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Abstract: This paper aims to simulate portfolio decisions under uncertainty when the diffusion 
parameters of the risky asset and short rate paid for a bond are both modulated by a time-
inhomogeneous Markov chain, with transition probabilities dependent on states, time, and asset 
prices. To do this, we first found closed-form solutions of the corresponding utility-maximization 
problem, which solves a rational consumer that makes portfolio and consumption decisions by 
using the corresponding infinitesimal generator associated with the Markov chain. Subsequently, 
as an illustration of the theoretical results obtained, several scenarios were simulated for the 
Mexican case. The expected economic policy was inferred from announced monetary policy 
decisions regarding the reference rate and possible changes in trend due to the lack of fiscal stimuli. 
Under this framework, states were defined from the current and expected economic policies, and 
transition probabilities were expressed in terms of the ratio between the prices of the risky asset and 
the bond. It should be noted, as far as the authors know, that no analytical solutions are known in 
the literature for the case of Markov-modulated time-inhomogeneous chains with transition 
probabilities that, themselves, are stochastic processes. 
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1. Introduction 
The problem of maximizing the total discounted utility of a rational consumer 

making portfolio and consumption decisions has been widely studied; see [1,2] for 
different settings. Here, we extend this problem beyond the purely diffusive nature 
imposed on the asset price dynamics by modulating the diffusion parameters of the risky 
asset and short rate paid for a bond with a time-inhomogeneous Markov chain, with 
transition probabilities dependent not only on time, but also on the stochastic dynamics 
of the risky asset inherited from the Brownian motion; i.e., transition probabilities are 
themselves stochastic processes. More precisely, the stochastic dynamic programming 
problem considered in this investigation incorporates an infinitesimal generator, wherein 
the transition probabilities depend on states, time, and asset prices. This extends the 
dynamics proposed in [3,4]. 
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Under the above framework, we assume that the preferences of the rational 
consumer are given by the logarithmic and constant relative risk aversion (CRRA) utility 
functions, since the selection of these functional forms frequently leads to analytical 
solutions for continuous-time stochastic optimal control problems (or continuous-time 
stochastic dynamic programming); see, for example, [2]. 

Markov regime switching models were introduced in [5]. These models have become 
very popular, and are based on the main assumption that states are determined by a 
Markov chain. In our proposal, the states are associated with the parameters of the 
diffusion process and the short rate. This investigation opens the possibility of improving 
decision-making interpretations of asset-dependent transition probabilities. By taking 
advantage of these new capabilities, this paper is also concerned with providing a basic 
but meaningful illustration, for the Mexican case, to generate different scenarios for 
supporting the applicability of transition probabilities, when they are themselves 
stochastic processes. In the illustration, the states of the Markov chain are inferred from 
the expected economic policy: (a) announced monetary policy decisions, (b) possible 
future fiscal incentives and stimuli, and (c) a survey of professionals and specialists; 
specifically, the inferred economic policy considers a reduction in the reference rate after 
lowering inflation and a reduction of the trend parameter due to the lack of fiscal stimuli. 

This work differs from others in the current literature in the following aspects: (1) it 
assumes that all parameters of interest in making portfolio decision are modulated by a 
Markov regime switching model with transition probabilities dependent on the stochastic 
dynamics of the asset prices; (2) it provides improved interpretations of time-dependent 
and asset-dependent parameters associated with specific regimes that affect the transition 
probabilities; (3) it obtains closed-form solutions of portfolio decisions when transition 
probabilities depend on the ratio between the prices of the risky asset and the bond; (4) it 
analyzes corner solutions; and (5) it simulates portfolio decision under different scenarios; 
for the Mexican case, this includes when states are known (inferred from expected 
economic policy) and uncertainty (inherited from the Brownian motion) is incorporated 
into the transition probabilities. 

This research is organized as follows: Section 2 provides a brief review of the 
specialized literature; Section 3 deals with asset dynamics and the definition of states; 
Section 4 finds analytical solutions of optimal consumption and asset allocation for the 
cases of the logarithmic and the CRRA utility functions with transition probabilities 
dependent on the stochastic dynamics of the risky asset; Section 5 simulates different 
scenarios of uncertainty where the evolution of assets is restricted to future monetary 
policy decisions and possible changes in trend due to fiscal stimuli; finally, Section 6 
provides conclusions and guidelines for further research. 

