. The influence of the horizontal
distance of the blast center on the blasting vibration is greater than that of the vertical
distance of the blast center.

4. Numerical Simulation Analysis of Blasting Dynamic Effect
4.1. Numerical Model and Material Parameters

(1) Numerical model

As the maximum vibration velocity occurs at the source of the blast at an elevation of
20 m, it is established at an elevation of 20 m with the numerical model. The total bench
height of the model is 40 m, and the explosive source elevation is 20 m. The total length
is 150 m, the thickness of the rock layer perpendicular to the paper surface is 20 m, and
the height of the segmental bench is 10 m, the slope angle of the bench is 70◦, the depth of
the hole is 9 m, the diameter of the hole is 70 mm, and the fill is 3 m. The Lagrange grid
is used to mesh the rock and fill parts, and the ALE grid is used to mesh the explosives
part. The 3D-SOLID164 solid unit was used for the calculation, and the m-kg-s unit system
was used for the numerical model. In order to identify the intrinsic link between blasting
vibration velocity and stress field under bench blasting, five measurement points at the
same horizontal direction as the site monitoring point arrangement and at an elevation of
20 m were selected for analysis during the simulation, as shown in Figure 9.
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(2) State equation

Modeling the relationship between pressure and specific volume during blasting using
the JWL (Jones–Wilkens–Lee) state equation.

P = A(1− ω

R1V
)e−R1V + B(1− ω

R2V
)e−R1V +

ωE
V

(16)

where P is pressure; V is relative volume; E is initial specific internal energy; ω, A, B, R1,
and R2 are material constants.

(3) Explosive material
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The explosive used in this simulation is an emulsion explosive, and emulsion explosive
performance parameters are shown in Table 8.

Table 8. Emulsion explosive performance parameters.

Material ρ/kg·m−3 D /m·s−1 Pc-j/Pa A B R1 R2 ω E0 /Pa V0

Emulsion explosive 1.20 × 103 3.50 × 103 6 × 109 2.1444 × 1011 1.82 × 108 4.2 0.9 0.15 4.19 × 108 1

(4) Rock material

The relevant parameters of rock materials used in this simulation are shown in Table 9.

Table 9. Physical and mechanical parameters of rock.

Material Density/kg·m−3
Elastic

Modulus
/Pa

Poisson’s
Ratio

Compressive
Yield

Strength /Pa
BETA FS

Rock 2200 2 × 109 0.3 7 × 107 1 0.8

(5) Filling material

The SOIL_AND_FOAM material model was selected as the fill material based on the
rock dust and clay from the borehole used for filling the sandstone mine site, with the main
parameters shown in Table 10.

Table 10. Calculation parameter table of filling materials.

Material Density/kg·m−3 Shear Modulus /Pa Bulk Modulus/Pa A0 A1 A2 PC

Soil 1800 7.8 × 106 2.4 × 109 2.7 × 10−3 1.3 × 10−7 0.12 0

4.2. Analysis of Dynamic Effects

According to the above model of the arrangement of monitoring points, the elevation
of 20 m, different horizontal distances from the explosive center of the velocity response
for analysis, so selects the bench height of 20 m, horizontal distance from the explosive
center of 40 m, 55 m, 70 m, 85 m, 100 m, respectively. Five measurement points at each
direction and synthesis of the velocity change with a time curve graph of vibration velocity
are shown in Figure 10.
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of 20 m.

From the numerical calculation of the dynamic response results, Figure 10 shows the
nodal vibration velocity time course diagram at different horizontal distances, Figure 11
shows the tangential velocity cloud at different time nodes; Figure 12 shows the synthetic
velocity cloud, as the model is a symmetrical boundary condition, the constraint imposed is
that the displacement in the Z direction is zero, i.e., the vibration velocity and acceleration
in the Z direction are zero, the five measurement points are in the same horizontal direction
whether in the field test or in the numerical model velocity in the Z direction are close to
zero, and the velocity in the Z direction (tangential) is not compared to the relative error, as
shown in Table 11.
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Table 11. Comparison of numerical results and measured values for an elevation of 20 m.

Measuring
Point

/Nodal
Point

Numerical Results V2/(cm·s−1) Measured Values V1/(cm·s−1) Relative Error |V1/V2−1|×100%

