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Abstract: Vaccinations are one of the most important steps in combat against viral diseases such as
COVID-19. Determining the influence of the number of vaccinated patients on the infected population
represents a complex problem. For this reason, the aim of this research is to model the influence of
the total number of vaccinated or fully vaccinated patients on the number of infected and deceased
patients. Five separate modeling algorithms are used: Linear Regression (LR), Logistic Regression
(LogR), Least Absolute Shrinkage and Selection Operator (LASSO), Multilayer Perceptron (MLP), and
Support Vector Regression (SVR). Cross-correlation analysis is performed to determine the optimal
lags in data to assist in obtaining better scores. The cross-validation of models is performed, and the
models are evaluated using Mean Absolute Percentage Error (MAPE). The modeling is performed
for four different countries: Germany, India, the United Kingdom (UK), and the United States of
America (USA). Models with an error below 1% are found for all the modeled cases, with the best
models being achieved either by LR or MLP methods. The obtained results indicate that the influence
of vaccination rates on the number of confirmed and deceased patients exists and can be modeled
using ML methods with relatively high precision.

Keywords: COVID-19; cross-correlation analysis; machine learning; regression modeling; vaccina-
tion rates

MSC: 68T01

1. Introduction

COVID-19 is a viral disease caused by the SARS-COV-2 virus [1]. It first appeared in
China in December of 2019, soon spreading to other countries [2]. World Health Organiza-
tion (WHO) pronounced COVID-19 a global pandemic in March of 2020 [3]. Many measures
have been taken to combat the spread of COVID-19 since the beginning of the pandemic,
including the introduction of mandatory personal hygienic measures [4], mask-wearing [5],
internal and external travel restrictions [6] and lockdowns [7]. An important step in the
development of measures combating COVID-19 is the development and introduction of
vaccines for the disease [8]. Various vaccines were developed, and the vaccination efforts
started at the end of 2020 [9]. It is hard to determine the influence of vaccination rates on the
spread of viral diseases such as COVID-19 [9,10]. The creation of predictive models for such
a problem is a complex issue due to many interacting factors [11,12]. The development of
such models is a goal of this paper. The main motivation is to create models that will enable
the prediction of the future rates of infection and patient deaths based on the vaccination
rates in the given country. This would enable further strategic planning regarding the
hospital systems in the given countries because a high number of patients represents one
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of the biggest healthcare challenges related to the COVID-19 pandemic. Various regressive
techniques have been utilized in the past to model the spread and influence of COVID-19.
The regression methods, especially AI-based, have shown good results in modeling the
COVID-19 spread. One of the earliest papers modeling the COVID-19 spread with AI-based
algorithms is that of Car et al. [13]. The paper demonstrates the use of MLP for the modeling
of confirmed, recovered, and deceased patients in various countries, with high accuracy.
Rustam et al. [14] demonstrate the use of various techniques, including LR, LASSO, and
SVR, to model the spread of COVID-19 in Iran. Mollalo et al. [15] apply the artificial neural
network and LogR to model the incidence rates of COVID-19 in the USA, achieving high
accuracy. Gupta and Gharehgozli [16] show the use of LR and SVR in modeling the spread
of COVID-19 in the USA based on the population and weather variables, determining the
existing correlation and presenting high-fidelity models. Onovo et al. [17] demonstrate the
use of LASSO for statistical inference, using data provided by John Hopkins University
for sub-Saharan Africa. The wealth of research in using machine learning techniques
for the prediction of COVID-19 spread shows their value in modeling complex relations
connected to COVID-19. Bagabir et al. [18] discuss many applications of AI regarding
COVID-19, including genome sequencing and drug/vaccination development, noting it
to be an indispensable tool. The comparisons between the goals of the aforementioned
papers, results, and drawbacks are given in Table 1.

Table 1. Comparison of goals, results, and drawbacks for discussed papers.

Paper Goal Results Drawbacks

[13] Epidemiology curve
metrics, globally R2 > 0.9 globally

Early in pandemic,
low amount of data.

[14]
Epidemiology curve

metrics, 10-day
prediction

R2, R2
Adjusted > 0.95

Early in pandemic,
low amount of data.

[15] Incidence rates, USA Getis-Ord Gi*
(p < 0.05)

Only USA is
explored.

[16] Spread and influence
modeling

∼95% variance
explained

Only focuses on LR
and SVM method

variants.

[17] ROC Prediction of increase
Only focussed on the
sub-Saharan Africa

region.