2. A Short Literature Review 
This section presents a brief review of the specialized literature on the modulation of 

asset-price dynamics with a Markov state variable. The literature cited below is relevant 
because it provides insight into the recent evolution of models using continuous-time 
Markov chains modulating an underlying stochastic process, including Markov-
modulated point processes and Markov-modulated jump-diffusion processes. 
Furthermore, some practical applications of the Markov-modulated processes are 
mentioned, such as the analysis of the risk premium of bonds and the variation of the 
discount rate in Brazil. Finally, the limitations of the use of Markov chains in stochastic 
optimization models are highlighted. This short review serves as the basis for justifying 
our proposal and showing how it expands on the recent literature on the subject. 

Recently, Ding, Cui and Wang [6] proposed a general valuation framework for skew 
diffusions based on a continuous-time Markov chain that modulates the underlying 
stochastic process. The authors obtained an explicit closed-form approximation of the 
transition density of a general skew diffusion process. Moreover, Goel and Mehra [7] 
examined a class of analytically tractable Markov modulated point process. The authors 
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assumed that intensities of the jump process are driven by a correlated Markov modulated 
jump-diffusion process, with dependence among the jumps modeled using a copula. 

A relevant element of the aforementioned research requires optimal discounted 
value functions, widely studied for optimal stopping problems. In this regard, Gapeev 
and Rodosthenous [8] derived closed-form expressions for the associated value function 
and optimal exercise boundaries in a model with an accessible dividend rate policy, which 
was described by a continuous-time Markov chain with a finite number of states. 
Likewise, Gapeev [9] studied a two-dimensional discounted optimal stopping problem in 
which the behavior of the underlying asset price followed a generalized geometric 
Brownian motion and the dynamics of the convenience yield were described by an 
unobservable continuous-time Markov chain with two states. Finally, Maya and Safra [10] 
examined bond risk premium and discount rate variation in Brazil, assuming a Markov 
decision process. 

On the other hand, Gluzberg and Katz [11] considered the impact of transient 
exogenous shocks to productivity on the long-term social discount rates by deriving 
equations that describe the evolution of the conditionally averaged exponential functional 
of a stochastically modulated Markov-state variable. The authors focused on the purely 
discontinuous Markov decision process, with the Poisson law describing arrival times of 
jumps in the state variable. Finally, it is worth mentioning the investigation reported in 
Cousin et al.  [12], wherein the authors derived a recursive equation associated with the 
Markov decision process. The cost-to-go function and corresponding optimal strategies 
were obtained using dynamic programming. Here, optimal strategies were estimated by 
simulation regression techniques (least square Monte Carlo). Finally, Nukala and Prasada 
[13] pointed out some limitations of forecasting using Markov chains and stochastic 
optimization models. The authors argued that these models may not provide qualitative 
information to rational investors. 

Under the previous framework of the cited literature, this paper attempted to find an 
analytical solution to the problem of maximizing the total discounted utility of a rational 
consumer when the asset price dynamics and short rate are modulated by a time-
inhomogeneous Markov chain, with transitions that are themselves stochastic processes. 
As an illustration, we simulated several scenarios for the Mexican case in order to support 
the applicability of the theoretical results obtained. 

3. Asset Dynamics and Definition of States 
In the same spirit as [3], we sought to maximize the expected total discounted utility 

of an infinitely-lived rational consumer subject to his/her budget constraint, where 
parameters are modulated by a time-inhomogeneous Markov chain. However, in our 
proposal, the transition probabilities of the Markov chain will depend not only on time t, 
but also on the ratio between the risky asset and short rate of the bond price. This will 
require not only the inclusion of the short rate in the states of the Markov chain, but also 
consideration of an infinitesimal generator that incorporates, in the transition 
probabilities, the ratio between asset prices. The inclusion of the interest rate will also 
require definition of its relation with the trend parameter, in order to ensure a positive a 
market risk premium. 

The randomness in the risky asset involves a filtered probability space (Ω, ℱ, ℱ , P) 
where Ω is the sample space, P is a probability measure on ℱ, and ℱ , for t ≥ 0, is the 
natural filtration containing all information of the market up to time t. 

  



Mathematics 2022, 10, 2926 4 of 15 
 

 

3.1. Asset Returns 
The bond return, d𝑏 , evolves accordingly to the following fist-order differential 

equation d𝑏 = 𝑟 𝑏 d𝑡  (1)

where 𝑏  is the bond price and 𝑟  will be defined later as a state of a Markov chain. The 
stock price process {𝑆 }  is driven by a diffusion process modulated by a Markov chain 
that follows the stochastic differential equation: d𝑆 = 𝜇 𝑆 d𝑡 + 𝜎 𝑆 d𝑊  (2)

where 𝜇  and 𝜎  are trend and volatility parameters, respectively, and 𝑊  is a one-
dimensional standard Brownian motion. 

