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Abstract: This paper aims to simulate portfolio decisions under uncertainty when the diffusion param-
eters of the risky asset and short rate paid for a bond are both modulated by a time-inhomogeneous
Markov chain, with transition probabilities dependent on states, time, and asset prices. To do this, we
first found closed-form solutions of the corresponding utility-maximization problem, which solves
a rational consumer that makes portfolio and consumption decisions by using the corresponding
infinitesimal generator associated with the Markov chain. Subsequently, as an illustration of the
theoretical results obtained, several scenarios were simulated for the Mexican case. The expected
economic policy was inferred from announced monetary policy decisions regarding the reference
rate and possible changes in trend due to the lack of fiscal stimuli. Under this framework, states
were defined from the current and expected economic policies, and transition probabilities were
expressed in terms of the ratio between the prices of the risky asset and the bond. It should be noted,
as far as the authors know, that no analytical solutions are known in the literature for the case of
Markov-modulated time-inhomogeneous chains with transition probabilities that, themselves, are
stochastic processes.

Keywords: diffusion process; short rate; Markov regime switching; portfolio simulation
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1. Introduction

The problem of maximizing the total discounted utility of a rational consumer making
portfolio and consumption decisions has been widely studied; see [1,2] for different settings.
Here, we extend this problem beyond the purely diffusive nature imposed on the asset price
dynamics by modulating the diffusion parameters of the risky asset and short rate paid for
a bond with a time-inhomogeneous Markov chain, with transition probabilities dependent
not only on time, but also on the stochastic dynamics of the risky asset inherited from the
Brownian motion; i.e., transition probabilities are themselves stochastic processes. More
precisely, the stochastic dynamic programming problem considered in this investigation
incorporates an infinitesimal generator, wherein the transition probabilities depend on
states, time, and asset prices. This extends the dynamics proposed in [3,4].

Under the above framework, we assume that the preferences of the rational consumer
are given by the logarithmic and constant relative risk aversion (CRRA) utility functions,
since the selection of these functional forms frequently leads to analytical solutions for
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continuous-time stochastic optimal control problems (or continuous-time stochastic dy-
namic programming); see, for example, [2].

Markov regime switching models were introduced in [5]. These models have become
very popular, and are based on the main assumption that states are determined by a
Markov chain. In our proposal, the states are associated with the parameters of the
diffusion process and the short rate. This investigation opens the possibility of improving
decision-making interpretations of asset-dependent transition probabilities. By taking
advantage of these new capabilities, this paper is also concerned with providing a basic but
meaningful illustration, for the Mexican case, to generate different scenarios for supporting
the applicability of transition probabilities, when they are themselves stochastic processes.
In the illustration, the states of the Markov chain are inferred from the expected economic
policy: (a) announced monetary policy decisions, (b) possible future fiscal incentives and
stimuli, and (c) a survey of professionals and specialists; specifically, the inferred economic
policy considers a reduction in the reference rate after lowering inflation and a reduction of
the trend parameter due to the lack of fiscal stimuli.

This work differs from others in the current literature in the following aspects: (1) it
assumes that all parameters of interest in making portfolio decision are modulated by a
Markov regime switching model with transition probabilities dependent on the stochastic
dynamics of the asset prices; (2) it provides improved interpretations of time-dependent
and asset-dependent parameters associated with specific regimes that affect the transition
probabilities; (3) it obtains closed-form solutions of portfolio decisions when transition
probabilities depend on the ratio between the prices of the risky asset and the bond; (4) it
analyzes corner solutions; and (5) it simulates portfolio decision under different scenarios;
for the Mexican case, this includes when states are known (inferred from expected economic
policy) and uncertainty (inherited from the Brownian motion) is incorporated into the
transition probabilities.

This research is organized as follows: Section 2 provides a brief review of the special-
ized literature; Section 3 deals with asset dynamics and the definition of states; Section 4
finds analytical solutions of optimal consumption and asset allocation for the cases of the
logarithmic and the CRRA utility functions with transition probabilities dependent on the
stochastic dynamics of the risky asset; Section 5 simulates different scenarios of uncertainty
where the evolution of assets is restricted to future monetary policy decisions and possible
changes in trend due to fiscal stimuli; finally, Section 6 provides conclusions and guidelines
for further research.