While some authors, namely Bharadwaj et al. [19], Ong [20] and Keshavarzi et al. [21],
have suggested the use of computational and AI-based techniques to assist in vaccine develop-
ment and adjustment, there is a distinct lack of papers exploring the use of AI to determine the
influence of vaccination numbers on the infected population. Despite ML being a commonly
referenced tool in the scope of COVID-19, as can be seen from Mariappan et al. [22], where
the shipment times of vaccines are modeled using it, or Tong et al. [23], who use AI-assisted
techniques to determine the antibody flow and quantitative detection, the direct modeling
of the influence of vaccination rates on the number of patients is currently an unexplored
area. Another area of AI use in relation to COVID-19 was the identification of misinformation
shared on social media [24]. The spread of misinformation is an important factor that can have
a high influence on the success of different governmental decisions, as it can influence the
likelihood of people following the recommendations—such as vaccinations [25]. In this paper,
the researchers propose the use of various regressive techniques to determine the models
predicting the influence between the number of vaccinated or fully-vaccinated patients to the
number of deceased and infected patients.

This paper poses the following research questions:
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• Is there a correlation between the number of vaccinated, fully vaccinated, and boosted
patients and the number of new confirmed and deceased cases?

• Can the above be modeled using AI-based regression methods?
• Does the use of cross-correlation determined lags (the time-shifts of discrete data points

between the input and output datasets) enable better performance when regressing
with AI-based regression methods?

The paper will first present the dataset used and the preprocessing performed on
the data. Then, the used techniques and correlation analysis will be presented, followed
by the presentation of the best-achieved results for each of the countries observed in the
research—Germany, India, the United Kingdom, and the United States of America.

2. Materials and Methods

In this section, the used dataset is presented as well as used regression methods,
cross-validation, and evaluation metrics.

2.1. Dataset

The dataset used in this research was made publicly available by Our World in Data
website [26]. The dataset consists of various COVID-19-related metrics, such as the number
of confirmed, deceased, and recovered cases, and other metrics, such as the population
numbers, and the number of individuals in various age groups. Most importantly, for the
presented research, the dataset contains the total numbers of partially vaccinated and fully
vaccinated patients and boosted per country. The data in the dataset are updated daily.

For the regression modeling, the data were extracted for each of the countries of
interest for this paper—USA, Germany, UK, and India. The countries were selected based
on the differing vaccination approaches and geographical regions in an attempt to provide
a wider image. The data of interest in the presented research are the total numbers of
infected patients, deceased patients, vaccinated patients, fully vaccinated patients, and
boosted patients. Fully vaccinated patients refer to those patients who have received both
doses of the vaccines, which are administered in two doses and one dose of the Janssen
COVID-19 vaccine [26,27]. Boosted patients refer to those patients who have received
additional booster doses after the full vaccination [28]. The last date selected for the data
used inside the models is 12 July 2022. Due to the different starting dates of vaccinations,
this results in different amounts of data for each of the used countries. The exact length of
data vectors for each country is given in Table 2.

Table 2. The starting date of vaccination data in the dataset and the number of used data points
per country.

Country Starting Date Number of Data Points

Germany 27 December 2020 564

India 16 January 2021 544

United Kingdom 10 January 2021 550

United States 13 December 2020 578

The data from the dataset is shown in Figure 1 for each of the countries used. Each
of the subfigures shows the number of vaccinated patients, fully vaccinated patients,
and patients confirmed as infected and deceased patients. The trends for vaccinated
patients (single vaccinations, full vaccinations and boosters) differ noticeably across all the
analyzed countries. This indicates a difference in vaccination strategies and acceptance of
vaccinations among the populace for each of the analyzed countries. Taking the difference
in vaccination rates in comparison to the number of infected and deceased patients, it is
clear that differences exist between analyzed countries in that area as well. This illustrates
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the differences between analyzed countries, in both the vaccination rates and infection
rates, showing why they have been selected for modeling and analysis.

(a) (b)

(c) (d)

Figure 1. The display of the data contained within the dataset for all used countries, including
confirmed cases, deceased patients, vaccinated and fully vaccinated patients. (a) Data for Germany;
(b) Data for India; (c) Data for United Kingdom; (d) Data for United States.

Cross-Correlation Analysis

To determine the lag between the two time-series (for example, confirmed patients and
vaccinated patients in Germany) at which correlation is highest. If the y1[t] is the first time
series, and the y2[t] is the second time series, cross-correlation can be calculated using [29]:

(y1 ? y2)[t] ,
N−1

∑
t=0

y1[t]y2[t + τ], (1)

where the N is equal to the number of elements in a time series. The “full” cross-correlation
is used, in which zero padding is applied to elements to calculate the cross-correlation val-
ues for each overlap of the two time-series. To obtain the correlation coefficient, normalized
cross-correlation with time shift can be used, defined as the discrete normalized temporal
cross-correlation, per [30]:

r(τ, k) ,
∑k

t=k−M y1[t]y2[t + τ]√
∑k

t=k−M(y2
1[t])∑k

t=k−M(y2
2[t + τ]

, (2)

where M signifies the number of elements of y1 and y2 used to evaluate the correlation coefficient.
The modeling using AI-based regression methods will be performed for the delay

calculated using the above-described method.