3.2. Markov Chains 
We now model the regime-switching mechanism through a Markov chain 𝑋  with a 

finite state space 𝐸. For every 𝑡 ≥ 0, we assume mappings 𝑀, 𝛴, 𝑅: 𝐸 → ℝ , such that if the 
Markov chain 𝑋  is at state 𝑖 ∈ 𝐸, then:   𝑀(𝑖) = 𝜇 ,    𝛴(𝑖) = 𝜎     and 𝑅(𝑖) = 𝑟  (3)

In other words, state i is associated with a known triplet (𝜇 , 𝜎 , 𝑟 ). In our proposal, 
transition probabilities 𝑞 , (𝑡, 𝑆 , 𝑏 ) of the Markov chain will depend not only on time t, 
but also on the ratio between the prices of the risky asset and bond; thus, 𝑞 , (𝑡, 𝑆 , 𝑏 ) ≡𝑞 , (𝑡, 𝑆 /𝑏 ). That is, the source of uncertainty (the Brownian motion) that comes from the 
risky asset affects the transition probabilities, i.e., the transition probabilities are 
themselves stochastic processes. We will be more precise later on this point. 

It should be clear that, when we refer to uncertainty, it relates to Brownian motion, 
and, when this is the case, we simply write “under uncertainty” in what follows. 
Uncertainty in economic policy plays no role in the analysis, since economic policy is 
inferred from available information and expectations. 

Moreover, we describe the evolution of the process 𝑋  in terms of its infinitesimal 
generator, ℒ , which implicitly depends on the transition probabilities, the asset price 𝑆 , 
and the value of the bond 𝑏 , as follows: ℒ 𝑓(𝑖) = ∑ 𝑞 ,∈ (𝑡, 𝑆 , 𝑏 )(𝑓(𝑗) − 𝑓(𝑖))  (4)

Here, the transition probabilities of going from state 𝑖 ∈ 𝐸 to state 𝑗 ∈ 𝐸, at time 𝑡, are 
defined though the matrix: 𝑄(𝑡, 𝑆 , 𝑏 )  =  [𝑞 , (𝑡, 𝑆 , 𝑏 )] (5)

In order to ensure a positive a market risk premium, we assume that the mapping 𝑀: 𝐸 → ℝ  strictly dominates the mapping 𝑅: 𝐸 → ℝ , i.e., that for all 𝑖 ∈ 𝐸, we have 𝜇 − 𝑟 > 0, ∀𝑖 ∈ 𝐸  (6)

3.3. Portfolio Strategy and the Wealth Process 
From now on, we will denote by 𝜃  the proportion of wealth assigned to the risky 

asset, 𝑆 , at time 𝑡. The process 𝜃  is often called a portfolio strategy. 
Notice that, in principle, the portfolio strategy 𝜃  can depend not only on time, but 

also on the diffusion parameters 𝜇  and 𝜎 , the short rate, 𝑟 , paid for an instantaneous 
bond, and the current state (regime) of the Markov chain, 𝑋 = 𝑖. 

Let us now denote the investor wealth process by 𝑎 = 𝑆 + 𝑏 ; thus, d𝑎 = d𝑆 + d𝑏 − 𝑐 d𝑡 (7)
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where 𝑐  denotes consumption. Hence, from (1) and (2), and under a self-financing 
assumption, we have the following first-order stochastic differential equation 
representing the budget constraint: d𝑎 = 𝑎 𝜃 d𝑡 + 𝑎 (1 − 𝜃 ) d𝑡 − 𝑐 d𝑡  (8)

where 𝜃 = 𝑆 /𝑎  is the share of wealth allocated to holding the risky asset. We suppose 
an initial wealth 𝑎 > 0. 

4. The Utility Maximization Problem 
We now consider a consumer-investor with a utility function 𝑢: [0, ∞) → ℝ, such that: d𝑢d𝑐 > 0 (9)

and d 𝑢d𝑐 < 0. (10)

In other words, the utility function is increasing, strictly concave, and continuously 
differentiable. 

