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Abstract: This paper studies variable selection for the data set, which has heavy-tailed distribution
and high correlations within blocks of covariates. Motivated by econometric and financial studies,
we consider using quantile regression to model the heavy-tailed distribution data. Considering the
case where the covariates are high dimensional and there are high correlations within blocks, we
use the latent factor model to reduce the correlations between the covariates and use the conquer
to obtain the estimators of quantile regression coefficients, and we propose a consistency strategy
named factor-augmented regularized variable selection for quantile regression (Farvsqr). By principal
component analysis, we can obtain the latent factors and idiosyncratic components; then, we use
both as predictors instead of the covariates with high correlations. Farvsqr transforms the problem
from variable selection with highly correlated covariates to that with weakly correlated ones for
quantile regression. Variable selection consistency is obtained under mild conditions. Simulation
study and real data application demonstrate that our method is better than the common regularized
M-estimation LASSO.
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1. Introduction

Along with the continuous development of data collection and storage technology,
data sets that present high dimensions and high correlations within blocks of variables can
cause some new research problems in economics, finance, genomics, statistics, machine
learning, etc. Because for such data, we need to make a variable selection in highly
correlated variables.

There has been significant research into variable selection methods, and many variable
selection methods have been developed, such as the regularized M-estimation method,
which includes the LASSO [1], SCAD [2], elastic net [3], and the Dantzig selector [4]. There
are many references to the regularized M-estimation method’s theoretical properties and
algorithmic studies, including [5–14].

Most existing variable selection methods assume that the covariates are cross-sectionally
weakly correlated, even, and serially independent. However, these assumptions are easily
invalid in the data sets, which present high dimensions and high correlations within
blocks of covariates, such as economic and financial data sets. For example, economics
studies [15–17] show a strong correlation within blocks of covariates. In order to deal with
the problem, Fan et al. proposed factor-adjusted variable selection for mean regression [18].

However, mean regression cannot simultaneously fit the skew and heavy-tailed data;
mean regression is not robust against the outliers. Koenker and Bassett [19] proposed quan-
tile regression (QR) to model the relationship between the response y and the covariates x.
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Compared to the mean regression, QR has two significant advantages: (i) QR can be used
to model the entire conditional distribution of y given x, and thus, it provides insightful
information about the relationship between y and x. The conditional distribution function
of Y given x is F(y|x) = P(Y ≤ y|x). For 0 < τ < 1, the τ−th conditional quantile of
Y given x is defined as QY|x(τ) = inf{t : F(t|x) ≥ τ}. (ii) QR is robust against outliers
and can be used to model the response in which distribution is skewed or heavy-tailed
without correct error assumption. These two advantages make QR an appealing method to
reflect data information that is difficult for the mean regression. The researchers can refer
to Koenker [20] and Koenker et al. [21] for a comprehensive overview of methods, theory,
computation, and many extensions of QR.

Ando and Tsay [22] proposed factor-augmented predictors for quantile regression,
but the model did not contain the idiosyncratic components of the covariates, so it will cause
an information loss of explanatory variables. So, we refer to Fan et al. [18] and propose
the factor-augmented regularized variable selection ( Farvsqr) for quantile regression to
overcome the problems caused by the correlations within the covariates. As usual, let us
assume that the i-th observation covariates xi =

(
xi1, · · · , xip

)T follow an approximate
factor model,

xi = Λ fi + εi, (1)

where fi is a k × 1 vector of latent factors, Λ is a p× k loading matrix, and εi is a p× 1
vector of idiosyncratic components or errors which are independent of fi.

The factor model has become one of the most popular and powerful tools in multi-
variate statistics and deeply impacted biology [23–25], economics, and finance [15,16,26].
Chamberlain and Rothschild [27] first proposed using principal component analysis (PCA)
to solve the approximate factor model’s latent factors and loading matrix. Subsequently,
much literature explores the factor model using the PCA method [28–32]. In our paper, we
will use the PCA to obtain the estimators of Λ, fi, and εi.

The process of Farvsqr is first to estimate model (1) and obtain the independent or
low-correlated estimators of fi and εi. Then, we replace the high correlation covariates
xi with the estimators fi and εi. The second step is to solve a common regularized loss
function. In this paper, we study Farvsqr by giving the specific parameter-solving process
and the theoretical properties. Moreover, both simulation and real data application studies
are presented.

The main contribution of our paper is to generalize the factor-adjusted regularized
variable selection of mean regression to the quantile regression to accommodate the skew
and heavy-tailed data. Section 2 introduces the smoothed quantile regression and the
approximate factor models. Section 3 introduces the variable selection methodology of
Farvsqr. Section 4 presents the general theoretical results. Section 5 provides simulation
studies, and Section 6 applies our model to the Quarterly Database for Macroeconomic
Research (FRED-QD).

2. Quantile Regression and Approximate Factor Model
2.1. Notations

Now, we will give some notations that will be used throughout the paper. Let In denote
the n× n identity matrix; 0 denotes the n×m zero matrix; 0n and 1n denote the zero vector
and one vector in Rn, respectively. For a matrix W, let ‖W‖max = maxi,j‖Wij‖ denote its max
norm, while ‖W‖F and ‖W‖p denote its Frobenius and induced p-norms, respectively. Let
λmin(W) denote the minimum eigenvalue of W if it is symmetric. For W ∈ Rn×m, I ∈ [n]
and J ∈ [m], define WI J =

(
Wij
)

i∈I,j∈J , WI· =
(
Wij
)

i∈I,j∈[m]
, W·J =

(
Wij
)

i∈[n],j∈J . For a

vector w ∈ Rp and L ⊆ [p], define wL = (wi)i∈L to be its subvector. Let ∇ and ∇2 be the
gradient and Hessian operators. For f : Rp → R and I, J ∈ [p], define ∇I f (x) = (∇ f (x))I
and ∇2

I J f (x) =
(
∇2 f (x)

)
I J . Let N(µ, Σ) denote the normal distribution with mean µ and

covariance matrix Σ.
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2.2. Regularized M-Estimator for Quantile Regression

This subsection will begin with high-dimensional regression problems with heavy-
tailed data. Let y = (y1, · · · , yn) be the response vector, xi = (xi1, . . . , xip)

T, i = 1, . . . , n
be the p-dimensional vectors of the explanatory variables. Let X =

(
1n, (x1, . . . , xn)T) ∈

Rn×(p+1) be the design matrix and y = (y1, y2, . . . , yn)T ∈ Rn be the response vector. Let
X1 = (x1, . . . , xn)

T ∈ Rn×p be the matrix including n samples of the p-dimensional vector.
In this paper, we will fit the heavy-tailed data with quantile regression. Let Fyi |xi

be
the conditional cumulative distribution function of yi given xi. Under the linear quantile
regression assumption, the τth conditional quantile function is defined as

F−1
yi |xi

(τ) = β∗0(τ) +
p

∑
j=1

β∗j (τ)xij =
(

1, xT
i

)
β∗(τ) (2)

where the quantile τ ∈ (0, 1), β∗(τ) =
(

β∗0(τ), β∗1(τ), · · · , β∗p(τ)
)T

is the true coefficients
of the quantile regression that changes with the quantile τ. For the convenience of writing,
we will omit the τ given in the following.

Under the linear quantile regression assumption, the common regression coefficient
estimator at a given τ can be given as [19]

β̂ ∈ argminβ∈Rp+1 R(y, Xβ) = argminβ∈Rp+1
1
n

n

∑
i=1

ρτ(yi −
(

1, xT
i

)
β), (3)

where ρτ(u) = u(τ − I(u≤0)) is the check function, I(u≤0) is the indicator function, and τ
is the quantile. However, as we know, the check function is not differentiable, which
is very different from other widely used objective functions. The non-differentiable has
two obvious disadvantages: (i) theoretical analysis of the estimator is very difficult; and
(ii) gradient-based optimization methods cannot be used. So, He et al. [33] proposed
a smoothed quantile regression for large-scale inference, which is denoted as conquer
(convolution-type smoothed quantile regression). He et al. [33] concluded that the conquer
method could improve estimation accuracy and computational efficiency for fitting large-
scale linear quantile regression models rather than by minimizing the check function (3).
So, in our paper, we will use the conquer to estimate the quantile regression. The estimator
is given by

β̂ ∈ argminβ∈Rp+1 R(y, Xβ) = argminβ∈Rp+1
1
n

n

∑
i=1
Lh(yi −

(
1, xT

i

)
β) (4)

where Lh(v) = (ρτ ∗ Kh)(v) =
∫ ∞
−∞ ρτ(w)Kh(w − v)dw, K(·) is a symmetric and non-

negative kernel function in which the integral is 1, and h is the bandwidth. Referring to
He et al. [33], we have the definition:

Kh(v) =
1
h

K(v/h),Kh(v) = K(v/h),K(v) =
∫ v

−∞
K(w)dw, v ∈ R.