2.2. Regression Methods

This subsection will present a short description of the five used regression methods—
LR, LogR, LASSO, MLP, and SVR. All the used algorithms have certain hyperparam-
eters, which must be adjusted due to their high influence on the model quality [31].
This adjustment is performed in the same manner for all the algorithms, using the Grid
Search (GS) procedure. GS takes the discrete vectors of possible hyperparameter values
and creates the n-dimensional discrete hyperspace, where n is the number of adjusted
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hyperparameters [32]. Every possible hyperparameter combination, presented as a point
in the hyperparameter space, is then used to create a model [33]. This approach allows for
a quick test of various hyperparameters and is especially appropriate when most hyperpa-
rameters are defined discretely [34]. The individual values of each adjusted hyperparameter
are given for each algorithm in the appropriate subsection.

2.2.1. Linear Regression

LR is a statistical or ML method that allows the determination of the linear regression
model between two sets of data. The type of LR used in the presented work is the so-called
Ordinary Least Squares LR. This means that the shape of the achieved model will be
provided as [35]:

Ŷ = α + β · X + E , (3)

where α and β are model coefficients, Ŷ is the predicted output vector, while the X is the
input vector. Finally, E represents the error vector, where each element corresponds to the
error in the predicted element of the vector Ŷ. The goal of the linear optimization may
be defined as the minimization of the error terms for coefficients α and β in regards to E ,
according to [36]:

α′ = minα

n

∑
i=0

(yi − α− β · xi)
2 = minα

n

∑
i=0
E2

i (4)

and

β′ = minβ

n

∑
i=0

(yi − α− β · xi)
2 = minβ

n

∑
i=0
E2

i (5)

This minimization allows the determination of the linear model with the lowest error
for the given sets X and Y.

The hyperparameters of the LR that are adjusted are: fit intercept, which adjusts the
intercept point of the model for X and Y; normalize, which normalizes the regressors by
subtracting the mean and dividing by L2-norm; positive, which forces the coefficients of
the LR to remain positive [37].

The possible values of adjusted hyperparameters for LR are given in Table 3.

Table 3. Adjusted hyperparameters and their possible values for LR.

Hyperparameter Name Possible Values Count

Fit Intercept True, False 2

Normalize True, False 2

Positive True, False 2

2.2.2. LASSO

LASSO is a linear regression model with an implementation of shrinkage, where data
points are transformed towards the convergent central point, such as the data mean [38].
This allows the development of sparse models [39]. The model shape is given as:

Ŷ = β · X. (6)

The training of LASSO is performed similarly to the training of linear regression, the
goal being the minimization of error E , expressed as [40]:

E =
n

∑
i=1

(yi −
p

∑
j=1

xi,j · β j)
2 + λ ·

p

∑
j=1
|β j|. (7)
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The main visible difference is the addition of λ, the tuning parameter for regularization,
which adds a penalty equal to the magnitude of coefficients. This parameter can assist with
the elimination of unnecessary coefficients, resulting in sparser models [41].

Regarding the adjusted hyperparameters, they are equal to the LR, with the addition
of the regularization parameter λ [37].

Table 4 provides the values of hyperparameters used in the presented research.

Table 4. Adjusted hyperparameters and their possible values for LASSO.

Hyperparameter Name Possible Values Count

Regularization Parameter 0.1, 0.3, 0.5, 0.7, 1.0 5

Normalization True, False 2

Fit Intercept True, False 2

Positive True, False 2

2.2.3. Logistic Regression

LogR similarly fits the data to LR, with the difference that it uses a logistic function
to fit the data y = 1/(1 + ex) [42]. LogR can show high performance for the prediction
of probabilities [43]. The model shape of the LogR estimates the data through a multiple
linear regression function as:

logit(p) = β0 + β1 · x1 ++β2 · x2 + · · ·++βn · xn. (8)

The hyperparameter values of LogR are similar to the LR and LASSO with the addition
of two values: the parameter C and the Solver. The Solver represents the algorithm that is
used to minimize and determine the models, while C is the regularization parameter [37].

The values of hyperparameters used in GS for LogR are given in Table 5.

Table 5. Adjusted hyperparameters and their possible values for LogR.