Moreover, the individual has a subjective discount rate, 𝜌 , which measures how 
anxious the individual is about current consumption or how compulsive he/she is. Hence, 
the consumer wishes to maximize his/her total expected discount utility given by E 𝑢 (𝑐 )𝑒 d𝑡  (11)

subject to the budget constraint: d𝑎 = 𝑎 𝑟 + 𝜃 (𝜇 − 𝑟 ) − 𝑐𝑎 d𝑡 + 𝑎 𝜃 𝜎 d𝑊  (12)

In order to solve this continuous time-stochastic dynamic programming problem, 
modulated by a Markov chain dependent on asset prices, we apply the necessary 
condition for an interior solution, which is provided by the corresponding Hamilton–
Jacobi–Bellman condition (see [2]) with a suitable infinitesimal generator. Let us define, 
first, the following value function: 𝐽(𝑎 , 𝑡, 𝑖) = max∣ ∈[ , )E 𝑢 (𝑐 )𝑒 d𝑠 . (13)

The corresponding Itô’s lemma, related to the infinitesimal generator of a Markov 
chain modulating the diffusion and the short rate, leads to: 

                 0 = max∣ ∈[ , )E { 𝑢(𝑐 )𝑒 d𝑡 + 𝑜(d𝑡) + ( , , ) 𝑎 𝜎 𝜃 d𝑊 + ( , , ) d𝑡 

                      + ∂𝐽(𝑎 , 𝑡, 𝑖)∂𝑎 𝑎 𝑟 + 𝜃 (𝜇 − 𝑟 ) − 𝑐𝑎 d𝑡 + 12 ∂ 𝐽(𝑎 , 𝑡, 𝑖)∂𝑎 𝑎 𝜎 𝜃 d𝑡 

                                                      + ∑ 𝑞 ,∈ (𝑡, 𝑆 , 𝑏 )[𝐽(𝑡, 𝑗, 𝑆 , 𝑏 ) − 𝐽(𝑡, 𝑖, 𝑆 , 𝑏 )]d𝑡 }  

(14)

                                                            If 𝜃  and 𝑐  are both optimal, then (14) implies 

𝑢(𝑐𝑡)𝑒−𝜌𝑡 + ∂𝐽(𝑎𝑡, 𝑡, 𝑖)∂𝑡 + ∂𝐽(𝑎𝑡, 𝑡, 𝑖)∂𝑎𝑡 𝑎𝑡 𝑟𝑖 + 𝜃𝑡 𝜇𝑖 − 𝑟𝑖 − 𝑐𝑡𝑎𝑡                   
+ 12 ∂2𝐽(𝑎𝑡, 𝑡, 𝑖)∂𝑎𝑡2 𝑎𝑡2𝜎𝑖2𝜃𝑡2 + 𝑞𝑖,𝑗𝑗∈𝐸 (𝑡, 𝑆𝑡, 𝑏𝑡)[𝐽(𝑡, 𝑗, 𝑆𝑡, 𝑏𝑡) − 𝐽(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)]  = 0 (15)
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4.1. Logarithmic Utility 
In this section we deal with a utility function of the form: 𝑢(𝑐) = log(𝑐) (16)

We then propose the following candidate for the solution of (15): 𝐽(𝑎 , 𝑡, 𝑖) = 𝛽 + 𝛽 𝑢(𝑎 )𝑒 + 𝑔(𝑡, 𝑖, 𝑆 , 𝑏 )𝑒 . (17)

By substituting (17) in (15), we obtain: 

𝑢(𝑐𝑡) − 𝜌 𝛽0 + 𝛽1𝑢(𝑎𝑡) + ∂𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)∂𝑡 − 𝜌𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)                +𝛽1𝑢′(𝑎𝑡)𝑎𝑡 𝑟𝑖 + 𝜃𝑡 𝜇𝑖 − 𝑟𝑖 − 𝑐𝑡𝑎𝑡 + 12 𝛽1𝑢′′(𝑎𝑡)𝑎𝑡2𝜎𝑖2𝜃𝑡2            
+ 𝑞𝑖,𝑗𝑗∈𝐸 (𝑡, 𝑆𝑡, 𝑏𝑡)[𝑔(𝑡, 𝑗, 𝑆𝑡, 𝑏𝑡) − 𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)]  = 0.                 (18)

Taking partial derivatives, with respect to the decision variables 𝑐  and 𝜃 , it follows 
that: 𝑢′(𝑐 ) − 𝛽 𝑢′(𝑎 ) = 0 (19)

and 𝛽 𝑢 (𝑎 )𝑎 (𝜇 − 𝑟 ) + 𝛽 𝑢 (𝑎 )𝑎 𝜃 𝜎 = 0 (20)

Analytical Solution for Logarithmic Utility 
We are now ready to determine the optimal decisions by substituting (16) in (19) and 

(20). Hence, after substantial simplifications, we obtain: 𝑐 =   (21)

and        𝜃 = .  (22)

In (21), 1/𝛽  is the marginal propensity to consume, and the optimal strategy, 𝜃 , 
depends on state i: 