The conquer function R(y, Xβ) is twice continuously differentiable relative to β;
the gradient matrix and hessian matrix are as follows:

∇R(y, Xβ) =
1
n

n

∑
i=1
{Kh

((
1, xT

i

)
β− yi

)
− τ}

(
1, xT

i

)T
,

∇2R(y, Xβ) =
1
n

n

∑
i=1

Kh

((
1, xT

i

)
β− yi

)(
1, xT

i

)T(
1, xT

i

)
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When β = (β0, β1, . . . , βp)T is a sparse vector, it is common to estimate β through the
regularized M-estimator as the following:

β̂ ∈ argminβ∈Rp+1 R(y, Xβ) + λQ(β)

= argminβ∈Rp+1
1
n

n

∑
i=1
Lh(yi −

(
1, x>i

)
β) + λQ(β)

(5)

We expect that the estimator of (5) satisfies two formulas: ‖β̂− β∗‖ P−→ 0 for some
norm ‖ · ‖ and P(supp(β̂) = supp(β∗))→ 1 as n→ ∞. Zhao and Yu [9] studied the LASSO
estimator for a sparse linear model and showed that there exists an irrepresentable condition
that is sufficient and almost necessary for two formulas when we assume supp(β∗) = [l] =
L. Let (X)L and (X)Lc denote the submatrices of X, which are the first l and the rest
(p + 1− l) of the columns, respectively. Then, the irrepresentable condition is:

‖(X)>Lc(X)L[(X)T
L(X)L]

−1‖∞ ≤ 1− γ (6)

where γ ∈ (0, 1), but when the explanatory variables strongly correlate with the blocks,
the irrepresentable condition will be easily invalid [18].

2.3. Approximate Factor Model

When there exist strong correlations between the covariates xi, in order to estimate the
parameters β, the common method is the latent factor model. There are many papers in the
literature that studied the latent factor model in econometrics and statistics [15,16,18,30,34].

As usual, let us assume that xi ⊆ Rp, i = 1, . . . , n follows the approximate factor
model (1). As we know, the xi, i = 1, . . . , n are the only observed variables; we need to
estimate Λ, fi, εi, i = 1, . . . , n. Generally, it is assumed that k is independent of n [18]. Let
F = (f1, . . . , fn)T ∈ Rn×k be the latent factors matrix, and ε = (ε1, . . . , εn)T ∈ Rn×p is the
errors matrix. Then, Equation (1) can be written in a matrix as the following:

X1 = FΛT + ε. (7)

Here, we need to note that xi = (xi1, . . . , xip)
T, i = 1, . . . , n have a strong correlation

within the blocks, not including the intercept, so the matrix form of the latent factor model
is X1 but not X. We impose the basic assumption for the latent factor model to identify the
model as Assumption 1 [18].

Assumption 1. Assume that cov(fi) = Ik, ΛTΛ is diagonal, and all the eigenvalues of ΛTΛ/p
are bounded away from 0 and ∞ as p→ ∞.

3. Factor-Augmented Regularized Variable Selection
3.1. Methodology

Let Λ0 = (0k, ΛT)T ∈ R(p+1)×k, and ε1 = (1n, ε) ∈ Rn×(p+1). With the approximate
factor model (7), we have X = FΛT

0 + ε1, so we can obtain:

Xβ = FΛT
0 β + ε1β = Fα + ε1β, (8)

where α = ΛT
0 β ∈ Rk. So, the regularized variable selection (5) can be written as:

β̂ ∈ argminβ∈Rp+1,α=ΛT
0 β∈Rk R(y, Xβ) + λQ(β)

= argminβ∈Rp+1,α=ΛT
0 β∈Rk

1
n

n

∑
i=1
Lh(yi − (1, εT

i )β− fT
i α) + λQ(β)

(9)
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We need to estimate the coefficient of xi, i = 1, · · · , n, namely β, so we consider α
as the nuisance parameter. Now, let us consider a new estimator without the constraint
α = ΛT

0 β,
β̂ ∈ argminβ∈Rp+1,α∈Rk R(y, Xβ) + λQ(β)

= argminβ∈Rp+1,α∈Rk
1
n

n

∑
i=1
Lh(yi − (1, εT

i )β− fT
i α) + λQ(β)

(10)

From Equation (10), we can see that the vector (εT
i , fT

i )
T can be considered as the new

explanatory variables. In other words, we lift the covariate space from Rp+1 to Rp+1+k with
the latent factor model, and the highly dependent covariates xi are replaced by weakly
dependent (εT

i , fT
i )

T.
We have the following lemma, whose proof is given in Appendix A:

Lemma 1. Consider the model (2), let R(y, Xβ) = 1
n ∑n

i=1 Lh(yi −
(
1, xT

i
)

β), ηi =

Kh
((

1, xT
i
)

β∗ − yi
)
− τ and vi = (1, εT

i , fT
i )

T ∈ Rp+1+k. If E(ηivi) = 0p+1+k, then(
β∗, ΛT

0 β∗
)
= argminβ∈Rp+1,α∈Rk E[R(y, Fα + ε1β)]. (11)

By the latent factor model, (ε, F) has a much weaker correlation than X1. So, we can
calculate the estimators by the following two steps:

1. Let X1 ∈ Rn×p be the design matrix with strong cross-section correlations. Fit the ap-
proximate factor model (7), and the estimators of Λ, F, and ε are denoted as Λ̂, F̂, and ε̂.
This paper will use the principal component analysis (PCA) to estimate all the pa-
rameters in the latent factor model. Regarding PCA, the references such as Bai [28]
and Fan et al. [18,30] are available. More specifically, the columns of F̂/

√
n are the

eigenvectors of X1XT
1 corresponding to the top k eigenvalues, Λ̂ = 1

n XTF̂.

2. Define V̂ =
(
1n, ε̂, F̂

)
∈ Rn×(p+1+k) and θ =

(
βT, αT

)T
∈ Rp+1+k. Then, β̂ is obtained

from the first p + 1 entries of the estimator vector of θ.

θ̂ ∈ argminθ∈Rp+1+k R(y, V̂θ) + λQ(θ[p+1])

= argminθ∈Rp+1+k
1
n

n

∑
i=1
Lh(yi − v̂T

i θ) + λQ(θ[p+1]),
(12)

where v̂T
i is the i-th row of the matrix V̂.

We call the above two-step method as the factor-augmented regularized variable
selection for quantile regression (Farvsqr). We successfully changed the quantile variable
selection with highly correlated covariates X in (5) to quantile variable selection with
weakly correlated or uncorrelated ones by the latent factor model in (12). Formula (12) is a
convex function that can be minimized via the method conquer proposed by He et al. [33].

3.2. Selection Method of λ

Throughout all the study, the tuning parameter λ is selected by 10-fold cross-validation.
First, we are given an equally spaced sequence of size 50 with the range from 0.05 to 2,
which is the value range of λ. Second, the samples are divided into 10 pieces, nine of which
are used as training sets and one of which is used as the test set. Third, for each value of λ,
calculate the estimators of the model (12) using the training sets, then predict the test set,
and select the λ which obtains the minimum value of the mean square error on the test set.
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4. Theoretical Analysis

In this section, we will give the theoretical guarantees of the estimator from Formula (12)
under the condition of the LASSO penalty. As the description before, β∗ is the first p + 1
elements of θ∗. Here, let L = supp(θ∗), L1 = supp(β∗), L2 = [p + 1 + k]\L. When the
explanatory variables X1 can be fitted well by the approximate factor model (7), then we can
use the true augmented explanatory variables vi = (1, εT

i , fT
i )

T to solve the objective function

minθ∈Rp+1+k R(y, Vθ) + λ‖θ[p+1]‖1,

where V = (vi, · · · , vn)
T. However, V is not observable, so we need to use its estimator V̂

to solve the objective function

minθ∈Rp+1+k R(y, V̂θ) + λ‖θ[p+1]‖1.

Assumption 2. K(z) ∈ C2(R). For some constants W2 and W3, we have 0 ≤ K(z) ≤
W2, |K′(z)| ≤W3.

Assumption 3. Let θ∗ =

(
β∗

ΛT
0 β∗

)
. It is assumed that ρ2 > ρ∞ > 0 and γ ∈ (0, 0.5)

such that
‖[∇2

LLR(y, Vθ∗)]−1‖l ≤
1

4ρl
, l = 2, ∞,

‖∇2
L2LR(y, Vθ∗)[∇2

LLR(y, Vθ∗)]−1‖∞ ≤ 1− 2γ.

Assumption 4. ‖V‖ ≤ W0
2 for some constant W0 > 0. In addition, there exists k× k nonsingular

matrix M0, and M =

(
Ip+1 0(p+1)×k

0(p+1)×k M0

)
such that for V̄ = V̂M, we have ‖V̄−V‖max ≤

W0
2 and σ = maxj∈[p+1+k]

(
1
n ∑n

i=1
∣∣v̄ij − vij

∣∣2)1/2
≤ 4ρ∞γ

3W0W2|L|2
.

Theorem 1. Suppose Assumptions 2–4 hold. Define W = W3
0 W3L3/2 and

ω = maxj∈[p+1+k]

∣∣∣∣∣ 1n n

∑
i=1

v̄ij[Kh

((
1, xT

i

)
β∗ − yi

)
− τ]

∣∣∣∣∣.
If 7ω

γ < λ < ρ2ρ∞γ

12W
√

L
, then, we have supp

(
β̂
)
⊆ supp(β∗) and ‖β̂− β∗‖∞ ≤ 6λ

5ρ∞
, ‖β̂− β∗‖2 ≤

4λ
√

L
ρ2

, ‖β̂− β∗‖1 ≤ 6λ
√

L
5ρ∞

.

5. Simulation Study

In this section, we will assess the performance of the method proposed by this pa-
per through simulation. We compare Farvsqr with LASSO and SCAD under different
simulation data.

We generate the response yi from the model yi = xiβ
∗ + ei, where the true coefficients

β∗ are set to be β∗ =
(
6, 5, 4, 0T)T, and the error part ei is following three models:

(i) ei ∼ N(0, 1);
(ii) ei ∼ t(2);
(iii) ei ∼ 0.1 ∗ N(0, 1) + 0.9 ∗ N(0, 9).
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The covariates xi are generated from one of the following two models:

(i) Factor model. xi = Λfi + εi with k = 3. Factors are generated from a stationary
VAR(1) model fi = Φfi−1 + ηi with f0 = 0. The (i, j)-th entry of Φ is set to be 0.5
when i = j and 0.3|i−j| when i 6= j. We draw Λ, εi, and ηi from the i.i.d. standard
normal distribution.