2. A Short Literature Review

This section presents a brief review of the specialized literature on the modulation of
asset-price dynamics with a Markov state variable. The literature cited below is relevant
because it provides insight into the recent evolution of models using continuous-time
Markov chains modulating an underlying stochastic process, including Markov-modulated
point processes and Markov-modulated jump-diffusion processes. Furthermore, some
practical applications of the Markov-modulated processes are mentioned, such as the
analysis of the risk premium of bonds and the variation of the discount rate in Brazil.
Finally, the limitations of the use of Markov chains in stochastic optimization models are
highlighted. This short review serves as the basis for justifying our proposal and showing
how it expands on the recent literature on the subject.

Recently, Ding, Cui and Wang [6] proposed a general valuation framework for skew
diffusions based on a continuous-time Markov chain that modulates the underlying stochas-
tic process. The authors obtained an explicit closed-form approximation of the transition
density of a general skew diffusion process. Moreover, Goel and Mehra [7] examined a
class of analytically tractable Markov modulated point process. The authors assumed that
intensities of the jump process are driven by a correlated Markov modulated jump-diffusion
process, with dependence among the jumps modeled using a copula.
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A relevant element of the aforementioned research requires optimal discounted value
functions, widely studied for optimal stopping problems. In this regard, Gapeev and
Rodosthenous [8] derived closed-form expressions for the associated value function and
optimal exercise boundaries in a model with an accessible dividend rate policy, which was
described by a continuous-time Markov chain with a finite number of states. Likewise,
Gapeev [9] studied a two-dimensional discounted optimal stopping problem in which
the behavior of the underlying asset price followed a generalized geometric Brownian
motion and the dynamics of the convenience yield were described by an unobservable
continuous-time Markov chain with two states. Finally, Maya and Safra [10] examined bond
risk premium and discount rate variation in Brazil, assuming a Markov decision process.

On the other hand, Gluzberg and Katz [11] considered the impact of transient exoge-
nous shocks to productivity on the long-term social discount rates by deriving equations
that describe the evolution of the conditionally averaged exponential functional of a stochas-
tically modulated Markov-state variable. The authors focused on the purely discontinuous
Markov decision process, with the Poisson law describing arrival times of jumps in the
state variable. Finally, it is worth mentioning the investigation reported in Cousin et al. [12],
wherein the authors derived a recursive equation associated with the Markov decision
process. The cost-to-go function and corresponding optimal strategies were obtained using
dynamic programming. Here, optimal strategies were estimated by simulation regres-
sion techniques (least square Monte Carlo). Finally, Nukala and Prasada [13] pointed
out some limitations of forecasting using Markov chains and stochastic optimization
models. The authors argued that these models may not provide qualitative information
to rational investors.

Under the previous framework of the cited literature, this paper attempted to find
an analytical solution to the problem of maximizing the total discounted utility of a ra-
tional consumer when the asset price dynamics and short rate are modulated by a time-
inhomogeneous Markov chain, with transitions that are themselves stochastic processes.
As an illustration, we simulated several scenarios for the Mexican case in order to support
the applicability of the theoretical results obtained.

3. Asset Dynamics and Definition of States

In the same spirit as [3], we sought to maximize the expected total discounted utility of
an infinitely-lived rational consumer subject to his/her budget constraint, where parameters
are modulated by a time-inhomogeneous Markov chain. However, in our proposal, the
transition probabilities of the Markov chain will depend not only on time t, but also on the
ratio between the risky asset and short rate of the bond price. This will require not only the
inclusion of the short rate in the states of the Markov chain, but also consideration of an
infinitesimal generator that incorporates, in the transition probabilities, the ratio between
asset prices. The inclusion of the interest rate will also require definition of its relation with
the trend parameter, in order to ensure a positive a market risk premium.

The randomness in the risky asset involves a filtered probability space (Ω,F ,Ft, P)
where Ω is the sample space, P is a probability measure on F , and Ft, for t ≥ 0, is the
natural filtration containing all information of the market up to time t.

3.1. Asset Returns

The bond return, dbt, evolves accordingly to the following fist-order differential equation

dbt = ribtdt (1)

where bt is the bond price and ri will be defined later as a state of a Markov chain. The
stock price process {St}t≥0 is driven by a diffusion process modulated by a Markov chain
that follows the stochastic differential equation:

dSt = µiStdt + σiStdWt (2)
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where µi and σi are trend and volatility parameters, respectively, and Wt is a one-dimensional
standard Brownian motion.