Radial
Direction

Vertical
Direction

Tangential
Direction

Resultant
Velocity

Radial
Direction

Vertical
Direction

Tangential
Direction Total Radial

Direction
Vertical

Direction
PEAK

VALUE

1/A 0.329 0.257 0.016 0.336 0.310 0.248 0.225 0.310 5.77 3.5 7.74

2/A 0.252 0.225 0.024 0.260 0.250 0.224 0.210 0.250 0.8 0.4 3.8

3/B 0.218 0.190 0.023 0.221 0.210 0.185 0.180 0.210 3.6 2.6 4.9

4/C 0.215 0.182 0.022 0.219 0.204 0.169 0.153 0.204 5.99 7.7 6.8

5/D 0.197 0.170 0.020 0.186 0.184 0.163 0.136 0.184 6.6 4.1 1.07

4.3. Comparison Analysis between Numerical Simulation Results and Field Measurements

The comparison of the numerical simulation results with the peak vibration speed of
the field test and plotting its variation on a line graph, is shown in Figure 13.
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As can be seen from Table 6 and Figure 13, the numerical simulation results are
generally greater than the field test vibration velocity data results, and their relative errors
are all below 10%, and three directions peak vibration velocity decay trends do not differ
much and remain basically the same. Since the numerical simulation ignores the internal
structure of the actual rock mass, it simplifies the model as a continuous medium, and
does not consider the influence of rock fracture zones, topography, and discontinuous
surfaces, etc., thus making the numerical simulation calculation results generally greater
than the results of field test monitoring. The relative error in the horizontal radial direction
is basically greater than the error in the vertical direction, but the total error is not large. The
peak vibration velocity in all three directions decay strictly with increasing the horizontal
distance of the explosive center, and are basically consistent with field measurements.

Analysis of the shear stress response of the five measurement points and the field
actual measurement program to maintain consistency with the corresponding unit as
shown in Figure 14, respectively, units 6339, 6179, 6019, 5859, 5699, extract the maximum
shear stress in its five units with time data, as shown in Figure 15.
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In summary, the elevation is 20 m, five monitoring points of the horizontal shear
stress and vibration velocity decay strictly with an increasing horizontal distance from the
explosive center, shear stress decays faster in the near zone of the source and slower in the
far area, maybe in blasting seismic wave propagation to the residential house, the complex
geological structure changes its propagation direction, and the energy attenuation caused,
in order to explore the relationship between the horizontal radial shear stress and the peak
vibration velocity, so non-linear fitting analysis is used, as shown in Figure 17.
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The relationship between the horizontal radial peak shear stress and the composite
peak vibration velocity is obtained from the fitting analysis is as follows.

τ = 2.14829− 1.21417v + 19.24462v2 (R2 = 0.99594) (17)

According to the safety regulations for blasting (GB6722-2014), the relationship be-
tween shear stress and vibration velocity can be combined to determine whether the blast
exceeds the range of safety regulations and the shear strength of the building. Then, the
nature of the structural material is used to determine whether the building is damaged
or destroyed, providing a reference for blast vibration control, hole net parameters, and
design indicators.

The changes of peak vibration velocity and shear stress in the results of this section
are basically consistent with the results of previous related studies. It can be seen from the
chart and table that the numerical simulation results are generally greater than the field
test vibration velocity data results, and their relative errors are all below 10%.

5. Conclusions

In this study, based on the field measurement data of the bench blasting vibration,
the peak vibration velocity of the measurement point is comprehensively analyzed. The
comparison and verification are carried out with the numerical simulation method. The
vibration propagation law and dynamic effect of bench blasting obtained from the measured
values and numerical results are consistent.

(1) The peak vibration velocity in all three directions decays strictly with increasing
elevation and horizontal distance. The elevation correction formula proposed by CRSRI and
the least-squares method are used to perform regression analysis of the monitoring data.
An empirical formula for peak vibration velocity attenuation is established. According to
the safety regulations for blasting (GB6722-2014), the safe vibration velocity was no more
than 1.5 cm/s, and the civil house was in a safe state. Fitting analysis to obtain the peak
vibration velocity and the relationship between the horizontal distance from the explosive
center can determine whether blasting vibration occurs on the adjacent buildings.

(2) Shear stress decreases strictly with increasing horizontal distance of the explosive
center, shear stress and vibration velocity decay faster in the near zone of the source and
slower in the far area.

(3) The analysis found a quadratic, exponential relationship between shear stress and
vibration velocity, and the research results can be used as a safety criterion for buildings
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under the action of blasting, providing a reference for blasting vibration control, hole net
parameters, and design indicators.

(4) SPSS statistical software is applied to the parameters of the multiple linear re-
gression analysis, the peak vibration speed of the multiple linear regression equation, the
establishment of the peak vibration speed of the regression model. Through the regression
model for F-test, t-test, and regression diagnosis, we determined that there is no co-linearity
between the flat distance of the burst core and the vertical distance of the burst core, and
its overall impact on the regression equation and regression coefficient is significant, the
multiple linear regression equation fits well, and the use of multiple linear regression
analysis model can predict the change of mass vibration intensity relatively accurately.

The finite element method in the numerical simulation has a certain limitation to
simulate the practice situations of background engineering. In addition, further research
should also consider the influence of blasting vibration frequency and the internal structure
of rock mass on the strength of blasting vibration, especially the rock mass containing
karst caves.
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