(ii) Equal correlated case. We draw xi from i.i.d. Np(0, Σ), where Σ has diagonal elements
1 and off-diagonal elements 0.4.

For the factor model, in order to comprehensively evaluate the Farvsqr, given the
quantile τ, we compare the influence of the different sample sizes and the explanatory
variable’s dimensionality under different error distributions. We use the estimation error,
namely ‖β̂− β∗‖2, average model size, percentage of true positives (TP) for β, percentage
of true negatives (TN) for β, and the elapsed time to compare the Farvsqr and LASSO.
The percentage of TP and TN are defined as follows:

TP =
1
p

p

∑
j=1

I(β̂j 6= 0, βj 6= 0, sign(β̂j) = sign(βj)),

TN =
1
p

p

∑
j=1

I(β̂j = 0, βj = 0).

(13)

We compare the model performance of Farvsqr with LASSO under different er-
ror distributions and explanatory variable relationships; for each situation, we simulate
500 replications.

• Influence of sample size

We compare the model with the fixed explanatory variable’s dimensionality p = 200;
the sample size is set to be 100, 300, 500, 800, and 1000, respectively. For each sample size,
we simulate 500 replications and calculate the average estimation error, average model size,
TP, TN, and elapsed time. The results are presented in Tables 1–3. From the results, we can
see that under three different error distributions, for each τ and n, the average estimation
error of Farvsqr is smaller than that for LASSO. For example, when τ = 0.25, n = 1000 of
normal distribution, the average estimation errors of Farvsqr and LASSO are 0.127 and
2.586, respectively. As for the average model size, almost all the values of Farvsqr are
smaller than those of LASSO, except for n = 100. For TP, all the scenarios are the same
for Farvsqr and LASSO, so we can say that both can select the true non-zero variables.
For elapsed time, all the values of Farvsqr are smaller than those of LASSO, so we can say
that our method is more efficient. From all of the above, we can say that Farvsqr is better
than LASSO. For every quantile τ, as the number of samples increases, the estimation error
gradually decreases for Farvsqr, but for LASSO, the impact of sample size is not obvious. It
may be that for the factor model, LASSO is not approximate, so although the sample size
becomes larger, it cannot change the defects of LASSO method.
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Table 1. The comparison for p = 200, N(0, 1) with the factor model.

Farvsqr LASSO

τ n Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

n = 100 0.442 26 3/200 174/200 1.338 2.522 24 3/200 176/200 3.876
n = 300 0.218 21 3/200 179/200 2.697 2.312 27 3/200 173/200 12.818
n = 500 0.174 19 3/200 181/200 2.951 2.215 35 3/200 165/200 18.989
n = 800 0.139 20 3/200 180/200 2.108 2.443 38 3/200 162/200 23.558

n = 1000 0.127 19 3/200 181/200 2.268 2.586 42 3/200 158/200 28.702

τ = 0.5

n = 100 0.346 31 3/200 169/200 1.015 2.226 23 3/200 177/200 3.418
n = 300 0.200 22 3/200 178/200 1.946 2.054 28 3/200 172/200 12.735
n = 500 0.154 22 3/200 178/200 1.792 2.132 36 3/200 164/200 18.406
n = 800 0.132 20 3/200 180/200 1.811 2.355 40 3/200 160/200 23.207

n = 1000 0.116 19 3/200 181/200 2.004 2.594 45 3/200 155/200 27.984

τ = 0.75

n = 100 0.418 26 3/200 174/200 1.255 2.457 22 3/200 178/200 3.525
n = 300 0.228 21 3/200 179/200 2.715 2.218 26 3/200 174/200 12.949
n = 500 0.171 20 3/200 180/200 3.049 2.241 34 3/200 166/200 19.219
n = 800 0.141 21 3/200 179/200 2.099 2.474 39 3/200 161/200 24.118

n = 1000 0.128 20 3/200 180/200 2.216 2.694 44 3/200 156/200 28.402

τ = 0.9

n = 100 0.583 23 3/200 177/200 1.784 3.337 22 3/200 178/200 3.727
n = 300 0.285 21 3/200 179/200 4.746 2.718 25 3/200 175/200 13.996
n = 500 0.216 20 3/200 180/200 6.356 2.640 31 3/200 169/200 20.913
n = 800 0.171 21 3/200 179/200 5.812 2.914 37 3/200 163/200 25.975

n = 1000 0.158 20 3/200 180/200 3.923 3.045 42 3/200 158/200 29.713
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Table 2. The comparison for p = 200, t2 with the factor model.

Farvsqr LASSO

τ n Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

n = 100 0.675 22 3/200 178/200 2.587 2.513 20 3/200 180/200 7.432
n = 300 0.347 22 3/200 178/200 5.262 2.074 26 3/200 174/200 18.704
n = 500 0.257 22 3/200 178/200 5.251 2.230 34 3/200 166/200 27.196
n = 800 0.201 21 3/200 179/200 3.389 2.487 42 3/200 158/200 27.192

n = 1000 0.158 23 3/200 177/200 3.457 2.394 40 3/200 160/200 24.866

τ = 0.5

n = 100 0.545 25 3/200 175/200 1.177 2.256 20 3/200 180/200 3.862
n = 300 0.257 22 3/200 178/200 2.988 1.830 27 3/200 173/200 13.639
n = 500 0.194 21 3/200 179/200 2.728 2.029 34 3/200 166/200 22.801
n = 800 0.149 20 3/200 180/200 2.502 2.268 41 3/200 159/200 26.217

n = 1000 0.127 19 3/200 181/200 2.704 2.321 40 3/200 160/200 23.114

τ = 0.75

n = 100 0.655 26 3/200 174/200 1.366 2.608 22 3/200 178/200 3.672
n = 300 0.320 24 3/200 176/200 4.114 2.101 27 3/200 173/200 14.301
n = 500 0.254 22 3/200 178/200 4.757 2.228 34 3/200 166/200 25.602
n = 800 0.182 24 3/200 176/200 3.279 2.435 41 3/200 159/200 27.394

n = 1000 0.177 21 3/200 179/200 3.320 2.415 38 3/200 162/200 25.605

τ = 0.9

n = 100 1.222 26 3/200 174/200 2.779 3.617 22 3/200 178/200 5.240
n = 300 0.638 22 3/200 178/200 7.501 2.743 26 3/200 174/200 17.543
n = 500 0.487 22 3/200 178/200 9.414 2.738 30 3/200 170/200 27.684
n = 800 0.373 22 3/200 178/200 9.757 2.867 38 3/200 162/200 31.129

n = 1000 0.353 21 3/200 179/200 9.844 2.766 37 3/200 163/200 22.628
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Table 3. The comparison for p = 200, 0.1 ∗ N(0, 1) + 0.9 ∗ N(0, 9) with the factor model.

Farvsqr LASSO

τ n Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

n = 100 1.119 28 3/200 172/200 1.599 2.667 22 3/200 178/200 4.086
n = 300 0.620 24 3/200 176/200 3.893 2.762 32 3/200 168/200 13.850
n = 500 0.502 23 3/200 177/200 4.236 2.648 36 3/200 164/200 21.379
n = 800 0.379 24 3/200 176/200 3.461 2.509 39 3/200 161/200 28.357

n = 1000 0.338 23 3/200 177/200 3.482 2.304 39 3/200 161/200 27.955

τ = 0.5

n = 100 1.049 30 3/200 170/200 1.252 2.359 22 3/200 178/200 3.583
n = 300 0.583 25 3/200 175/200 3.082 2.608 32 3/200 168/200 13.517
n = 500 0.469 24 3/200 176/200 3.074 2.481 37 3/200 163/200 20.439
n = 800 0.349 24 3/200 176/200 2.845 2.395 40 3/200 160/200 27.249

n = 1000 0.311 22 3/200 178/200 2.969 2.204 40 3/200 160/200 28.307

τ = 0.75

n = 100 1.183 28 3/200 172/200 1.498 2.606 22 3/200 178/200 3.552
n = 300 0.618 27 3/200 173/200 3.882 2.808 32 3/200 168/200 13.790
n = 500 0.491 23 3/200 177/200 4.157 2.695 36 3/200 164/200 21.212
n = 800 0.380 23 3/200 177/200 3.406 2.531 38 3/200 162/200 27.762

n = 1000 0.338 24 3/200 176/200 3.421 2.279 39 3/200 161/200 27.729

τ = 0.9

n = 100 1.469 24 3/200 176/200 2.078 3.490 21 3/200 179/200 3.577
n = 300 0.856 21 3/200 179/200 6.467 3.380 31 3/200 169/200 15.179
n = 500 0.640 22 3/200 178/200 7.692 3.175 33 3/200 167/200 23.323
n = 800 0.500 21 3/200 179/200 7.326 2.871 34 3/200 166/200 29.211

n = 1000 0.434 23 3/200 177/200 6.427 2.638 37 3/200 163/200 32.147
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• Influence of explanatory variable’s dimensionality

We compare the model with a fixed sample size n = 1000; the explanatory variable’s
dimensionality is set to be 200, 300, 400, 500, and 600, respectively. For each explanatory
variable’s dimensionality, we simulate 500 replications and calculate the average estimation
error, average model size, TP, TN, and elapsed time. The results are presented in Tables 4–6.
From the results, we can see that under three different error distributions, for each τ and p,
the average estimation error of Farvsqr is smaller than that of LASSO. For example, when
τ = 0.25, p = 200 of normal distribution, the average estimation errors of Farvsqr and
LASSO are 0.124 and 2.059, respectively. As for the average model size, all the values of
Farvsqr are smaller than those for LASSO. For TP, all the scenarios are the same for Farvsqr
and LASSO, so we can say that both can select the true non-zero variables. For TN, all
the values of Farvsqr are bigger than those of LASSO, so we can say that LASSO prefers
to select redundant variables. For elapsed time, all the values of Farvsqr are smaller than
those of LASSO, so we can say that our method is more efficient. From all of the above,
we can say that Farvsqr is better than LASSO. For every quantile τ, as the dimension
increases, the average estimation error also increases, which is consistent with common
sense, however, the increase in range of Farvsqr is smaller than that for LASSO. For example,
when τ = 0.25 normal distribution, the values of Farvsqr are 0.124 and 0.158, respectively,
for p = 200 and p = 500, the relative increase is 27.42%; as for LASSO, the relative increase
is 85.58%, so we can say that LASSO is vulnerable to the increase of variable dimension.