3.2. Markov Chains

We now model the regime-switching mechanism through a Markov chain Xt with a
finite state space E. For every t ≥ 0, we assume mappings M, Σ, R : E→ R+ , such that if
the Markov chain Xt is at state i ∈ E, then:

M(i) = µi, Σ(i) = σi and R(i) = ri (3)

In other words, state i is associated with a known triplet (µi, σi, ri). In our proposal, tran-
sition probabilities qi,j(t, St, bt) of the Markov chain will depend not only on time t, but also
on the ratio between the prices of the risky asset and bond; thus, qi,j(t, St, bt) ≡ qi,j(t, St/bt).
That is, the source of uncertainty (the Brownian motion) that comes from the risky asset
affects the transition probabilities, i.e., the transition probabilities are themselves stochastic
processes. We will be more precise later on this point.

It should be clear that, when we refer to uncertainty, it relates to Brownian motion, and,
when this is the case, we simply write “under uncertainty” in what follows. Uncertainty
in economic policy plays no role in the analysis, since economic policy is inferred from
available information and expectations.

Moreover, we describe the evolution of the process Xt in terms of its infinitesimal
generator, Lt, which implicitly depends on the transition probabilities, the asset price St,
and the value of the bond bt, as follows:

Lt f (i) = ∑j∈E qi,j(t, St, bt)( f (j)− f (i)) (4)

Here, the transition probabilities of going from state i ∈ E to state j ∈ E, at time t, are
defined though the matrix:

Q(t, St, bt) = [qi,j(t, St, bt)] (5)

In order to ensure a positive a market risk premium, we assume that the mapping
M : E→ R+ strictly dominates the mapping R : E→ R+ , i.e., that for all i ∈ E, we have

µi − ri > 0, ∀i ∈ E (6)

3.3. Portfolio Strategy and the Wealth Process

From now on, we will denote by θt the proportion of wealth assigned to the risky
asset, St, at time t. The process θt is often called a portfolio strategy.

Notice that, in principle, the portfolio strategy θt can depend not only on time, but
also on the diffusion parameters µi and σi, the short rate, ri, paid for an instantaneous bond,
and the current state (regime) of the Markov chain, Xt = i.

Let us now denote the investor wealth process by at = St + bt; thus,

dat =dSt + dbt − ctdt (7)

where ct denotes consumption. Hence, from (1) and (2), and under a self-financing assump-
tion, we have the following first-order stochastic differential equation representing the
budget constraint:

dat = atθt
dSt

St
dt + at(1− θt)

dbt

bt
dt− ctdt (8)

where θt = St/at is the share of wealth allocated to holding the risky asset. We suppose an
initial wealth a0 > 0.
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4. The Utility Maximization Problem

We now consider a consumer-investor with a utility function u : [0, ∞)→ R , such that:

du
dc

> 0 (9)

and
d2u
dc2 < 0. (10)

In other words, the utility function is increasing, strictly concave, and
continuously differentiable.

Moreover, the individual has a subjective discount rate, ρ, which measures how
anxious the individual is about current consumption or how compulsive he/she is. Hence,
the consumer wishes to maximize his/her total expected discount utility given by

E
[∫ ∞

0
u(ct)e−ρtdt

]
(11)

subject to the budget constraint:

dat = at

(
ri + θt(µi − ri)−

ct

at

)
dt + atθtσidWt (12)

In order to solve this continuous time-stochastic dynamic programming problem,
modulated by a Markov chain dependent on asset prices, we apply the necessary condition
for an interior solution, which is provided by the corresponding Hamilton–Jacobi–Bellman
condition (see [2]) with a suitable infinitesimal generator. Let us define, first, the following
value function:

J(at, t, i) = max
cs
|s∈[t,∞)

E[
∫ ∞

t
u(cs)e−ρsds]. (13)

The corresponding Itô’s lemma, related to the infinitesimal generator of a Markov
chain modulating the diffusion and the short rate, leads to:

0 = max
cs|

s∈[t,t+dt)

E { u(ct)e−ρtdt + o(dt) + ∂J(at ,t,i)
∂at

atσiθtdWt +
∂J(at ,t,i)

∂t dt

+ ∂J(at ,t,i)
∂at

at

(
ri + θt(µi − ri)− ct

at

)
dt + 1

2
∂2 J(at ,t,i)