Hyperparameter Name Possible Values Count

Fit Intercept True, False 2

Normalize True, False 2

Positive True, False 2

C 0.1, 0.3, 0.5, 0.7, 1.0 5

Solver newton-cg, LBFGS, Liblinear, SAG, SAGA 5

2.2.4. Multilayer Perceptron

MLP is a feed-forward neural network consisting of input neurons, the number of
which corresponds to the number of the inputs, one or more hidden layers, and an output
layer with a single neuron, the value of which is the output of the network [44]. All
the neurons in one layer are connected to all other neurons in the subsequent layer with
weighted connections W. As such, the value of the neuron yk

i is the activated weighted sum
of the neurons in the previous layer Xi, written as [45]:

yk
i = F (

ni−1

∑
j=1

xj · wj), (9)

with ni being the number of the neurons in i− 1-th layer, and F being the activation function
of the neuron that adjusts or transforms its value into a selected domain [46]. The calculation
process is repeated from the input layer to the output neuron, the process of which is referred
to as the forward propagation. The process of training consists of the minimization of the



Mathematics 2022, 10, 2925 7 of 24

error ε =
√
(y− ŷ) [47]. This error is backpropagated from the output layer to the input, with

weights of connections W in layer k being adjusted according to [48,49]:

Wk
new = Wk

old − α · ∂ε

∂Wk
old

. (10)

The hyperparameters of the MLP regressor are hidden layer sizes, which are the
tuple representing the number of neurons in hidden layers, activation function, solver—
the algorithm used for backpropagation, the initial learning rate α, which adjusts the
speed of adjustment during the process of backpropagation, learning rate type, which
describes how the value of the α changes through the training iterations, and the L2
regularization parameter [37].

The values of MLP hyperparameters used in the GS procedure are given in Table 6.

Table 6. Adjusted hyperparameters and their possible values for MLP.

Hyperparameter Name Possible Values Count

Hidden Layer Sizes

(50, 50, 50, 50), (50, 50, 50), (50, 50), (50),
(25, 25, 25, 25), (25, 25, 25), (25, 25), (25),
(10, 10, 10, 10), (10, 10, 10), (10, 10), (10),
(5, 5, 5, 5), (5, 5, 5), (5, 5), (5),
(50, 25, 10, 5), (25, 10, 5), (50, 25, 10), (25, 10)

20

Activation function ReLU, Identity, Logistic, tanh 4

Solver Adam, LBFGS 2

Learning Rate Type Constant, Adaptive, Inversely Scaling 3

Initial Learning Rate 0.1, 0.01, 0.5, 0.00001 4

L2 Regularization Parameter 0.01, 0.1, 0.001, 0.0001 4

2.2.5. Support Vector Regression

While Support Vector Machines are commonly used in classification issues, they can
be utilized in regression problems to generate models. SVR will generate a hyperplane as a
model [50]. Such a hyperplane will have margins that contain the data, with the goal of the
optimization being the minimization of distances from the hyperplane margins defined
as ζ and ζ∗ for positive and negative directions. If the wanted hyperplane is defined as
y = wx + b, then the optimization problem can be defined as [50]:

min(
1
2
||w||2 + C ·

n

∑
i=0

(ζi + ζi∗)), (11)

for the constraints

yi − wxi − b ≤ ε + ζi, (12)

wxi + b− yi ≤ ε + ζ∗i , and (13)

ζi, ζi∗ ≥ 0. (14)

SVR also allows for non-linear hyperplane models through the utilization of ker-
nels, which transform the data relation shape into a linear one [51]. This is one of the
hyperparameters of the SVR. The other hyperparameters are connected to the individual
kernel, such as the degree hyperparameter stating the degree of the polynomial in the
appropriate kernel, gamma being the parameter of radial basis function (RBF), polynomial
and sigmoid kernels, and coef0 being the independent term in polynomial and sigmoid
kernels. The hyperparameter C is the regularization parameter, similar to in the case of the
LogR method [37].

As with previous methods, the hyperparameter values for SVR are given in Table 7.
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Table 7. Adjusted hyperparameters and their possible values for SVR.

Hyperparameter Name Possible Values Count

Kernel Linear, Poly, RBF, Sigmoid, Precomputed 5

Gamma Scale, Auto 2

Degree 1, 2, 3, 4, 5 5

C 0.1, 0.3, 0.5, 0.7, 1.0 5

coef0 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 6

2.3. Evaluation

The metric used for the evaluation of the achieved results is the Mean Average Percent-
age Error (MAPE). If the real value is defined as yi, and the predicted value of the model is
defined by ŷi, then the MAPE can be defined using [52]:

MAPE =
1
n

n

∑
i=0
|yi − ŷi

yi
| (15)

Using MAPE expresses the error as a percentage, allowing easy comparison of models
for various goals that may have differently bounded values [33]. This is the reason why
it has been selected for this research—as the values of confirmed and deceased patients
will vary between countries. Using an error metric that provides an error in the same
dimension instead of the percentage would make it hard to compare the model results
between countries.

Cross-Validation

Due to the low amount of data points in the dataset, a 5-fold cross-validation was
performed. Five-fold cross-validation is a process that splits the dataset into 5 equal parts
(folds) through a uniform random selection without repetition. Then, the training and
testing procedure is repeated 5 times. In each of these iterations, a different fold of the
dataset is used for testing, while the remaining four folds are combined and used as the
training dataset [53,54].