• Equal correlated case

We also compare our model with LASSO under different sample sizes and explanatory
variable’s dimensionality situation for the equal correlated case. By simulating 500 replica-
tions, we calculate the average estimation error, average model size, TP, TN, and elapsed
time. The results are presented in Tables 7–12. From all the tables, we can see that essentially
all the elapsed time of Farvsqr is shorter than LASSO; at the same time, the estimation error
is slightly larger for most situations. For the fixed explanatory variable’s dimensionality
p = 200, as the number of samples increases, the elapsed time gradually decreases for
Farvsqr and LASSO, but the relative increase is more significant for LASSO. For example,
when τ = 0.25 for N(0, 1), the elapsed time of two methods for n = 100 are 0.687 and
1.099, respectively, and the elapsed time of two methods for n = 1000 are 1.965 and 3.856,
respectively, and the relative increase is 186% for Farvsqr. As for LASSO, the relative
increase is 251%. So, we can say that the efficiency of LASSO is easily affected by the
sample size, and it is not appropriate for the large sample data. So, we can say that Farvsqr
pays less cost for the similar correlated case.

From all the results above, we can draw the following conclusions:

(i) When the covariates are high dimensional and high correlations within blocks, namely,
the covariates are generated from the factor model, our method Farvsqr is better than
LASSO from all the evaluating indicators, including the average estimation error,
average model size, TP, TN, and elapsed time.

(ii) For the factor model, the parameter estimation accuracy of LASSO is easily affected
by the increase of the explanatory variable’s dimension.

(iii) For the equal correlated case, the Farvsqr pays less cost.
(iv) For all the different scenarios, the efficiency of the LASSO is easily affected by the

sample size.

In order to illustrate further that our method is better for the data which is high
dimensional and high correlations within blocks, we compare our method with SCAD
also, and we found the same conclusions as LASSO. Here, we just give the results under
normal distribution. Tables 13 and 14 are, respectively, for the fixed explanatory variable’s
dimensionality and sample size. We need to know here that the Farvsqr method is first to
replace the highly dependent covariates by weakly dependent or uncorrelated ones by the
latent factor model; then, we minimize (12) with LASSO or SCAD. However, LASSO and
SCAD directly minimize Formula (5) in which the covariates are highly correlated.
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Table 4. The comparison for n = 1000, N(0, 1) with the factor model.

Farvsqr LASSO

τ p Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

p = 200 0.124 19 3/200 181/200 2.268 2.059 35 3/200 165/200 27.725
p = 300 0.136 21 3/300 279/300 2.977 2.934 52 3/300 248/300 29.432
p = 400 0.149 20 3/400 380/400 3.989 3.417 60 3/400 340/400 21.408
p = 500 0.153 22 3/500 478/500 4.914 3.961 63 3/500 437/500 18.900
p = 600 0.158 21 3/600 579/600 6.013 3.821 70 3/600 530/600 19.541

τ = 0.5

p = 200 0.110 21 3/200 179/200 2.003 1.961 37 3/200 163/200 25.812
p = 300 0.126 22 3/300 278/300 2.598 2.818 52 3/300 248/300 25.645
p = 400 0.132 21 3/400 379/400 3.354 3.309 63 3/400 337/400 22.244
p = 500 0.142 22 3/500 478/500 4.238 3.875 65 3/500 435/500 20.284
p = 600 0.138 23 3/600 577/600 5.195 3.698 72 3/600 528/600 20.908

τ = 0.75

p = 200 0.120 20 3/200 180/200 2.247 2.051 36 3/200 164/200 25.729
p = 300 0.141 21 3/300 279/300 2.939 2.890 52 3/300 248/300 28.248
p = 400 0.139 21 3/400 379/400 3.830 3.466 62 3/400 338/400 23.445
p = 500 0.149 20 3/500 480/500 4.866 3.972 62 3/500 438/500 19.635
p = 600 0.148 23 3/600 577/600 5.967 3.870 71 3/600 529/600 18.038

τ = 0.9

p = 200 0.164 19 3/200 181/200 3.887 2.354 34 3/200 166/200 29.357
p = 300 0.171 19 3/300 281/300 5.819 3.327 50 3/300 250/300 33.806
p = 400 0.176 20 3/400 380/400 8.127 3.765 57 3/400 343/400 27.258
p = 500 0.181 22 3/500 478/500 10.903 4.461 61 3/500 439/500 22.041
p = 600 0.196 21 3/600 579/600 13.783 4.256 68 3/600 532/600 20.241
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Table 5. The comparison for n = 1000, t2 with the factor model.

Farvsqr LASSO

τ p Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

p = 200 0.183 20 3/200 180/200 6.311 2.249 38 3/200 162/200 20.116
p = 300 0.191 23 3/300 277/300 8.945 3.272 55 3/300 245/300 12.822
p = 400 0.208 24 3/400 376/400 12.027 3.074 58 3/400 342/400 13.202
p = 500 0.219 27 3/500 473/500 15.986 3.861 76 3/500 424/500 9.092
p = 600 0.210 23 3/600 577/600 19.367 4.269 86 3/600 514/600 9.049

τ = 0.5

p = 200 0.146 20 3/200 180/200 3.853 2.203 39 3/200 161/200 26.025
p = 300 0.142 20 3/300 280/300 7.010 3.116 56 3/300 244/300 16.420
p = 400 0.158 22 3/400 378/400 9.296 2.973 60 3/400 340/400 12.778
p = 500 0.171 22 3/500 478/500 12.545 3.742 78 3/500 422/500 10.316
p = 600 0.170 23 3/600 577/600 16.590 4.209 90 3/600 510/600 7.255

τ = 0.75

p = 200 0.182 22 3/200 178/200 6.187 2.251 38 3/200 162/200 23.494
p = 300 0.196 21 3/300 279/300 8.831 3.253 56 3/300 244/300 14.122
p = 400 0.207 23 3/400 377/400 11.974 3.120 59 3/400 341/400 12.617
p = 500 0.221 22 3/500 478/500 15.781 3.926 77 3/500 423/500 9.743
p = 600 0.223 23 3/600 577/600 19.573 4.292 84 3/600 516/600 8.488

τ = 0.9

p = 200 0.352 23 3/200 177/200 13.684 2.610 35 3/200 165/200 17.965
p = 300 0.381 23 3/300 277/300 20.908 3.673 52 3/300 248/300 12.572
p = 400 0.417 23 3/400 377/400 27.134 3.626 58 3/400 342/400 12.338
p = 500 0.432 26 3/500 474/500 35.587 4.360 73 3/500 427/500 6.723
p = 600 0.446 25 3/600 575/600 33.589 4.750 84 3/600 516/600 9.754
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Table 6. The comparison for n = 1000, 0.1 ∗ N(0, 1) + 0.9 ∗ N(0, 9) with the factor model.

Farvsqr LASSO

τ p Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

p = 200 0.364 21 3/200 179/200 3.435 2.323 40 3/200 160/200 31.611
p = 300 0.387 23 3/300 277/300 4.788 3.281 59 3/300 241/300 31.467
p = 400 0.401 26 3/400 374/400 6.411 3.649 64 3/400 336/400 25.958
p = 500 0.431 25 3/500 475/500 8.340 3.860 75 3/500 425/500 21.536
p = 600 0.417 25 3/600 575/600 10.548 4.215 85 3/600 515/600 15.388

τ = 0.5

p = 200 0.333 23 3/200 177/200 2.801 2.267 42 3/200 158/200 29.623
p = 300 0.345 25 3/300 275/300 3.902 3.196 61 3/300 239/300 29.980
p = 400 0.382 24 3/400 376/400 5.377 3.485 67 3/400 333/400 24.325
p = 500 0.365 27 3/500 473/500 7.015 3.730 77 3/500 423/500 24.365
p = 600 0.384 28 3/600 572/600 9.045 4.028 85 3/600 515/600 18.130

τ = 0.75

p = 200 0.359 23 3/200 177/200 3.262 2.320 42 3/200 158/200 30.568
p = 300 0.384 23 3/300 277/300 4.589 3.309 59 3/300 241/300 29.940
p = 400 0.404 25 3/400 375/400 6.283 3.620 62 3/400 338/400 25.600
p = 500 0.407 26 3/500 474/500 8.242 3.825 73 3/500 427/500 22.053
p = 600 0.433 27 3/600 573/600 10.525 4.117 83 3/600 517/600 15.519

τ = 0.9

p = 200 0.463 20 3/200 180/200 5.910 2.688 38 3/200 162/200 33.401
p = 300 0.488 22 3/300 278/300 8.716 3.666 54 3/300 246/300 32.895
p = 400 0.512 22 3/400 378/400 12.058 4.011 59 3/400 341/400 31.480
p = 500 0.523 25 3/500 475/500 15.771 4.207 65 3/500 435/500 25.127
p = 600 0.564 23 3/600 577/600 19.128 4.657 78 3/600 522/600 21.218
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Table 7. The comparison for p = 200, N(0, 1) with the equal correlated case.