∂a2
t

a2
t σ2

i θ2
t dt

+∑j∈E qi,j(t, St, bt)[J(t, j, St, bt)− J(t, i, St, bt)]dt
} (14)

If θt and ct are both optimal, then (14) implies

u(ct)e−ρt + ∂J(at ,t,i)
∂t + ∂J(at ,t,i)

∂at
at

(
ri + θt(µi − ri)− ct

at

)
+ 1

2
∂2 J(at ,t,i)

∂a2
t

a2
t σ2

i θ2
t + ∑

j∈E
qi,j(t, St, bt)[J(t, j, St, bt)− J(t, i, St, bt)] = 0

(15)

4.1. Logarithmic Utility

In this section we deal with a utility function of the form:

u(c) = log(c) (16)

We then propose the following candidate for the solution of (15):

J̃(at, t, i) = β0 + β1u(at)e−ρt + g(t, i, St, bt)e−ρt. (17)



Mathematics 2022, 10, 2926 6 of 14

By substituting (17) in (15), we obtain:

u(ct)− ρ(β0 + β1u(at)) +
∂g(t,i,St ,bt)

∂t − ρg(t, i, St, bt)

+β1u′(at)at

(
ri + θt(µi − ri)− ct

at

)
+ 1

2 β1u′′ (at)a2
t σ2

i θ2
t

+ ∑
j∈E

qi,j(t, St, bt)[g(t, j, St, bt)− g(t, i, St, bt)] = 0.
(18)

Taking partial derivatives, with respect to the decision variables ct and θt, it follows that:

u′(ct)− β1u′(at) = 0 (19)

and
β1u′(at)at(µi − ri) + β1u′′ (at)at

2θtσ
2
i = 0 (20)

Analytical Solution for Logarithmic Utility

We are now ready to determine the optimal decisions by substituting (16) in (19) and
(20). Hence, after substantial simplifications, we obtain:

ct =
at

β1
. (21)

and
θt =

µi − ri

σ2
i

. (22)

In (21), 1/β1 is the marginal propensity to consume, and the optimal strategy, θt,
depends on state i:

4.2. Case I: µi − ri ≤ σ2
i

At this point, we substitute (21) and (22) in (18) to obtain:

riβ1 − log(β1)− 1− ρβ0 + (1− ρβ1) log(at)

+ ∂g(t,i,St ,bt)
∂t − ρg(t, i, St, bt) +

1
2 β1

(
µi−ri

σi

)2

+∑j∈E qi,j(t, St, bt)[g(t, j, St, bt)− g(t, i, St, bt)] = 0

(23)

Since the above equation must hold for all at, we must have that:

β1 =
1
ρ

(24)

From (21), we have
ct = ρat. (25)

In this case, we have to define

β0 =

r
ρ + ln(ρ)− 1

ρ
(26)

We then have that function g satisfies the following integral equation:

g(t, i, St, bt) =
∫ ∞

t
1
2

(
µi−ri

σi

)2
e−ρ(s−t)ds

+ ∑
j∈E

∫ ∞
t qi,j(s, Ss, bs)[g(s, j, Ss, bs)− g(s, i, Ss, bs)]e−ρ(s−t)ds

(27)

4.3. Case II: A Corner Solution

In this case, we consider
θt = 1 (28)
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After substituting the corner solution in (18), it follows that

− log(β1)− ρβ0 + (1− ρβ1) log(at) + β1(µi − ρ)

+ ∂g(t,i,St ,bt)
∂t − ρg(t, i, St, bt) +

1
2 β1σi

2

+∑j∈E qi,j(t, St, bt)[g(t, j, St, bt)− g(t, i, St, bt)] = 0
(29)

Since the above equation must hold for all at, it follows that

β1 =
1
ρ

(30)

From (21), Equation (30), in turn, implies that

ct = ρat (31)

Therefore, it follows that

β0 =
ln(ρ) + 1

ρ
(32)

We then have that g satisfies the following integral equation:

g(t, i, St, bt) =
∫ ∞

t
2µi−σi

2

2ρ e−ρ(s−t)ds
+ ∑

j∈E

∫ ∞
t qi,j(s, Ss, bs)[g(s, j, Ss, bs)− g(s, i, Ss, bs)]e−ρ(s−t)ds (33)

4.4. CRRA Utility Function

In this section, we examine the case of a utility function of the form:

u(c) =
cγ

γ
(34)

where γ is the relative risk aversion parameter. Then, we propose the following candidate
for the solution of (15):