4.2. Case I: 𝜇 − 𝑟 ≤ 𝜎  
At this point, we substitute (21) and (22) in (18) to obtain: 𝑟𝑖𝛽1 − log 𝛽1 − 1 − 𝜌𝛽0 + 1 − 𝜌𝛽1 log(𝑎𝑡)           + ∂𝑔(𝑡,𝑖,𝑆𝑡,𝑏𝑡)∂𝑡 − 𝜌𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) + 12 𝛽1 𝜇𝑖−𝑟𝑖𝜎𝑖

2                        + ∑ 𝑞𝑖,𝑗𝑗∈𝐸 (𝑡, 𝑆𝑡, 𝑏𝑡)[𝑔(𝑡, 𝑗, 𝑆𝑡, 𝑏𝑡) − 𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)] = 0   (23)

Since the above equation must hold for all 𝑎 , we must have that: 𝛽 =        (24)

From (21), we have 𝑐 = 𝜌𝑎 .  (25)

In this case, we have to define 𝛽 = ln( )       (26)
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We then have that function 𝑔 satisfies the following integral equation: 𝑔(𝑡, 𝑖, 𝑆 , 𝑏 ) = 12 𝜇 − 𝑟𝜎 𝑒 ( )d𝑠                                                                                              + 𝑞 , (𝑠, 𝑆 , 𝑏 )[𝑔(𝑠, 𝑗, 𝑆 , 𝑏 ) − 𝑔(𝑠, 𝑖, 𝑆 , 𝑏 )]𝑒 ( )d𝑠∈
 (27)

4.3. Case II: A Corner Solution 
In this case, we consider 𝜃 = 1  (28)

After substituting the corner solution in (18), it follows that −log 𝛽1 − 𝜌𝛽0 + 1 − 𝜌𝛽1 log(𝑎𝑡) + 𝛽1 𝜇𝑖 − 𝜌           + ∂𝑔(𝑡,𝑖,𝑆𝑡,𝑏𝑡)∂𝑡 − 𝜌𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) + 12 𝛽1𝜎𝑖2                                       + ∑ 𝑞𝑖,𝑗𝑗∈𝐸 (𝑡, 𝑆𝑡, 𝑏𝑡)[𝑔(𝑡, 𝑗, 𝑆𝑡, 𝑏𝑡) − 𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)] = 0        (29)

Since the above equation must hold for all 𝑎 , it follows that 𝛽 = 1𝜌   (30)

From (21), Equation (30), in turn, implies that 𝑐 = 𝜌𝑎  (31)

Therefore, it follows that 𝛽 = ln(𝜌) + 1𝜌    (32)

We then have that 𝑔 satisfies the following integral equation: 𝑔(𝑡, 𝑖, 𝑆 , 𝑏 ) = 2𝜇 − 𝜎2𝜌 𝑒 ( )d𝑠 

                                                                     + ∑ 𝑞 , (𝑠, 𝑆 , 𝑏 )[𝑔(𝑠, 𝑗, 𝑆 , 𝑏 ) − 𝑔(𝑠, 𝑖, 𝑆 , 𝑏 )]𝑒 ( )d𝑠∈  
(33)

4.4. CRRA Utility Function 
In this section, we examine the case of a utility function of the form: 𝑢(𝑐) = 𝑐𝛾   (34)

where 𝛾 is the relative risk aversion parameter. Then, we propose the following candidate 
for the solution of (15): 𝐽(𝑎 , 𝑡, 𝑖) = 𝑢(𝑎 )𝑔(𝑡, 𝑖, 𝑆 , 𝑏 )𝑒 . (35)

Substituting (35) in (15) provides: 
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𝑢(𝑐𝑡) − 𝜌𝑢(𝑎𝑡)𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) + 𝑢(𝑎𝑡) ∂𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)∂𝑡               +𝑢′(𝑎𝑡)𝑎𝑡𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) 𝑟𝑖 + 𝜃𝑡 𝜇𝑖 − 𝑟𝑖 − 𝑐𝑡𝑎𝑡                        
+ 12 𝑢′′(𝑎𝑡)𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)𝑎𝑡2𝜎𝑖2𝜃𝑡2                                                        +𝑢(𝑎𝑡) 𝑞𝑖,𝑗𝑗∈𝐸 (𝑡, 𝑆𝑡, 𝑏𝑡)[𝑔(𝑡, 𝑗, 𝑆𝑡, 𝑏𝑡) − 𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)] = 0

 (36)

Taking partial derivatives with respect to the decision variables 𝑐  and 𝜃 , we obtain 
the following relations: 𝑢′(𝑐 ) − 𝑔(𝑡, 𝑖, 𝑆 , 𝑏 )𝑢′(𝑎 ) = 0 (37)

and 𝜃 = (𝜇 − 𝑟 )/𝜎−[𝑢″(𝑎 )𝑎 /𝑢′(𝑎 )] (38)

4.4.1. Analytical Solution for CRRA Utiliy 
After combining (34) and (37), we have 𝑐 = 𝑔(𝑡, 𝑖, 𝑆 , 𝑏 ) 𝑎  (39)

and 𝜃 = 𝜇 − 𝑟(1 − 𝛾)𝜎  (40)

where, for simplicity, we neglect the case 𝛾 ≥ 1. 
Notice, again, how the portfolio strategy depends on the current regime. 