This process is illustrated in Figure 2. For simplicity, only 10 datapoints have been
used. As it can be seen, the full dataset is split into five different folds randomly across
its length. Each data point can belong to only one data fold, and it has the same chance
of becoming part of each fold. Then, a single data point is selected to be the training set,
while the remaining four are to be used as a testing set. Note that, while the figure shows
data points to be held together as folds in this process—this is conducted only for a simpler
understanding of the illustration, and the data points are actually shuffled. This process is
then repeated, with a different fold being taken as a training set each time, until all of the
folds have been used.

This allows the evaluation of the model to be performed on the entirety of the dataset,
guaranteeing the good generalization of the model. Without cross-validation, a model may
perform well on the selected testing set but may show significantly poorer performance on
the rest of the data. The performance with cross-validation is evaluated as the average of
the scores on each fold, along with the standard error across the folds [55].
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Figure 2. The illustration of the cross-validation procedure.

3. Results and Discussion

The results of the described methodology are presented and discussed in this section.
The results and discussion are separated per each of the countries used in the research,
with two subsections. The first subsection refers to the correlation analysis, presenting the
obtained cross-correlation results for each data pair. The second subsection graphically
presents the best results achieved by each of the five used methods for each of the goals to
allow for the performance comparison, followed by the presentation of the best-achieved
model per goal, with the hyperparameters of the used method. Abbreviations of the goals
(data pairs) used in the presentation of the results are:

• Vaccinated Patients and Confirmed Patients (VC),
• Vaccinated Patients and Deceased Patients (VD),
• Fully Vaccinated Patients and Confirmed Patients (FVC),
• Fully Vaccinated Patients and Deceased Patients (FVD),
• Boosted Patients and Confirmed Patients (BC), and
• Boosted Patients and Deceased Patients (BD).

It should be noted that, in cases where the same model was achieved (same results in
terms of MAPE and standard error), the method that generates a simpler model has been
selected. This was chosen because simpler models tend to offer better generalization and
simpler implementation [31].

3.1. USA

In this subsection, the results of the research performed on the data for the United
States of America are presented. The following subsections present the values of correlation
analysis and regression results. The obtained results are presented graphically and tabularly
with a discussion of the results given.

3.1.1. Correlation Analysis Results

The cross-correlation analysis shows that the highest correlation is achieved for the
lag equal to the length of the series, meaning that the highest correlation is achieved when
both series fully overlap. Analyzing the values of the correlation for the given lag shows
us that the correlation between the total cases equals rmax

VC = 0.80488 for vaccinations,
rmax

FVC = 0.78219 for full vaccination and rmax
BC = 0.97131 for boosters. This also holds

true for the correlations with deceased patients, which have values of rmax
VD = 0.89858 for

vaccinations, rmax
FVD = 0.87651 for full vaccinations and rmax

BD = 0.93044 for boosters. The
data shows somewhat high positive correlations between the tested values, with the highest
shown between the number of confirmed cases and boosters. The described results are
presented with cross-correlated signals in Figure 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Cross-correlation data for USA. (a) Cross-correlation results, data for confirmed cases
and vaccinations in the United States; (b) cross-correlation results, data for deceased patients and
vaccinations in the United States; (c) cross-correlation results, data for confirmed cases and full
vaccinations in the United States; (d) cross-correlation results, data for deceased patients and full
vaccinations in the United States; (e) cross-correlation results, data for confirmed cases and boosted
patients in the United States; (f) cross-correlation results, data for deceased patients and boosted
patients in the United States.
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3.1.2. Regression Results

The results obtained in this part of the research are shown in Figure 4. As can be
seen from Figure 4, the best results were given by LR/Lasso or MLP, with MLP achieving
the best possible results for the BC model. As for the MAPE results, some algorithms
give satisfactory results, and it is important to note that the best results obtained with this
training amount to less than 0.5%, which adds to the validation of the used algorithms.
The final models obtained for confirmed cases give a smaller error in relation to related
elements, i.e., the number of deceased patients, which is quite expected considering the
dizzying circumstances of real deaths.

Figure 4. The results of ML methods per goal for USA (VC—vaccinated-confirmed, VD—
vaccinated-deceased, FVC—fully vaccinated-confirmed, FVD—fully vaccinated-deceased, BC—
boosted-confirmed, BD—boosted-deceased; lower is better).

Furthermore, in Table 8, all obtained results for each individual target value are
presented. MAPE values range from 0.007 to 0.23, with the best model obtained using LR
using the fit intercept parameters and the positive hyperplane set to false.

Table 8. Best achieved results for the USA.

Goal Method MAPE σMAPE Hyperparameters

VC LR 0.007894757 0.000182385
’fit_intercept’: True,
’normalize’: True,
’positive’: False

VD LR 0.272645679 0.030292848
’fit_intercept’: True,
’normalize’: False,

’positive’: False

FVC LR 0.022135412 0.002929293
’fit_intercept’: True,
’normalize’: True,
’positive’: False

FVD LR 0.238485828 0.020128384
’fit_intercept’: True,
’normalize’: True,
’positive’: False
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Table 8. Cont.