J̃(at, t, i) = u(at)g(t, i, St, bt)e−ρt. (35)

Substituting (35) in (15) provides:

u(ct)− ρu(at)g(t, i, St, bt) + u(at)
∂g(t,i,St ,bt)

∂t
+u′(at)atg(t, i, St, bt)

(
ri + θt(µi − ri)− ct

at

)
+ 1

2 u′′ (at)g(t, i, St, bt)a2
t σ2

i θ2
t

+u(at) ∑
j∈E

qi,j(t, St, bt)[g(t, j, St, bt)− g(t, i, St, bt)] = 0

(36)

Taking partial derivatives with respect to the decision variables ct and θt, we obtain
the following relations:

u′(ct)− g(t, i, St, bt)u′(at) = 0 (37)

and

θt =
(µi − ri)/σ2

i
−[u′′ (at)at/u′(at)]

(38)

Analytical Solution for CRRA Utiliy

After combining (34) and (37), we have

ct = g(t, i, St, bt)
1

γ−1 at (39)
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and
θt =

µi − ri
(1− γ)σi

(40)

where, for simplicity, we neglect the case γ ≥ 1.
Notice, again, how the portfolio strategy depends on the current regime. Furthermore,

here we can see that as γ→ 0 , the optimal strategy for the CRRA utility tends to that of
the logarithmic utility.

4.5. Case I: µi − ri ≤ (1− γ)σ2
i

Substituting (39) and (40) in (36), we obtain:

(1− γ)g(t, i, St, bt)
γ

γ−1 − ρg(t, i, St, bt) +
∂g(t,i,St ,bt)

∂t

+γg(t, i, St, bt)

(
ri +

1
2
(µi−ri)

2

(1−γ)σ2
i

)
+ ∑

j∈E
qi,j(t, St, bt)[g(t, j, St, bt)− g(t, i, St, bt)] = 0

(41)

We then propose the following candidate for the solution to (41):

g(t, i, St, bt) =
∫ ∞

t

(
(1− γ)g(s, i, Ss, bs)

γ
γ−1
)

e
(γ(ri+

1
2
(µi−ri)

2

(1−γ)σ2
i
)−ρ)(s−t)

ds

+
∫ ∞

t (Lsg(s, ·, Ss, bs)(i))e
(γ(ri+

1
2
(µi−ri)

2

(1−γ)σ2
i
)−ρ)(s−t)

ds

(42)

where Lsg(s, ·, Ss, bs)(i) satisfies (4). After some work, it can be shown that, indeed, the
proposed candidate solves Equation (41).

4.6. Case II: A Corner Solution

Here, we assume that
θt = 1 (43)

After substituting the above expression in (36), we obtain:

(1− γ)g(t, i, St, bt)
γ

γ−1 + ∂g(t,i,St ,bt)
∂t

+γg(t, i, St, bt)

(
γ

(
2µi+(γ−1)σ2

i
2

)
− ρ

)
+ ∑

j∈E
qi,j(t, St, bt)[g(t, j, St, bt)− g(t, i, St, bt)] = 0

(44)

We then propose the following candidate solution to (44):

g(t, i, St, bt) =
∫ ∞

t

(
(1− γ)g(s, i, Ss, bs)

γ
γ−1
)

e
(γ(ri+

1
2
(µi−ri)

2

(1−γ)σ2
i
)−ρ)(s−t)

ds

+
∫ ∞

t (Lsg(s, ·, Ss, bs)(i))e
(γ(ri+

1
2
(µi−ri)

2

(1−γ)σ2
i
)−ρ)(s−t)

ds

(45)

where, as before, Lsg(s, ·, Ss, bs)(i) satisfies (4). After a bit work, it can be seen that the
proposed candidate does indeed solve Equation (44).

5. Simulations of Portfolios under Uncertainty

In this section, we simulate, as an illustration of the theoretical results obtained, four
different scenarios in the presence of uncertainty. By way of illustration, we consider the
Mexican case. The source of uncertainty is incorporated into the transition probabilities
through the ratio between the prices of the risky asset and the bond, qi,j(t, St/bt).