Furthermore, here we can see that as 𝛾 → 0, the optimal strategy for the CRRA utility 
tends to that of the logarithmic utility. 

4.5. Case I: 𝜇 − 𝑟 ≤ (1 − 𝛾)𝜎  
Substituting (39) and (40) in (36), we obtain: (1 − 𝛾)𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) 𝛾𝛾−1 − 𝜌𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) + ∂𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)∂𝑡         

+𝛾𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) 𝑟𝑖 + 12 (𝜇𝑖 − 𝑟𝑖)2(1 − 𝛾)𝜎𝑖2                                             
+ 𝑞𝑖,𝑗𝑗∈𝐸 (𝑡, 𝑆𝑡, 𝑏𝑡)[𝑔(𝑡, 𝑗, 𝑆𝑡, 𝑏𝑡) − 𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)] = 0 . (41)

         We then propose the following candidate for the solution to (41): 

𝑔(𝑡, 𝑖, 𝑆 , 𝑏 ) = (1 − 𝛾)𝑔(𝑠, 𝑖, 𝑆 , 𝑏 ) 𝑒 ( )( ) ( ) 𝑑𝑠
                   + (ℒ 𝑔(𝑠,⋅, 𝑆 , 𝑏 )(𝑖)) 𝑒 ( )( ) ( ) 𝑑𝑠  (42)

where ℒ 𝑔(𝑠,⋅, 𝑆 , 𝑏 )(𝑖) satisfies (4). After some work, it can be shown that, indeed, the 
proposed candidate solves Equation (41). 

4.6. Case II: A Corner Solution 
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Here, we assume that 𝜃 = 1 (43)

After substituting the above expression in (36), we obtain: 

(1 − 𝛾)𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) 𝛾𝛾−1 + ∂𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)∂𝑡                            
+𝛾𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡) 𝛾 2𝜇𝑖 + (𝛾 − 1)𝜎𝑖22 − 𝜌                   
+ 𝑞𝑖,𝑗𝑗∈𝐸 (𝑡, 𝑆𝑡, 𝑏𝑡)[𝑔(𝑡, 𝑗, 𝑆𝑡, 𝑏𝑡) − 𝑔(𝑡, 𝑖, 𝑆𝑡, 𝑏𝑡)] = 0 (44)

We then propose the following candidate solution to (44): 

𝑔(𝑡, 𝑖, 𝑆 , 𝑏 ) = (1 − 𝛾)𝑔(𝑠, 𝑖, 𝑆 , 𝑏 ) 𝑒 ( )( ) ( ) d𝑠
                   + (ℒ 𝑔(𝑠,⋅, 𝑆 , 𝑏 )(𝑖)) 𝑒 ( )( ) ( ) d𝑠  (45)

where, as before, ℒ 𝑔(𝑠,⋅, 𝑆 , 𝑏 )(𝑖) satisfies (4). After a bit work, it can be seen that the 
proposed candidate does indeed solve Equation (44). 

5. Simulations of Portfolios under Uncertainty 
In this section, we simulate, as an illustration of the theoretical results obtained, four 

different scenarios in the presence of uncertainty. By way of illustration, we consider the 
Mexican case. The source of uncertainty is incorporated into the transition probabilities 
through the ratio between the prices of the risky asset and the bond, 𝑞 , (𝑡, 𝑆 /𝑏 ). 

In order to obtain a qualitatively appropriate selection of the current and future states 
in the Markov chain that modulate the diffusion parameters and the short rate, we made 
some simple inferences from possible future fiscal incentives and stimuli, from the 
Ministry of Treasury (SHCP, Spanish acronym for Secretaría de Hacienda y Crédito 
Público, [14]), and possible monetary policy decisions, published publically by the 
Mexican Central Bank (Banxico, [15]). The latter aspect is based on a survey of 
professionals and specialists, published publicly by the private Mexican Bank “Banco 
Nacional de México” (Citybanamex, [16]). Finally, estimates of the subjective discount 
rates were taken from [17], and estimates of the relative risk aversion coefficient were 
taken as an average of the values listed in [18]. 

