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Abstract: Population-based approaches have given us new search strategies and ideas in order to
solve optimization problems. Usually, these methods are based on the performance carried out by
a finite number of agents, which by the interaction between them they evolve and work all over
the search space. Also, it is well-known that the correct employment of parameter values in this
kind of method can positively impact their performance and behavior. In this context, the present
work focuses on the design of a hybrid architecture which smartly balances the population size
on run-time. In order to smartly balance and control the population size, a modular approach,
named Linear Modular Population Balancer (LMPB), is proposed. The main ideas behind the
designed architecture include the solving strategy behind a population-based metaheuristic, the
influence of learning components based on multiple statistical modeling methods which transform the
dynamic data generated into knowledge, and the possibilities to tackle both discrete and continuous
optimization problems. In this regard, three modules are proposed for LMPB, which concern tasks
such as the management of the population-based algorithm, parameter setting, probabilities, learning
methods, and selection mechanism for the population size to employ. In order to test the viability
and effectiveness of our proposed approach, we solve a set of well-known benchmark functions and
the multidimensional knapsack problem (MKP). Additionally, we illustrate promising solving results,
compare them against state-of-the-art methods which have proved to be good options for solving
optimization problems, and give solid arguments for future work in the necessity to keep evolving
this type of proposed architecture.

Keywords: metaheuristics; machine learning; hybrid approach; optimization

MSC: 90C27; 90C59; 90C15

1. Introduction

The transformation of data into knowledge has been a trend strategy in modern
proposed approaches, they are usually designed by the interdisciplinary interactions of
components, such as learning techniques, solving strategies, mathematical ideas, and so
on. In this context, data-driven approaches have several objectives, such as identifying
key features, identifying redundant data, influencing the decision-making process, and so
on [1–3]. In the optimization field, it is well-known that approximated methods try to find
solutions as close as possible to the optimum with considerably less usage of resources
which has been a trend for years. In this regard, a classic method employed is the Meta-
heuristics (MH) [4], which are algorithms that follow a pre-designed solving strategy, and
can be applied to several optimization problems, and generates massive amount of data in
the process [5]. Thus, they have been the objective of multiple works where these attributes
are exploited in order to generate knowledge for decision making processes.

In this paper, we propose a novel approach, named Linear Modular Population Bal-
ancer (LMPB) as a modular hybrid architecture. We aim to contribute with an optimization
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tool capable of tackling both discrete and continuous optimization problems, through the
interaction of MH and Machine Learning (ML). In this context, LMPB was designed to
work under a population-based strategy, which can be seen as a finite number of agents
that smartly explore and evolve while searching the solution space. The main objective
behind the incorporation of ML into the search process focuses on the fact that population-
based MH generates a massive amount of dynamic data through the search in the solution
space. Thus, we aim to take advantage of this feature by the means of statistical model-
ing methods [6–8], take further profit by the knowledge generated, and give adaptability
through the search modifying the number of agents which performs on run-time. On the
other hand, the proposed LMPB can be described as an interaction of three modules which
are described as follows. Firstly, module 1 concerns the management of the search al-
gorithm, carrying out intensification and diversification. In this regard, we employ the
movement operators from Spotted Hyena Optimizer (SHO) [9], which is a population-
based algorithm, and it has proved to be effective in solving optimization problems [10,11].
Regarding module 2, include multiple tasks concerning internal management in the archi-
tecture process. The first task focuses on the management of values employed as population
sizes by the architecture, which in the design are presented as schemes. The schemes, cor-
respond to different amounts of agents which can be selected to be employed in a certain
period of time. In this context, the selection process is carried out in a Monte Carlo proba-
bilistic roulette mechanism. Thus, at the beginning, each scheme will be assigned an equal
probability to be selected, which will be modified in function of the knowledge generated
by the learning-based models. This decision behind such a modification in value is based
on the objective to achieve a possible improvement in performance in the next period of
time. Regarding the second and third tasks, their objective corresponds to the balance
of the resulting population size performing the search. The second task is to control the
generation of new randomly generated populations in two scenarios: when the selected
scheme has a higher number of agents than the one performing and when generating the
initial population at the beginning of the search. The third task is in control of remov-
ing agents from the population when a newly selected scheme has a smaller population
size value than the one currently performing. The last task concerns the management of
parameters needed by the proposed architecture to perform, such as the required by the
movement operators, probabilities, and learning thresholds employed in the search. Mod-
ule 3 includes the learning methods designed to process the dynamic data and generate
knowledge through the search. This module is based on 6 different learning-based methods
which are organized into two groups: 5 statistical modeling methods predicting which
scheme has the higher probability to achieve a good performance, and a statistical modeling
method selecting which of the 5 mentioned learning methods resultant prognostic should
be employed in certain periods of time through the search. This group concerns a single
learning method, which is designed by the means of logistic regression. Also, following
an equal design, the 5 learning methods are based on Lasso, GammaRegressor, Bayesian,
Ridge, and ElasticNet regressions.