In order to obtain a qualitatively appropriate selection of the current and future
states in the Markov chain that modulate the diffusion parameters and the short rate,
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we made some simple inferences from possible future fiscal incentives and stimuli, from
the Ministry of Treasury (SHCP, Spanish acronym for Secretaría de Hacienda y Crédito
Público, [14]), and possible monetary policy decisions, published publically by the Mexican
Central Bank (Banxico, [15]). The latter aspect is based on a survey of professionals and
specialists, published publicly by the private Mexican Bank “Banco Nacional de México”
(Citybanamex, [16]). Finally, estimates of the subjective discount rates were taken from [17],
and estimates of the relative risk aversion coefficient were taken as an average of the
values listed in [18].

5.1. First Scenario, Intermittent Transition Probabilities

In this case, we consider a space E with two states, representing two regimes: the first
is the “normal” state, and the second is a scenario under inferred future economic policy.
States 1 and 2 are defined as follows. For the trend, we chose µ1 = 0.12 > µ2 = 0.06, due
to the lack of fiscal stimuli. For the volatility, we chose σ1 = σ2 = 0.2, due to volatility
clustering (large changes tend to be followed by large changes). Finally, for the interest
rate, we used r1 = 0.08 > r2 = 0.055; once inflations is contained, the reference rate will
fall. Hence, states are known from the inferred future economic policy, and uncertainty
is incorporated into the transition probabilities by means a threshold of the ratio St/bt.
In order to explain the meaning of “normal”, we assumed that there is a deterministic
threshold, k, for the ratio between St and bt, St/bt = k, such that, after crossing it, the
second state emerges in order to cut down the returns (returns can be limited by offers,
or “bids”) until the ratio is sufficiently small and the system goes back to “normal”. The
threshold value, k, indicates how the risky asset and the risk-free asset are exchanged in
the market; that is, k represents the relative prices. This process is modeled in terms of the
following transition matrix:

Q(t, St, bt) =

[
1{St/bt<k} 1{St/bt≥k}
1{St/bt<k′} 1{St/bt≥k′}

]
(46)

Given the inferred states, Figures 1 and 2, in Figures 1A and 2A, show one realization
for the price of the risky asset and one realization for the price of the risk-free asset (the
bond). It can be seen that the risky-asset price follows a geometric Brownian motion with a
changing trend (remaining the same volatility) and the bond price follows an exponential
trend with a changing slope. Figures 1C and 2C show an average of 104 realizations of
the prices of the risky asset and the bond. In the cases of logarithmic and CRRA utility
functions, one possible path for each of optimal decision variables, portfolio strategy, and
consumption are presented, respectively, in Figures 1B and 2B. Finally, Figures 1D and 2D
show the average path, with 104 simulations of the portfolio strategy and consumption, of
logarithmic and CRRA utility functions, respectively. The values of the threshold, k, were
chosen, simply for illustrative purposes, as k = 2 and k′ = 1.5. Phyton 3.7 [19] codes of the
simulations are available on request.



Mathematics 2022, 10, 2926 10 of 14

Mathematics 2022, 10, 2926 10 of 15 
 

 

the market; that is, k represents the relative prices. This process is modeled in terms of the 

following transition matrix: 

�(�, ��, ��) = �
1{��/����} 1{��/����}

1{��/�����} 1{��/�����}
� (46)

Given the inferred states, Figures 1 and 2, in Figures 1A and 2A, show one realization 

for the price of the risky asset and one realization for the price of the risk-free asset (the 

bond). It can be seen that the risky-asset price follows a geometric Brownian motion with 

a changing trend (remaining the same volatility) and the bond price follows an 

exponential trend with a changing slope. Figures 1C and 2C show an average of 10� 

realizations of the prices of the risky asset and the bond. In the cases of logarithmic and 

CRRA utility functions, one possible path for each of optimal decision variables, portfolio 

strategy, and consumption are presented, respectively, in Figures 1B and 2B. Finally, 

Figures 1D and 2D show the average path, with 10� simulations of the portfolio strategy 

and consumption, of logarithmic and CRRA utility functions, respectively. The values of 

the threshold, k, were chosen, simply for illustrative purposes, as k = 2 and k′ = 1.5. Phyton 

3.7 [19] codes of the simulations are available on request. 