Goal Method MAPE σMAPE Hyperparameters

BC MLP 0.054622943 0.018534421

’activation’: ’identity’,
’L2 Regularization’: 0.001,

’hidden_layer_sizes’:
(25, 25, 25),

’learning_rate’: ’adaptive’,
’learning_rate_init’: 0.01,

’solver’: ’lbfgs’

BD LR 0.239913949 0.027688232
’fit_intercept’: True,
’normalize’: False,

’positive’: False

3.2. United Kingdom

In this subsection, the results of the research related to the United Kingdom are pre-
sented. The United Kingdom showed a rapid acceptance and distribution of vaccinations.
This is paired with a relatively stable increase in infection rates, which differs it from other
analyzed countries. The following subsections present the values of correlation analysis
and regression results. The obtained results are presented graphically and tabularly with
the explanation of the results following.

3.2.1. Correlation Analysis Results

The highest correlations are shown with the booster doses with rmax
BD = 0.89727 for

deceased patients, and rmax
BC = 0.96385 for confirmed cases. The values show that the

confirmed cases have a higher correlation value compared to the deceased. This is not
the case with vaccinated and fully vaccinated correlations, with the number of deceased
patients equaling rmax

VC = 0.66699 and rmax
FVC = 0.72753. In comparison, the same series

compared to the number of deceased patients equals rmax
VD = 0.79899 and rmax

FVD = 0.78588,
respectively. The described results are presented with cross-correlated signals in Figure 5.

(a) (b)

Figure 5. Cont.



Mathematics 2022, 10, 2925 13 of 24

(c) (d)

(e) (f)

Figure 5. Cross-correlation data for the UK. (a) Cross-correlation results, data for confirmed cases
and vaccinations in the United Kingdom; (b) cross-correlation results, data for deceased patients
and vaccinations in the United Kingdom; (c) cross-correlation results, data for confirmed cases and
full vaccinations in the United Kingdom; (d) cross-correlation results, data for deceased patients and
full vaccinations in the United Kingdom; (e) cross-correlation results, data for confirmed cases and
boosted patients in the United Kingdom; (f) cross-correlation results, data for deceased patients and
boosted patients in the United Kingdom.

3.2.2. Regression Results

The results related to individual target values are shown in Figure 6. By observing
the results shown in Figure 6, it is possible to notice that the errors obtained for VC and
FVC are much lower compared to the results obtained for VD and FVD. It is interesting
to note that the obtained trend does not follow the BC and BD models, which show some
similarities to each other.
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Figure 6. The results of ML methods per goal for the UK (VC—vaccinated-confirmed, VD—
vaccinated-deceased, FVC—fully vaccinated-confirmed, FVD—fully vaccinated-deceased, BC—
boosted-confirmed, BD—boosted-deceased; lower is better).

Table 9 shows individual results for each target value. The model for deceased cases
was obtained by thoroughly training the MLP algorithm using the vaccinated and fully
vaccinated variables. As for the other models, they were obtained by re-using the LR
algorithm, in which the parameters were adjusted in the manner of regulating the fit
intercept hyperparameter and setting the positive hyperparameter set to true. Future
trends cannot be observed in this case.

Table 9. Best achieved results for the UK.

Goal Method MAPE σMAPE Hyperparameters

VC LR 0.019928482 0.017283747
’fit_intercept’: True,
’normalize’: True,

’positive’: True

VD MLP 0.448848236 0.517283746

’activation’: ’logistic’,
’L2 Regularization’: 0.001,

’hidden_layer_sizes’:
(50, 50, 50, 50),

’learning_rate’: ’constant’,
’learning_rate_init’: 0.01,

’solver’: ’adam’

FVC LR 0.021928348 0.017274727
’fit_intercept’: True,
’normalize’: False,

’positive’: True

FVD MLP 0.392838295 0.450293876

’activation’: ’logistic’,
’L2 Regularization’: 0.0001,

’hidden_layer_sizes’: 25,
’learning_rate’: ’adaptive’,

’learning_rate_init’: 0.5,
’solver’: ’adam’

BC LR 0.202194939 0.090513952
’fit_intercept’: True,
’normalize’: False,

’positive’: True
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Table 9. Cont.

Goal Method MAPE σMAPE Hyperparameters

BD LR 0.244092882 0.078351545
’fit_intercept’: True,
’normalize’: True,
’positive’: False

3.3. Germany

In this subsection, the results of the research related to Germany are presented and
discussed. Germany, similarly to most EU countries, shows high vaccination rates with
relatively high but stable infection rates, which continue to grow slightly even after the
introduction of vaccines. As with previous countries, the following subsections will present
the cross-correlation analysis both numerically and graphically, with the same for the
regression analysis.