5.1. First Scenario, Intermittent Transition Probabilities 
In this case, we consider a space 𝐸 with two states, representing two regimes: the first 

is the “normal” state, and the second is a scenario under inferred future economic policy. 
States 1 and 2 are defined as follows. For the trend, we chose 𝜇 = 0.12 > 𝜇 = 0.06, due 
to the lack of fiscal stimuli. For the volatility, we chose 𝜎 = 𝜎 = 0.2, due to volatility 
clustering (large changes tend to be followed by large changes). Finally, for the interest 
rate, we used 𝑟 = 0.08 > 𝑟 = 0.055; once inflations is contained, the reference rate will 
fall. Hence, states are known from the inferred future economic policy, and uncertainty is 
incorporated into the transition probabilities by means a threshold of the ratio 𝑆 /𝑏 . In 
order to explain the meaning of “normal”, we assumed that there is a deterministic 
threshold, k, for the ratio between 𝑆  and 𝑏 , 𝑆 /𝑏 = 𝑘, such that, after crossing it, the 
second state emerges in order to cut down the returns (returns can be limited by offers, or 
“bids”) until the ratio is sufficiently small and the system goes back to “normal”. The 
threshold value, k, indicates how the risky asset and the risk-free asset are exchanged in 
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the market; that is, k represents the relative prices. This process is modeled in terms of the 
following transition matrix: 𝑄(𝑡, 𝑆 , 𝑏 ) = 1{ / } 1{ / }1{ / } 1{ / }  (46)

Given the inferred states, Figures 1 and 2, in Figures 1A and 2A, show one realization for 
the price of the risky asset and one realization for the price of the risk-free asset (the bond). 
It can be seen that the risky-asset price follows a geometric Brownian motion with a 
changing trend (remaining the same volatility) and the bond price follows an exponential 
trend with a changing slope. Figures 1C and 2C show an average of 10  realizations of the 
prices of the risky asset and the bond. In the cases of logarithmic and CRRA utility 
functions, one possible path for each of optimal decision variables, portfolio strategy, and 
consumption are presented, respectively, in Figures 1B and 2B. Finally, Figures 1D and 
2D show the average path, with 10  simulations of the portfolio strategy and 
consumption, of logarithmic and CRRA utility functions, respectively. The values of the 
threshold, k, were chosen, simply for illustrative purposes, as k = 2 and k′ = 1.5. Phyton 3.7 
[19] codes of the simulations are available on request. 

  
(A) (B) 

  
(C) (D) 

Figure 1. First scenario, logarithmic utility, 𝑘 = 2 , 𝑘′ = 1.5 , and 𝑎 = 𝑟 = 𝑆 = 𝑋 = 1 . Natural 
momentum (𝜇 = 0.12, 𝑟 = 0.08 , 𝜎 = 0.2) vs. inferred momentum (𝜇 = 0.06 , 𝑟 = 0.055 , 𝜎 =0.2), with 𝜌 = 0.01. (A) Price realization, (B) Portfolio strategy, (C) Average of price realizations, 
and (D) Average of portfolio strategies. Authors’ own elaboration. 
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(A) (B) 

  
(C) (D) 

Figure 2. First scenario, CRRA utility, 𝑎 = 𝑟 = 𝑆 = 𝑋 = 1, Natural momentum (𝜇 = 0.12, 𝑟 =0.08 , 𝜎 = 0.2)  vs. inferred momentum (𝜇 = 0.06 , 𝑟 = 0.055 , 𝜎 = 0.2) , with 𝜌 = 0.12 , 𝛾 = 1/3 
and 𝑔 = constant. (A) Price realization, (B) Portfolio strategy, (C) Average of price realizations, and 
(D) Average of portfolio strategies. Authors’ own elaboration. 

In the simulation exercise, optimal portfolio decision seems, on average, more likely 
to be oriented to bonds, according to Figures 1D and 2D. In addition, on average, we 
noticed convergence to a stable portfolio strategy in both the logarithmic and CRRA utility 
functions. Furthermore, the convergence speed seemed to be higher in the CRRA utility 
function. Moreover, since 𝜌 > 𝑟 in all simulations, the investor is anxious (or compulsive) 
about current consumption in such a way that what he/she receives in interest is not 
enough to compensate his/her consumption, so wealth will tend to zero in all cases. 
Finally, from (21) and (39), consumption is always proportional to wealth; thus, 
consumption tends to zero. 