Farvsqr LASSO

τ n Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

n = 100 0.519 21 3/200 179/200 0.687 0.474 15 3/200 185/200 1.099
n = 300 0.314 18 3/200 182/200 1.932 0.272 14 3/200 186/200 1.689
n = 500 0.241 16 3/200 184/200 1.737 0.207 13 3/200 187/200 2.204
n = 800 0.196 16 3/200 184/200 1.802 0.168 13 3/200 187/200 2.694

n = 1000 0.172 15 3/200 185/200 1.965 0.144 13 3/200 187/200 3.856

τ = 0.5

n = 100 0.482 22 3/200 178/200 0.504 0.449 14 3/200 186/200 0.812
n = 300 0.292 17 3/200 183/200 1.401 0.254 14 3/200 186/200 1.637
n = 500 0.231 15 3/200 185/200 1.445 0.197 13 3/200 187/200 2.114
n = 800 0.184 16 3/200 184/200 1.641 0.157 12 3/200 188/200 2.621

n = 1000 0.157 14 3/200 186/200 1.806 0.135 12 3/200 188/200 3.731

τ = 0.75

n = 100 0.562 20 3/200 180/200 0.633 0.491 15 3/200 185/200 1.009
n = 300 0.313 17 3/200 183/200 1.943 0.267 15 3/200 185/200 1.717
n = 500 0.261 15 3/200 185/200 1.732 0.215 13 3/200 187/200 2.201
n = 800 0.197 15 3/200 185/200 1.827 0.164 13 3/200 187/200 2.713

n = 1000 0.168 15 3/200 185/200 1.955 0.142 12 3/200 188/200 3.871

τ = 0.9

n = 100 0.723 18 3/200 182/200 0.974 0.613 14 3/200 186/200 1.602
n = 300 0.419 16 3/200 184/200 3.293 0.351 13 3/200 187/200 2.395
n = 500 0.315 15 3/200 185/200 4.434 0.261 12 3/200 188/200 2.640
n = 800 0.249 15 3/200 185/200 2.690 0.207 12 3/200 188/200 3.064

n = 1000 0.217 14 3/200 186/200 2.560 0.179 12 3/200 188/200 4.264



Mathematics 2022, 10, 2935 16 of 30

Table 8. The comparison for p = 200, t2 with the equal correlated case.

Farvsqr LASSO

τ n Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

n = 100 0.920 18 3/200 182/200 1.617 0.780 15 3/200 185/200 2.091
n = 300 0.448 18 3/200 182/200 3.930 0.386 15 3/200 185/200 3.560
n = 500 0.357 17 3/200 183/200 4.222 0.306 15 3/200 185/200 5.515
n = 800 0.261 16 3/200 184/200 4.285 0.229 14 3/200 186/200 6.950

n = 1000 0.248 15 3/200 185/200 4.849 0.214 13 3/200 187/200 9.660

τ = 0.5

n = 100 0.678 21 3/200 179/200 1.192 0.619 14 3/200 186/200 1.417
n = 300 0.340 17 3/200 183/200 2.699 0.300 14 3/200 186/200 2.901
n = 500 0.275 16 3/200 184/200 2.626 0.233 14 3/200 186/200 4.046
n = 800 0.208 15 3/200 185/200 2.943 0.181 13 3/200 187/200 5.057

n = 1000 0.185 15 3/200 185/200 3.116 0.161 13 3/200 187/200 6.456

τ = 0.75

n = 100 0.886 20 3/200 180/200 1.221 0.767 15 3/200 185/200 1.570
n = 300 0.459 16 3/200 184/200 3.312 0.390 14 3/200 186/200 2.922
n = 500 0.358 17 3/200 183/200 3.464 0.311 15 3/200 185/200 4.369
n = 800 0.281 18 3/200 182/200 3.342 0.251 15 3/200 185/200 5.341

n = 1000 0.233 16 3/200 184/200 3.601 0.202 13 3/200 187/200 6.945

τ = 0.9

n = 100 1.528 21 3/200 179/200 2.234 1.406 14 3/200 186/200 3.076
n = 300 0.871 17 3/200 183/200 5.724 0.722 14 3/200 186/200 5.274
n = 500 0.721 17 3/200 183/200 7.353 0.625 15 3/200 185/200 5.912
n = 800 0.564 18 3/200 182/200 6.698 0.498 16 3/200 184/200 7.411

n = 1000 0.501 15 3/200 185/200 6.370 0.422 14 3/200 186/200 9.231
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Table 9. The comparison for p = 200, 0.1 ∗ N(0, 1) + 0.9 ∗ N(0, 9) with the equal correlated case.

Farvsqr LASSO

τ n Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

n = 100 1.619 21 3/200 179/200 1.015 1.409 15 3/200 185/200 1.493
n = 300 0.901 18 3/200 182/200 3.010 0.790 15 3/200 185/200 2.880
n = 500 0.666 17 3/200 183/200 3.162 0.556 16 3/200 184/200 3.584
n = 800 0.557 17 3/200 183/200 2.944 0.473 15 3/200 185/200 4.093

n = 1000 0.502 17 3/200 183/200 3.068 0.417 16 3/200 184/200 5.173

τ = 0.5

n = 100 1.371 23 3/200 177/200 0.786 1.236 17 3/200 183/200 1.149
n = 300 0.824 20 3/200 180/200 2.518 0.736 15 3/200 185/200 2.719
n = 500 0.633 18 3/200 182/200 2.520 0.544 15 3/200 185/200 3.367
n = 800 0.513 16 3/200 184/200 2.548 0.434 14 3/200 186/200 3.855

n = 1000 0.432 17 3/200 183/200 2.654 0.371 15 3/200 185/200 4.869

τ = 0.75

n = 100 1.490 22 3/200 178/200 0.940 1.344 15 3/200 185/200 1.331
n = 300 0.938 16 3/200 184/200 2.992 0.783 15 3/200 185/200 2.855
n = 500 0.713 16 3/200 184/200 3.120 0.599 15 3/200 185/200 3.529
n = 800 0.569 15 3/200 185/200 2.905 0.469 15 3/200 185/200 3.996

n = 1000 0.461 17 3/200 183/200 2.982 0.395 15 3/200 185/200 5.074

τ = 0.9

n = 100 2.077 17 3/200 183/200 1.344 1.760 14 3/200 186/200 1.928
n = 300 1.123 16 3/200 184/200 4.274 0.961 13 3/200 187/200 4.074
n = 500 0.919 16 3/200 184/200 5.368 0.763 14 3/200 186/200 4.460
n = 800 0.732 16 3/200 184/200 4.783 0.602 15 3/200 185/200 4.777

n = 1000 0.610 15 3/200 185/200 4.485 0.497 14 3/200 186/200 5.943
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Table 10. The comparison for n = 1000, N(0, 1) with the equal correlation.

Farvsqr LASSO

τ p Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

p = 200 0.166 15 3/200 185/200 2.002 0.140 12 3/200 188/200 3.897
p = 300 0.177 15 3/300 285/300 2.780 0.154 12 3/300 288/300 4.935
p = 400 0.209 17 3/400 383/400 3.576 0.180 14 3/400 386/400 6.534
p = 500 0.193 16 3/500 484/500 4.518 0.164 14 3/500 486/500 8.210
p = 600 0.210 18 3/600 582/600 5.531 0.182 15 3/600 585/600 9.900

τ = 0.5

p = 200 0.148 15 3/200 185/200 1.824 0.128 12 3/200 188/200 3.743
p = 300 0.169 16 3/300 284/300 2.504 0.146 12 3/300 288/300 4.769
p = 400 0.190 17 3/400 383/400 3.240 0.167 14 3/400 386/400 6.329
p = 500 0.173 19 3/500 481/500 4.114 0.153 14 3/500 486/500 8.029
p = 600 0.199 17 3/600 583/600 4.999 0.172 16 3/600 584/600 9.662

τ = 0.75

p = 200 0.164 16 3/200 184/200 1.966 0.138 13 3/200 187/200 3.834
p = 300 0.184 17 3/300 283/300 2.725 0.160 12 3/300 288/300 4.849
p = 400 0.206 16 3/400 384/400 3.540 0.176 14 3/400 386/400 6.467
p = 500 0.190 17 3/500 483/500 4.500 0.162 14 3/500 486/500 8.205
p = 600 0.214 17 3/600 583/600 5.467 0.188 16 3/600 584/600 9.819

τ = 0.9

p = 200 0.203 16 3/200 184/200 2.587 0.178 12 3/200 188/200 4.229
p = 300 0.222 17 3/300 283/300 3.619 0.196 12 3/300 288/300 5.216
p = 400 0.252 15 3/400 385/400 4.797 0.212 14 3/400 386/400 6.965
p = 500 0.244 16 3/500 484/500 6.197 0.206 15 3/500 485/500 8.749
p = 600 0.269 16 3/600 584/600 7.598 0.227 15 3/600 585/600 10.395
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Table 11. The comparison for n = 1000, t2 with the equal correlation.