3.3.1. Correlation Analysis Results

Correlations for Germany are also the highest at the full overlap of the series. The
lowest correlations are shown with for number of vaccinations and full vaccinations at
rmax

VC = 0.58710 and rmax
FVC = 0.64492, respectively. The number of booster doses shows

a higher correlation with rmax
BC = 0.91862. The correlation is higher with the number of

deceased patients for vaccinations and full vaccinations at rmax
VD = 0.86352 and rmax

FVD =
0.86354, but lower in the case of boosted patients rmax

BD = 0.87591. The described results are
presented with cross-correlated signals in Figure 7.

(a) (b)

Figure 7. Cont.
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(c) (d)

(e) (f)

Figure 7. Cross-correlation data for Germany. (a) Cross-correlation results, data for confirmed cases
and vaccinations in Germany; (b) cross-correlation results, data for deceased patients and vaccinations
in Germany; (c) cross-correlation results, data for confirmed cases and full vaccinations in Germany;
(d) cross-correlation results, data for deceased patients and full vaccinations in Germany; (e) cross-
correlation results, data for confirmed cases and boosted patients in Germany; (f) cross-correlation
results, data for deceased patients and boosted patients in Germany.

3.3.2. Regression Results

Figure 8 shows that models for confirmed cases achieve better results than the ones
targeting deceased patients. Models for deceased patients show MLP as the best model-
ing algorithm.

Table 10 shows that using the MLP algorithm, the best results are obtained for almost
all target values except VC. Looking at the configured network for the given challenge,
it is evident that a relatively small neural network was used to achieve the given results.
In addition, the learning rate tended to increase, resulting in a faster convergence of the
obtained end result.
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Figure 8. The results of ML methods per goal for Germany (VC—vaccinated-confirmed, VD—
vaccinated-deceased, FVC—fully vaccinated-confirmed, FVD—fully vaccinated-deceased, BC—
boosted-confirmed, BD—boosted-deceased; lower is better).

Table 10. Best achieved results for Germany.

Goal Method MAPE σMAPE Hyperparameters

VC LR 0.099382736 0.019283747
’fit_intercept’: False,
’normalize’: False,

’positive’: False

VD MLP 0.449293021 0.041937453

’activation’: ’logistic’,
’L2 Regularization’: 0.001,
’hidden_layer_sizes’: 25,

’learning_rate’: ’invscaling’,
’learning_rate_init’: 0.5,

’solver’: ’adam’

FVC MLP 0.138294921 0.009283746

’activation’: ’tanh’,
’L2 Regularization’: 0.01,

’hidden_layer_sizes’: (25, 10),
’learning_rate’: ’invscaling’,

’learning_rate_init’: 0.5,
’solver’: ’lbfgs’

FVD MLP 0.364042302 0.033928144

’activation’: ’tanh’,
’L2 Regularization’: 0.0001,

’hidden_layer_sizes’: 10,
’learning_rate’: ’invscaling’,

’learning_rate_init’: 0.5,
’solver’: ’adam’

BC MLP 0.168827331 0.065944293

’activation’: ’identity’,
’L2 Regularization’: 0.0001,

’hidden_layer_sizes’:
(10, 10),

’learning_rate’: ’adaptive’,
’learning_rate_init’: 0.01,

’solver’: ’adam’
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Table 10. Cont.

Goal Method MAPE σMAPE Hyperparameters

BD MLP 0.380012828 0.060623841

’activation’: ’logistic’,
’L2 Regularization’: 0.01,

’hidden_layer_sizes’:
(25, 10, 5),

’learning_rate’: ’invscaling’,
’learning_rate_init’: 0.1,

’solver’: ’adam’

3.4. India

India is one of the most populous countries in the world, so it is of great importance to
predict the potential increase in the number of patients, deaths and the impact of vaccination
itself. As defined in the previous subsections, in this subsection, the results of the research
related to India are presented. The following subsections present the values of correlation
analysis and regression results. The obtained results are presented graphically and tabularly
with the explanation of the results in the following sections.

3.4.1. Correlation Analysis Results

India also shows the highest correlation for full overlap, indicating that cross-correlation
of series is not necessary to determine the best lag for modeling. The correlations of total
vaccinations are relatively high at rmax

VC = 0.9349 and rmax
VD = 0.92855. Full vaccinations show

a somewhat lower correlation in both cases with rmax
FVC = 0.85192 for confirmed patients

and rmax
FVD = 0.8072 for deceased patients. The number of boosted patients shows relatively

low correlations at rmax
BC = 0.64797 and rmax

BD = 0.55917. The described results are presented
with cross-correlated signals in Figure 9.

(a) (b)
Figure 9. Cont.