5.2. Second Scenario, Monotone Transition Probabilities 
The second case considers a slightly different scenario from the previous one, with 

transition probabilities in terms of the ratio between 𝑆  and 𝑏 , though the states remain 
the same. We now establish the threshold, 𝑘, for the ratio between 𝑆  and 𝑏 , in such a way 
that, at any instant, there exists a positive probability that increases as the mentioned ratio 
increases, allowing the second state to emerge in order to cut down the returns until the 
ratio is sufficiently small and the system goes back to “normal”. To accomplish this, we 
define the following transition matrix: 𝑄(𝑡, 𝑆 , 𝑏 ) = 𝑒 / 1 − 𝑒 /1 − 𝑒 / 𝑒 /  (47)

The value of the threshold was chosen simply for illustrative purposes as k = 2. As 
before, Figures 3A and 4A show price realizations of the risky asset and the bond. Figures 
3C and 4C show the average of 10  price realizations of the risky asset and the bond. 
Possible paths of the optimal decision variables, in the cases of logarithmic and CRRA 
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utility functions, are shown in Figures 3B and 4B, respectively. Finally, the average path 
of the optimal decision variables, based on 10  simulations, are shown for logarithmic and 
CRRA utility functions, respectively, in Figures 3D and 4D. 

  
(A) (B) 

 
(C)  (D)  

Figure 3. Second scenario, logarithmic utility, 𝑘 = 2, and 𝑎 = 𝑟 = 𝑆 = 𝑋 = 1. Natural momentum 
(𝜇 = 0.12, 𝑟 = 0.08, 𝜎 = 0.2) vs. inferred momentum (𝜇 = 0.06, 𝑟 = 0.055, 𝜎 = 0.2, with 𝜌 =0.01). (A) Price realization, (B) Portfolio strategy, (C) Average of price realizations, and (D) Average 
of portfolio strategies. Authors’ own elaboration. 

  
(A) (B) 
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(C) (D) 

Figure 4. Second scenario, logarithmic utility, 𝑎 = 𝑟 = 𝑆 = 𝑋 = 1.  Natural momentum (𝜇 =0.12, 𝑟 = 0.08, 𝜎 = 0.2) vs. inferred momentum (𝜇 = 0.06, 𝑟 = 0.055, 𝜎 = 0.2), with 𝜌 = 0.12, 𝛾 = 1/3  and 𝑔 = constant . (A) Price realization, (B) Portfolio strategy, (C) Average of price 
realizations, and (D) Average of portfolio strategies. Authors’ own elaboration. 

As seen in the first scenario, subsequent optimal portfolio decision seems more likely 
oriented to bonds, though now those appear more frequently (comparing Figure 3B with 
Figure 4B). After running several realizations, convergence to a stable strategy portfolio 
seems consistent for both the logarithmic and CRRA utility functions (Figure 3D and 
Figure 4D). Notice that the convergence speed, on average, seems to be higher than that 
of the first scenario. 

6. Conclusions 
This research found analytical solutions to the optimal-asset allocation problems of a 

rational consumer with logarithmic and CRRA utility functions, when the prices of the 
assets are modulated by a time-inhomogeneous Markov chain, with transition 
probabilities dependent on the stochastic dynamics of the risk asset (transition 
probabilities are themselves stochastic processes), which allowed for a deeper analysis of 
the decision-making process under uncertainty. Additionally, our proposal opens the 
possibility for improved interpretations of the parameters associated with specific 
regimes through transition probabilities dependent on asset prices. 

It is worth mentioning that the goal of the simulations was to provide a basic, but 
meaningful, illustration with several scenarios to support the applicability of transition 
probabilities, when they themselves are stochastic processes. We developed an illustration 
of the theoretical results obtained for the Mexican case. Several scenarios were simulated 
by using the theoretical results found, demonstrating its potential as an analytical tool to 
effectively manage portfolio performance, based on an optimal rational allocation. 
Regarding the empirical results of all the simulations, convergence to a stable portfolio 
strategy was observed both for the logarithmic utility function and for CRRA. 
Furthermore, in all cases, on average, the optimal portfolio decision seems more bond-
oriented, with wealth and consumption tending to zero. 

The limitations identified in this investigation, such as the specific selection of a 
utility function, should be taken into account in future papers to search for more general 
analytical solutions. A promising direction is the use hyperbolic absolute-risk aversion 
(HARA), or negative exponential utility functions, to discover if the analytical solutions 
provide substantial differences compared to those found here, or if it is possible to identify 
general principles with all these utility functions useful for optimal portfolio allocation. 
In addition, more work should be performed to examine the sensitivity of the threshold 𝑘. Finally, it is also very important to compare our proposal with alternative tools to model 
random events in future research. 
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