Farvsqr LASSO

τ p Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

p = 200 0.239 16 3/200 184/200 2.509 0.211 15 3/200 185/200 4.951
p = 300 0.268 17 3/300 283/300 3.655 0.239 13 3/300 287/300 6.187
p = 400 0.276 20 3/400 380/400 5.034 0.255 15 3/400 385/400 7.654
p = 500 0.281 19 3/500 481/500 6.824 0.263 15 3/500 485/500 9.662
p = 600 0.303 17 3/600 583/600 8.607 0.284 16 3/600 584/600 11.108

τ = 0.5

p = 200 0.194 14 3/200 186/200 2.001 0.165 13 3/200 187/200 4.339
p = 300 0.203 16 3/300 284/300 2.856 0.182 13 3/300 287/300 5.500
p = 400 0.211 17 3/400 383/400 3.966 0.193 14 3/400 386/400 7.039
p = 500 0.217 17 3/500 483/500 5.426 0.208 14 3/500 486/500 8.957
p = 600 0.230 16 3/600 584/600 7.134 0.251 18 3/600 582/600 10.568

τ = 0.75

p = 200 0.252 15 3/200 185/200 2.402 0.214 14 3/200 186/200 4.828
p = 300 0.269 17 3/300 283/300 3.550 0.240 14 3/300 286/300 6.226
p = 400 0.257 16 3/400 384/400 4.882 0.232 14 3/400 386/400 7.572
p = 500 0.295 18 3/500 482/500 6.614 0.274 16 3/500 484/500 9.456
p = 600 0.309 16 3/600 584/600 8.560 0.289 15 3/600 585/600 10.910

τ = 0.9

p = 200 0.520 16 3/200 184/200 4.497 0.445 15 3/200 185/200 6.764
p = 300 0.522 17 3/300 283/300 6.599 0.471 14 3/300 286/300 8.048
p = 400 0.532 19 3/400 381/400 8.677 0.480 16 3/400 384/400 9.320
p = 500 0.598 17 3/500 483/500 11.297 0.532 16 3/500 484/500 11.131
p = 600 0.614 17 3/600 583/600 13.743 0.543 16 3/600 584/600 13.034
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Table 12. The comparison for n = 1000, 0.1 ∗ N(0, 1) + 0.9 ∗ N(0, 9) with the equal correlation.

Farvsqr LASSO

τ p Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

p = 200 0.479 17 3/200 183/200 3.053 0.400 16 3/200 184/200 5.184
p = 300 0.509 19 3/300 281/300 4.471 0.443 16 3/300 284/300 6.581
p = 400 0.556 18 3/400 382/400 6.078 0.478 16 3/400 384/400 8.515
p = 500 0.569 21 3/500 479/500 7.984 0.504 16 3/500 484/500 10.485
p = 600 0.601 19 3/600 581/600 10.091 0.526 17 3/600 583/600 12.369

τ = 0.5

p = 200 0.427 16 3/200 184/200 2.659 0.368 14 3/200 186/200 4.914
p = 300 0.468 19 3/300 281/300 3.881 0.406 16 3/300 284/300 6.312
p = 400 0.513 17 3/400 383/400 5.311 0.438 16 3/400 384/400 8.199
p = 500 0.515 21 3/500 479/500 7.014 0.464 16 3/500 484/500 10.267
p = 600 0.557 21 3/600 579/600 8.911 0.497 18 3/600 582/600 12.116

τ = 0.75

p = 200 0.484 16 3/200 184/200 2.969 0.404 14 3/200 186/200 5.076
p = 300 0.521 17 3/300 283/300 4.400 0.439 16 3/300 284/300 6.513
p = 400 0.549 17 3/400 383/400 6.054 0.464 16 3/400 384/400 8.482
p = 500 0.584 19 3/500 481/500 7.931 0.506 17 3/500 483/500 10.444
p = 600 0.580 18 3/600 582/600 10.006 0.514 16 3/600 584/600 12.279

τ = 0.9

p = 200 0.599 16 3/200 184/200 4.419 0.489 14 3/200 186/200 5.918
p = 300 0.653 16 3/300 284/300 6.444 0.546 15 3/300 285/300 7.202
p = 400 0.694 19 3/400 381/400 8.893 0.600 16 3/400 384/400 9.254
p = 500 0.738 19 3/500 481/500 11.478 0.658 16 3/500 484/500 11.372
p = 600 0.752 19 3/600 581/600 14.182 0.661 16 3/600 584/600 13.227
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Table 13. The comparison for p = 200, N(0, 1) with the factor model between Farvsqr and SCAD.

Farvsqr SCAD

τ n Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

n = 100 0.010 6 3/200 194/200 1.464 1.143 32 3/200 168/200 4.207
n = 300 0.019 6 3/200 194/200 2.170 0.275 7 3/200 193/200 13.175
n = 500 0.003 6 3/200 194/200 2.920 0.268 7 3/200 193/200 25.350
n = 800 0.005 6 3/200 194/200 3.691 0.290 8 3/200 192/200 32.313

n = 1000 0.002 6 3/200 194/200 4.162 0.469 13 3/200 187/200 22.552

τ = 0.5

n = 100 0.027 6 3/200 194/200 1.113 0.503 12 3/200 188/200 3.876
n = 300 0.015 6 3/200 194/200 2.144 0.210 7 3/200 193/200 14.855
n = 500 0.009 6 3/200 194/200 2.869 0.201 6 3/200 194/200 27.913
n = 800 0.004 6 3/200 194/200 3.692 0.224 7 3/200 193/200 28.429

n = 1000 0.003 6 3/200 194/200 4.442 0.374 11 3/200 189/200 22.641

τ = 0.75

n = 100 0.029 6 3/200 194/200 1.234 1.328 40 3/200 160/200 3.410
n = 300 0.013 6 3/200 194/200 2.003 0.263 7 3/200 193/200 11.749
n = 500 0.011 6 3/200 194/200 2.655 0.260 7 3/200 193/200 22.713
n = 800 0.007 6 3/200 194/200 3.638 0.295 9 3/200 191/200 33.381

n = 1000 0.002 6 3/200 194/200 4.082 0.453 13 3/200 187/200 25.003

τ = 0.9

n = 100 0.021 6 3/200 194/200 1.644 3.325 95 3/200 105/200 2.602
n = 300 0.015 6 3/200 194/200 2.070 2.214 72 3/200 128/200 6.157
n = 500 0.015 6 3/200 194/200 2.547 1.049 36 3/200 164/200 10.351
n = 800 0.011 6 3/200 194/200 3.008 0.647 18 3/200 182/200 16.733

n = 1000 0.008 6 3/200 194/200 3.344 0.805 23 3/200 177/200 25.050
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Table 14. The comparison for n = 1000, N(0, 1) with the factor model between Farvsqr and SCAD.

Farvsqr SCAD

τ p Estimation
Error

Average
Model Size TP TN Elapsed Time

(in Seconds)
Estimation

Error
Average

Model Size TP TN Elapsed Time
(in Seconds)

τ = 0.25

p = 200 0.007 6 3/200 194/200 4.413 0.211 8 3/200 192/200 25.313
p = 300 0.005 6 3/300 294/300 6.028 0.523 14 3/300 286/300 20.791
p = 400 0.006 6 3/400 394/400 7.472 0.505 14 3/400 386/400 20.691
p = 500 0.006 6 3/500 494/500 9.552 0.671 25 3/500 475/500 22.224
p = 600 0.005 6 3/600 594/600 11.412 0.519 23 3/600 577/600 13.513

τ = 0.5

p = 200 0.006 6 3/200 194/200 4.761 0.170 7 3/200 193/200 21.696
p = 300 0.005 6 3/300 294/300 6.111 0.427 12 3/300 288/300 16.894
p = 400 0.006 6 3/400 394/400 7.869 0.358 11 3/400 389/400 11.312
p = 500 0.005 6 3/500 494/500 9.800 0.399 10 3/500 490/500 9.254
p = 600 0.002 6 3/600 594/600 12.000 0.243 7 3/600 593/600 3.955

τ = 0.75

p = 200 0.005 6 3/200 194/200 4.197 0.214 8 3/200 192/200 21.727
p = 300 0.010 6 3/300 294/300 5.666 0.541 14 3/300 286/300 19.417
p = 400 0.006 6 3/400 394/400 7.454 0.491 14 3/400 386/400 20.128
p = 500 0.002 6 3/500 494/500 9.098 0.607 18 3/500 482/500 27.821
p = 600 0.006 6 3/600 594/600 11.422 0.586 22 3/600 578/600 16.544

τ = 0.9

p = 200 0.001 6 3/200 194/200 3.487 0.420 13 3/200 187/200 25.110
p = 300 0.009 6 3/300 294/300 4.932 1.086 37 3/300 263/300 23.282
p = 400 0.006 6 3/400 394/400 6.841 1.408 61 3/400 339/400 26.220
p = 500 0.010 6 3/500 494/500 8.446 2.174 114 3/500 386/500 29.943
p = 600 0.012 6 3/600 594/600 10.251 2.371 158 3/600 442/600 34.568
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6. Real Data Application

In this section, we will use the season U.S. macroeconomic variables in the FRED-QD
database [17]. The dataset includes 247 dimensions, and the covariates in the FRED-QD
data set are strongly correlated. We choose 88 data points which are complete observation
samples from the first quarter of 2000 to the last quarter of 2021. The FRED-QD is a
quarterly economic database updated by the Federal Reserve Bank of St. Louis, which is
publicly available at http://research.stlouisfed.org/econ/mccracken/sel/ (accessed on 28
June 2022). The detailed information about the data can be found on the website. In this
paper, we choose the variable GDP as the response and the other 246 variables as the
explanatory variables. The density distribution of the response of our data is as shown in
Figure 1. We compare the proposed Farvsqr with LASSO in variable selection, estimation,
and elapsed time. The estimation performance is evaluated by the R2, which is defined as:

1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

where yi is the observed value at the time i, ŷi is the predicted value, and ȳ is the sample
mean. We model the data given the quantile τ = 0.1, τ = 0.5, τ = 0.75, τ = 0.9. We evaluate
the model from the R2, model size, and elapsed time.