Mathematics 2022, 10, 2925 19 of 24

(c) (d)

(e) (f)
Figure 9. Cross-correlation data for India. (a) Cross-correlation results, data for confirmed cases and
vaccinations in India; (b) cross-correlation results, data for deceased patients and vaccinations in
India; (c) cross-correlation results, data for confirmed cases and full vaccinations in India; (d) cross-
correlation results, data for deceased patients and full vaccinations in India; (e) cross-correlation
results, data for confirmed cases and boosted patients in India; (f) cross-correlation results, data for
deceased patients and boosted patients in India.

3.4.2. Regression Results

India is one of the most populous countries in the world, so obtaining a model with a
low error rate greatly contributes to research development. The ML algorithms used in this
part of the research are shown in Figure 10. An interesting fact is that the MLP algorithm
shows a high rate of standard deviation for all folds at all target values except for VC.
MAPE metrics related to India range between 0.05 and 0.31 for certain research elements.
LR obtains the best results in relation to “rival” algorithms for VC and FVC target values,
while other acceptable results are given by MLP, which is visible and shown in Table 11.
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Figure 10. The results of ML methods per goal for India (VC—vaccinated-confirmed, VD—
vaccinated-deceased, FVC—fully vaccinated-confirmed, FVD—fully vaccinated-deceased, BC—
boosted-confirmed, BD—boosted-deceased; lower is better).

Table 11. Best achieved results per goal for India.

Goal Method MAPE σMAPE Hyperparameters

VC LR 0.089727374 0.012938482
’fit_intercept’:True,
’normalize’: False,

’positive’: False

VD MLP 0.391827932 0.039283742

’activation’: ’relu’,
’L2 Regularization’: 0.01,

’hidden_layer_sizes’: (10, 10, 10, 10),
’learning_rate’: ’invscaling’,

’learning_rate_init’: 0.01,
’solver’: ’adam’

FVC LR 0.059982834 0.005674237
’fit_intercept’: True,
’normalize’: True,
’positive’: False

FVD MLP 0.446372182 0.059283875

’activation’: ’logistic’,
’L2 Regularization’: 0.0001,

’hidden_layer_sizes’: (25, 25, 25, 25),
’learning_rate’: ’adaptive’,

’learning_rate_init’: 0.5,
’solver’: ’adam’

BC MLP 0.213498520 0.031304591

’activation’: ’tanh’,
’L2 Regularization’: 0.1,

’hidden_layer_sizes’:
(50, 50),

’learning_rate’: ’adaptive’,
’learning_rate_init’: 0.1,

’solver’: ’lbfgs’
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Table 11. Cont.

Goal Method MAPE σMAPE Hyperparameters

BD MLP 0.314889279 0.028250913

’activation’: ’tanh’,
’L2 Regularization’: 0.01,

’hidden_layer_sizes’:
(25, 25, 25),

’learning_rate’: ’invscaling’,
’learning_rate_init’: 0.5,

’solver’: ’adam’

4. Conclusions

In this paper, AI-based regression modeling of confirmed and deceased patient rates
through the number of vaccinated individuals was demonstrated. Five different regression
methods were applied: LR, LASSO, LogR, MLP, and SVR. Cross-correlation analysis was
performed on the used time series to determine the lags that can be between the data
series before modeling in order to improve the performance. All the regression goals have
achieved satisfactory results when evaluated using MAPE, with errors below 1%—with the
five-fold cross-validation applied. It can be seen that the most successful techniques are
MLP and LR/LASSO, with all the best models per goal consisting of the ones achieved with
these methods. It has to be noted that LR and LASSO achieved the same error, suggesting
that they produced the same model. This points towards the conclusion that there may
be no need to use LASSO in comparatively simple (low number of variables) regression
tasks such as the ones presented. Cross-correlation testing was performed to determine
if there is a correlation between the numbers of confirmed or deceased patients with the
numbers of vaccinated, fully vaccinated or boosted patients. The results show that the
highest correlation for all of the analyzed countries (USA, UK, Germany and India), and
all data pairs used, is equal to the length of the data series. This suggests that the best
correlation is achieved when the time series overlap completely—in other words, when
no delays are introduced. The cross-correlation results achieved show that the correlation
coefficients are relatively high around the maximum cross-correlation lag, suggesting that
smaller delays be used between the data series for predictive modeling. The analyzed
results demonstrate that the highest correlation is shown when the lag is zero, or in other
words, when the data series fully overlap. Observing the achieved cross-correlation values
and methods used to model the data-pair regression models, a conclusion can be drawn
that the models of those data pairs that had lower correlation tended to achieve lower errors
when modeled with MLP. In cases where the correlation coefficient was higher, the models
tended to be achieved by LR. As MLP is a more complex method, generating complex
models in comparison to LR, it can be concluded that such a method was necessary to
make up for the deficiencies in correlation present in the data. Future work in regressive
modeling may include the testing of the findings on the vaccination rates of other viral
diseases, seeing if the applied methods may demonstrate similar results.
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