  
(A) (B) 

  
(C) (D) 

Figure 1. First scenario, logarithmic utility, � = 2 , �′ = 1.5 , and �� = �� = �� = �� = 1 . Natural 

momentum (�� = 0.12 , �� = 0.08 , �� = 0.2) vs. inferred momentum (�� = 0.06 , �� = 0.055 , �� =

0.2), with � = 0.01. (A) Price realization, (B) Portfolio strategy, (C) Average of price realizations, 

and (D) Average of portfolio strategies. Authors’ own elaboration. 
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with ρ = 0.01. (A) Price realization, (B) Portfolio strategy, (C) Average of price realizations, and
(D) Average of portfolio strategies. Authors’ own elaboration.
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In the simulation exercise, optimal portfolio decision seems, on average, more likely to
be oriented to bonds, according to Figures 1D and 2D. In addition, on average, we noticed
convergence to a stable portfolio strategy in both the logarithmic and CRRA utility functions.
Furthermore, the convergence speed seemed to be higher in the CRRA utility function.
Moreover, since ρ > r in all simulations, the investor is anxious (or compulsive) about
current consumption in such a way that what he/she receives in interest is not enough to
compensate his/her consumption, so wealth will tend to zero in all cases. Finally, from (21)
and (39), consumption is always proportional to wealth; thus, consumption tends to zero.

5.2. Second Scenario, Monotone Transition Probabilities

The second case considers a slightly different scenario from the previous one, with
transition probabilities in terms of the ratio between St and bt, though the states remain
the same. We now establish the threshold, k, for the ratio between St and bt, in such a way
that, at any instant, there exists a positive probability that increases as the mentioned ratio
increases, allowing the second state to emerge in order to cut down the returns until the
ratio is sufficiently small and the system goes back to “normal”. To accomplish this, we
define the following transition matrix:

Q(t, St, bt) =

[
e−St/bt 1− e−St/bt

1− e−kbt/St e−kbt/St

]
(47)

The value of the threshold was chosen simply for illustrative purposes as k = 2. As
before, Figures 3A and 4A show price realizations of the risky asset and the bond. Figures
3C and 4C show the average of 104 price realizations of the risky asset and the bond.
Possible paths of the optimal decision variables, in the cases of logarithmic and CRRA
utility functions, are shown in Figures 3B and 4B, respectively. Finally, the average path of
the optimal decision variables, based on 104 simulations, are shown for logarithmic and
CRRA utility functions, respectively, in Figures 3D and 4D.
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Average of portfolio strategies. Authors’ own elaboration.
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As seen in the first scenario, subsequent optimal portfolio decision seems more likely
oriented to bonds, though now those appear more frequently (comparing Figure 3B with
Figure 4B). After running several realizations, convergence to a stable strategy portfolio seems
consistent for both the logarithmic and CRRA utility functions (Figures 3D and 4D). Notice
that the convergence speed, on average, seems to be higher than that of the first scenario.

6. Conclusions

This research found analytical solutions to the optimal-asset allocation problems of
a rational consumer with logarithmic and CRRA utility functions, when the prices of the
assets are modulated by a time-inhomogeneous Markov chain, with transition probabilities
dependent on the stochastic dynamics of the risk asset (transition probabilities are them-
selves stochastic processes), which allowed for a deeper analysis of the decision-making
process under uncertainty. Additionally, our proposal opens the possibility for improved
interpretations of the parameters associated with specific regimes through transition proba-
bilities dependent on asset prices.

It is worth mentioning that the goal of the simulations was to provide a basic, but
meaningful, illustration with several scenarios to support the applicability of transition
probabilities, when they themselves are stochastic processes. We developed an illustration
of the theoretical results obtained for the Mexican case. Several scenarios were simulated
by using the theoretical results found, demonstrating its potential as an analytical tool
to effectively manage portfolio performance, based on an optimal rational allocation.
Regarding the empirical results of all the simulations, convergence to a stable portfolio
strategy was observed both for the logarithmic utility function and for CRRA. Furthermore,
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in all cases, on average, the optimal portfolio decision seems more bond-oriented, with
wealth and consumption tending to zero.

The limitations identified in this investigation, such as the specific selection of a utility
function, should be taken into account in future papers to search for more general analytical
solutions. A promising direction is the use hyperbolic absolute-risk aversion (HARA),
or negative exponential utility functions, to discover if the analytical solutions provide
substantial differences compared to those found here, or if it is possible to identify general
principles with all these utility functions useful for optimal portfolio allocation. In addition,
more work should be performed to examine the sensitivity of the threshold k. Finally, it
is also very important to compare our proposal with alternative tools to model random
events in future research.
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