The results are presented in Table 15. From the result, we can see that the model sizes
of Farvsqr are 18, 19, 38, and 38 for the quantile τ = 0.1, τ = 0.5, τ = 0.75, and τ = 0.9,
respectively; however, the model sizes of LASSO are 241, 176, 207, and 222 for the quantile
τ = 0.1, τ = 0.5, τ = 0.75, and τ = 0.9, respectively. The LASSO prefers to choose more
related variables. For instance, for τ = 0.1, τ = 0.5, τ = 0.75, and τ = 0.9, all LASSO
models include both Real PCE expenditures: durable goods, Real PCE: services, Real PCE:
nondurable goods, Real gross private domestic investment, Real private fixed investment,
Real gross private domestic investment: fixed investment: nonresidential: equipment, and
Real private fixed investment: nonresidential because of the strong correlation between
them. Moreover, all LASSO models also include both Number of civilians unemployed for
less than 5 weeks, Number of civilians unemployed from 5 to 14 weeks, and Number of
civilians unemployed from 15 to 26 weeks because of the strong correlation between them.
Many other related variables are included by LASSO. The elapsed times of Farvsqr are
7.6209, 8.2036, 8.3589, and 8.3493 for the quantile τ = 0.1, τ = 0.5, τ = 0.75, and τ = 0.9
respectively, while the elapsed times of LASSO are 9.8736, 13.8031, 10.6616, and 10.1012
for the quantile τ = 0.1, τ = 0.5, τ = 0.75, and τ = 0.9, respectively; so we can say that
the algorithm efficiency of LASSO for our real data is much lower than that of Farvsqr. It
may be because LASSO selects too many redundant explanatory variables, which not only
affects the estimation accuracy of the model but also affects the efficiency of the algorithm.
For the R2, Farvsqr is better than LASSO except for τ = 0.1. So, we can see that Farvsqr is
more suitable for this data set. Furthermore, we can say that for the data set with strong
correlation between explanatory variables, Farvsqr is more suitable for use.

Table 15. The results of the real data.

R2 Model Size Elapsed Time (Seconds)

τ Farvsqr LASSO Farvsqr LASSO Farvsqr LASSO

τ = 0.1 0.9988 0.9993 18 241 7.6209 9.8736
τ = 0.5 0.9998 0.9996 19 176 8.2036 13.8031
τ = 0.75 0.9998 0.9995 38 207 8.3589 10.6616
τ = 0.9 0.9998 0.9993 38 222 8.3493 10.1012

http://research.stlouisfed.org/econ/mccracken/sel/
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Figure 1. The density of the response.

7. Conclusions

In this paper, we are aimed at the data set, which has heavy-tailed distribution, high
dimension, and high correlations within the blocks of the covariates. By generalizing the
factor-adjusted regularized variable selection for mean regression to the quantile regression,
we proposed the method of factor-augmented regularized variable selection for quantile
regression ( Farvsqr). In order to analyze the theoretical analysis and improve estimation
accuracy and computational efficiency for fitting large-scale linear quantile regression
models, we use the convolution-type smoothed quantile regression to estimate the quantile
regression coefficients. The paper gives the theoretical result of the estimators. At the same
time, from the simulation and the real data analysis, we can see that our method is better
than LASSO. In the future, we will continue to study the missing data variable selection for
quantile regression with the high correlations within the blocks of the covariates.
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Appendix A

Appendix A.1. Proof of Lemma 1

Let V = (v1, · · · , vn)
T and θ∗ =

(
(β∗)T, (β∗)TΛ0

)T. Note that

∇E[R(y, Vθ)] = E{ 1
n

n

∑
i=1

[Kh

((
1, xT

i

)
β− yi

)
− τ]

(
1, xT

i

)T
}

= E{[Kh

((
1, xT

1

)
β− y1

)
− τ]

(
1, xT

1

)T
}

= E{[Kh

(
vT

1 θ− y1

)
− τ]v1}

and vT
i θ∗ =

(
1, xT

i
)

β∗. So the conclusion can be proved by

∇E[R(y, Vθ)]|θ=θ∗

= E{[Kh

(
vT

1 θ∗ − y1

)
− τ]v1}

= E{[Kh

((
1, xT

1

)
β∗ − y1

)
− τ]v1}

= E[η1v1] = 0p+1+k

Appendix A.2. Proof of Theorem 1

In order to proof the theorem 1, let us introduce the Lemma A1 from Fan et al. [18]
first. When we assume that the last k variables are not penalized, let R(·) : Rp+1+k → R be
a convex function, θ∗ and β∗ = θ∗[p+1] be the sparse sub-vector of interest. Then, θ∗ and β∗

are estimated by
θ̂ = argmin{R(θ) + λ‖θ[p+1]‖1}

β̂ = θ̂[p+1]

Let L = supp(θ∗), L1 = supp(β∗), L2 = [p + 1 + k]\L. Then, we can obtain the
Lemma A1 as follows:

Assumption A1 (Smoothness). R(θ) ∈ C2(Rp+k+1) and there exist A > 0, W > 0 such that
‖∇2
·LR(θ)−∇2

·LR(θ∗)‖∞ ≤W‖θ− θ∗‖2 whenever supp(θ) ∈ L and ‖θ− θ∗‖2 ≤ A;

Assumption A2 (Restricted strong convexity). There exist ρ2 > ρ∞ > 0 such that
‖[∇2

LLR(θ∗)]−1‖∞ ≤ 1
2ρ∞

and ‖[∇2
LLR(θ∗)]−1‖2 ≤ 1

2ρ2
;

Assumption A3 (Irrepresentable condition). ‖∇2
L2LR(θ∗)[∇2

LLR(θ∗)]−1‖∞ ≤ 1−γ for some
γ ∈ (0, 1);

Lemma A1. Under Assumptions A1–A3, if

7
γ
‖∇R(θ∗)‖∞ < λ <

ρ2

4L
minA,

ρ∞γ

3W
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then supp(θ̂) ⊂ L and

‖θ̂− θ∗‖∞ ≤
3

5ρ∞
(‖∇LR(θ∗)‖∞ + λ)

‖θ̂− θ∗‖2 ≤
2
ρ2

(
‖∇LR(θ∗)‖2 + λ

√
L1

)
‖θ̂− θ∗‖1 ≤ min

3
5ρ∞

(
‖∇LR(θ∗)‖1 + λ

√
L1

)
,

2
√

L
ρ2

(
‖∇LR(θ∗)‖2 + λ

√
L1

)
.

Next, we will give the proof of the Theorem 1.

Proof of Theorem 1. As we know, θ̂ = argminθ{R(y, V̂θ)+λ‖θ[p+1]‖1}. From Assumption 4,

we know that M0 is nonsingular and M =

(
Ip+1 0(p+1)×k

0(p+1)×k M0

)
. Let V = V̂M, θ =

M−1θ̂, Λ̂0 =
(

0T
k , Λ̂

T
)T

, θ̂
∗
=

(
β∗

Λ̂0β∗

)
, θ
∗
= M−1θ̂

∗. So, we can see that β̂ = θ̂[p+1] =

θ[p+1] and θ = argminθ{R(y, Vθ) + λ‖θ[p+1]‖1}. So, supp
(

β̂
)

= supp
(

θ[p+1]

)
and

‖β̂− β∗‖ = ‖θ[p+1] − θ
∗
[p+1]‖ ≤ ‖θ− θ

∗‖ for any norm.
Then, we can change to study θ and the objective function R

(
y, Vθ

)
in order to

study the theoretical properties of β̂. We will give the Theorem A1 which means all the
assumptions in Lemma A1 are fulfilled.

Let vT
i and vT

i be the i−th row of V and V, respectively. We can see that R
(
y, Vθ

)
=

1
n ∑n

i=1 Lh(yi − vT
i θ),∇R

(
y, Vθ

)
= 1

n ∑n
i=1{Kh

(
vT

i θ− yi
)
− τ}vi, Vθ̄

∗ = Xβ∗. Hence
‖∇R

(
y, Vθ̄∗

)
‖∞ = ω. From the properties of the vector norm, we can obtain

‖∇LR
(
y, Vθ̄∗

)
‖∞ ≤ ω, ‖∇LR

(
y, Vθ̄

∗)‖2 ≤ ω
√

L, ‖∇LR
(
y, Vθ̄

∗)‖1 ≤ ωL. In addition,
let λ > 7ω

γ ≥ ω. From Lemma A1, we can obtain that Theorem 1 is true.

Theorem A1. Based on all the Assumptions 2–4, define W = W3
0 W3L3/2, then

(i)‖∇2
·LR
(
y, Vθ

)
−∇2

·LR
(
y, Vθ̄

∗)‖∞ ≤W‖θ− θ̄
∗‖2,

(ii)‖[∇2
LLR

(
y, Vθ̄

∗)]−1‖∞ ≤
1

2ρ∞
,

(iii)‖[∇2
LLR

(
y, Vθ̄

∗)]−1‖2 ≤
1

2ρ2
,

(iv)‖∇2
L2LR

(
y, Vθ̄

∗)[∇2
LLR

(
y, Vθ̄

∗)]−1‖∞ ≤ 1− γ.

Proof. (i) Vθ∗ = Vθ̄
∗ = Xβ∗, then

∇2R(y, Vθ∗) =
1
n

n

∑
i=1
{Kh

(
vT

i θ̄
∗ − yi

)
}vivT

i ,

∇2R
(
y, Vθ̄

∗) = 1
n

n

∑
i=1
{Kh

(
vT

i θ̄
∗ − yi

)
}vivT

i .

For any j, t ∈ [p + 1 + k] and supp(θ) ∈ L, we have
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∣∣∣∇2
jtR
(
y, Vθ

)
−∇2

jtR
(
y, Vθ̄

∗)∣∣∣
=

1
n

∣∣∣∣∣ n

∑
i=1

Kh

(
vT

i θ− yi

)
v̄ijv̄it −

n

∑
i=1

Kh

(
vT

i θ̄
∗ − yi

)
v̄ijv̄it

∣∣∣∣∣
=

1
n

∣∣∣∣∣ n

∑
i=1

[Kh

(
vT

i θ− yi

)
− Kh

(
vT

i θ̄
∗ − yi

)
]v̄ijv̄it

∣∣∣∣∣
≤ 1

n

n

∑
i=1

∣∣∣Kh

(
vT

i θ− yi

)
− Kh

(
vT

i θ̄
∗ − yi

)∣∣∣∣∣v̄ijv̄it
∣∣

≤ 1
n

n

∑
i=1

W3

∣∣∣vT
i (θ− θ∗)

∣∣∣‖V‖2
max

(A1)

By the Cauchy–Schwarz inequality and ‖V‖max ≤ ‖V‖max + ‖V−V‖max ≤ W0, so
for i ∈ [n], we have

∣∣vT
i
(
θ− θ̄

∗)∣∣ = ∣∣vT
iL
(
θ− θ̄

∗)
L

∣∣ ≤ ‖viL‖2‖θ− θ̄
∗‖2 ≤

√
LW0‖θ− θ̄

∗‖2.
Plugging this result back to (A1), we can obtain∣∣∣∇2

jtR
(
y, Vθ

)
−∇2

jtR
(
y, Vθ̄

∗)∣∣∣ ≤ √LW3W3
0 ‖θ− θ̄

∗‖2, ∀j, t ∈ [p + 1 + k]

‖∇2
·LR
(
y, Vθ

)
−∇2

·LR
(
y, Vθ̄

∗)‖∞ ≤ L3/2W3W3
0 ‖θ− θ̄

∗‖2 = Mθ− θ̄
∗‖2.

(ii) For any t ∈ [p + 1 + k], we have

‖∇2
tLR
(
y, Vθ̄
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·LR(y, Vθ∗)‖∞ =

1
n
‖

n
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n
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‖vitvT
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With ‖V‖max ≤W0/2, ‖V‖max ≤W0, we can obtain

‖vitvT
iL − vitvT

iL‖2 = ‖vitvT
iL − vitvT

iL + vitvT
iL − vitvT

iL‖2

≤ ‖vit(viL − viL)
T‖2 + ‖(vit − vit)vT

iL‖2

≤ |vit|‖viL − viL‖2 + |vit − vit|‖vT
iL‖2

≤ ‖V‖max‖viL − viL‖2 + |vit − vit|
√

L‖V‖max

≤ W0

2
‖viL − viL‖2 + W0

√
L|vit − vit|.

From Assumption 4, we know that σ = maxj∈[p+1+k]

(
1
n ∑n

i=1
∣∣v̄ij − vij

∣∣2)1/2
. By Jensen’s

inequality, ∀J ⊆ [p + 1 + k], we have

1
n

n

∑
i=1
‖vi J − vi J‖2 ≤

(
1
n

n

∑
i=1
‖vi J − vi J‖2

2

)1/2

≤
(

J
n

maxj∈[p+1+k]∑n
i=1

∣∣vij − vij
∣∣)1/2

≤
√

Lσ.

So
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‖∇2
·LR
(
y, Vθ∗

)
−∇2

·LR(y, Vθ∗)‖∞

= L ·maxj∈[p+1+k]‖∇2
jLR
(
y, Vθ∗

)
−∇2

jLR(y, Vθ∗)‖∞

≤ L
W2
√

L
N

n

∑
i=1

(
W0

2
‖viL − viL‖2 + W0

√
L
∣∣vij − vij

∣∣)
=

W0W2
√

L
2

1
n

n

∑
i=1
‖viL − viL‖2 + W0W2L2 1

n

n

∑
i=1

∣∣vij − vij
∣∣

≤ W0W2L2

2
σ + W0W2L2σ

=
3
2

W0W2L2σ.

(A2)

Let κ = ‖
(
∇2

LLR(y, Vθ∗)
)−1

[∇2
LLR

(
y, Vθ̄

∗)−∇2
LLR(y, Vθ∗)]‖∞, then we can obtain

κ ≤ ‖
(
∇2

LLR(y, Vθ∗)
)−1
‖∞‖∇2

LLR
(
y, Vθ̄

∗)−∇2
LLR(y, Vθ∗)‖∞

≤ 3
8ρ∞

W0W2L2σ

≤ 1
2

(A3)

And
‖
(
∇2

LLR
(
y, Vθ̄

∗))−1
−
(
∇2

LLR(y, Vθ∗)
)−1
‖∞

≤ ‖
(
∇2

LLR(y, Vθ∗)
)−1
‖∞

κ

1− κ

≤ 1
4ρ∞

So
‖
(
∇2

LLR
(
y, Vθ̄

∗))−1
‖∞

≤ ‖
(
∇2

LLR(y, Vθ∗)
)−1
‖∞ +

1
4ρ∞

1
2ρ∞

(A4)

(iii) The third conclusion can be obtained easily from (A4). Since for any symmetric matrix
B, ‖B‖2 ≤ ‖B‖∞ is satisfied. We can obtain ‖

(
∇2

LLR
(
y, Vθ̄

∗))−1 −
(
∇2

LLR(y, Vθ∗)
)−1‖2 ≤

1
4ρ∞
≤ 1

4ρ2
, and thus

‖
(
∇2

LLR
(
y, Vθ̄

∗))−1
‖2 ≤

1
2ρ2

(iv)

‖∇2
L2LR

(
y, Vθ̄

∗)(∇2
LLR

(
y, Vθ̄

∗))−1
−∇2

L2LR(y, Vθ∗)
(
∇2

LLR(y, Vθ∗)
)−1
‖∞

= ‖∇2
L2LR

(
y, Vθ̄

∗)(∇2
LLR

(
y, Vθ̄

∗))−1
+∇2

L2LR(y, Vθ∗)
(
∇2

LLR
(
y, Vθ̄

∗))−1

−∇2
L2LR(y, Vθ∗)

(
∇2

LLR
(
y, Vθ̄

∗))−1
−∇2

L2LR(y, Vθ∗)
(
∇2

LLR(y, Vθ∗)
)−1
‖∞

≤ ‖∇2
L2LR

(
y, Vθ̄

∗)−∇2
L2LR(y, Vθ∗)‖∞‖

(
∇2

LLR
(
y, Vθ̄

∗))−1
‖∞

+ ‖∇2
L2LR(y, Vθ∗)[

(
∇2

LLR
(
y, Vθ̄

∗))−1
−
(
∇2

LLR(y, Vθ∗)
)−1

]‖∞
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From the conclusion (ii) and (A2), we can obtain that

‖∇2
L2LR

(
y, Vθ̄

∗)−∇2
L2LR(y, Vθ∗)‖∞‖

(
∇2

LLR
(
y, Vθ̄

∗))−1
‖∞ ≤

3
4ρ∞

W0W2L2σ

On the other hand, we can take A = ∇2
L2LR(y, Vθ∗), B = ∇2

LLR(y, Vθ∗),
C = ∇2

LLR
(
y, Vθ̄

∗) − ∇2
LLR(y, Vθ∗). By Assumption 4, ‖AB−1‖∞ ≤ 1− 2γ ≤ 1, and

we have
‖∇2

L2LR(y, Vθ∗)[
(
∇2

LLR
(
y, Vθ̄

∗))−1
−
(
∇2

LLR(y, Vθ∗)
)−1
‖∞

= ‖A[(B + C)−1 − B−1]‖∞

≤ ‖AB−1‖∞
‖CB−1‖∞

1− ‖CB−1‖∞

≤ ‖C‖∞‖B−1‖∞

1− ‖C‖∞‖B−1‖∞

From Formula (A3), we can obtain ‖C‖∞‖B−1‖∞ ≤ 3
8ρ∞

W0W2L2σ ≤ 1
2 . As a result,

‖∇2
L2LR(y, Vθ∗)[

(
∇2

LLR
(
y, Vθ̄

∗))−1
−
(
∇2

LLR(y, Vθ∗)
)−1
‖∞ ≤

3
4ρ∞

W0W2L2σ

By combining these estimates, we have

‖∇2
L2LR

(
y, Vθ̄

∗)(∇2
LLR

(
y, Vθ̄

∗))−1
−∇2

L2LR(y, Vθ∗)
(
∇2

LLR(y, Vθ∗)
)−1
‖∞

≤ 3
4ρ∞

W0W2L2σ +
3

4ρ∞
W0W2L2σ

≤ 3
2ρ∞

W0W2L2σ

≤ γ

Therefore, ‖∇2
L2LR

(
y, Vθ̄

∗)(∇2
LLR

(
y, Vθ̄

∗))−1‖∞ ≤ (1− 2γ) + γ = 1− γ.
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