In this work, in order to test the viability and the competitiveness of the proposed
LMPB, multi-domain experimentation stages are designed. In this context, we solve a set
of well-known continuous benchmark functions as a first stage comparison, which are
organized as unimodal, multimodal, and multimodal with fixed-dimension, and a set of
instances from the multidimensional knapsack problem are solved as a second stage. We an-
alyze, discuss, and compare against reported results from state-of-the-art (SOTA) methods.
Moreover, a detailed comparison is carried out by the classic implementation of SHO, Tabu
Search (TS) [12], Simulated Annealing (SA) [13], and SHO assisted by IRace implemented
by us. We highlight the good performance achieved by the proposed approach, the proper
statistical analysis is carried out in order to support the results presented, which proved to
be competitive against reported SOTA.

The main contributions can be illustrated as follows.

• Robust hybrid architecture to tackle discrete and continuous optimization problems.
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• A key issue in population-based approaches is tackled: Adapting population size
on run-time.

• Scalability (module 1), multiple movement operators from different algorithms can be
employed in order to carry out intensification and diversification.

• Scalability (modules 3), incorporation of multiple machine learning methods in order
o carry out regression and guide the search.

The rest of this paper is organized as follows. The related work is introduced in the
next section. The proposed hybrid approach is explained in Section 3. Section 4 illustrates
the experimental results. Finally, we conclude and suggest some lines of future research.

2. Related Work

The design of combined optimization tools has been a trend in recent years, the usage
of multiple methods has demonstrated to be an effective approach to tackling different
issues on the procedures to solve problems [14]. In this context, a well-known example of
synergy is the combined usage of optimization techniques and machine learning. They are
two fields that are based on artificial intelligence and their interaction has proven great
improvements to their respective fields [15,16]. The proposed architecture can be classified
as an optimization method assisted by machine learning, where the solving procedure is
given by a population-based MH assisted by learning methods.

In the literature, preliminary approaches were designed by the interaction between
data mining and evolutionary algorithms [17], the main objective was the analysis of large
amounts of data in order to discover patterns, attributes, and so on. The topics developed by
this approach have been illustrated as fitness approximations [18], setting parameters [19],
initial solutions [20], and population management [21,22]. Regarding this last topic, works
were focused on the application of Association rules, where the strategy was to find pat-
terns in elite solutions in order to influence the population and have a higher probability
of creating higher quality agents. On the other hand, through the years, a constant evo-
lution has been reported between this interaction [23–25]. For instance, it is well-known
that the parameter values employed are highly related to the performance achieved by a
MH [26], thus, indispensable components have been developed by the scientific community
in order to further improve from this complemented work. In this regard, authors in [27],
propose an approach based on Tabu Search (TS) and Support Vector Machine (SVM) in
order to successfully solve problems such as Knapsack Problem, Set Covering Problem,
and the Travelling Salesman Problem. The general process design includes the decision
rules management from a randomly generated corpus of solutions, which are used to
predict high-quality solutions for a given instance and it is used to fine-tune and guide the
search performed by TS. However, the authors specifically address the proposition as a
high complexity approach, a consequence of the design and implementation process in the
hybrid, they highlight the time consumed and knowledge necessarily needed, the process
to build the corpus, and the extraction of the classification rules. Also, in [28], authors
proposed a modular approach in order to tackle the tuning of parameters, where the model
iterates by sampling different configurations. The results obtained are used by a regres-
sion model, which is based on linear regressions, quantile regression, and ridge or lasso
regression, among others. The output of the model is subjected to perturbations resulting
in new configuration outputs. Finally, all results obtained are optimized and iteratively
tested by the model until a stopping criterion is met. However, a major issue is an exposed
consequence of the sampling strategy (usually present in off-line learning) designed in the
approach, which is called over-fitting of parameters. In this regard, the proposed LMPB
works over an online learning strategy, and all the data is included, classified (for each
scheme), and processed.

Regarding hybrids which are related to the population size, to the best of our knowl-
edge, literature is scarce. In [29], authors a cross-entropy-Lagrangian hybrid algorithm
for the multi-item capacitated lot-sizing problem. In this proposed approach, response
surface methodology is employed to sort the cross entropy parameters values (population
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size and quantile size) in order to detect a correlation between the assigned values and the
heuristic solutions. Also, in [30,31], authors propose a hybrid based on MH assisted by
Autonomous Search (AS) in order to modify the population size when stagnation in the
performance is detected. In this context, the performance reported from small samples of
agents is observed during the search, when there is no better fitness or there is stagnation
on the values achieved, the population for Human behavior-based optimization (HBBO)
and SHO are modified. This modification on size is static, thus, a predefined amount of
agents are added or removed from the population.

3. Proposed Hybrid Approach

In this section, the design of our proposed approach is described and discussed in
detail. We illustrate the main ideas behind the proposed modules and learning methods.
In Section 3.1 we present a general description of the proposed approach. In Section 3.2, we
describe each component concerning, objectives, functionalities, and main ideas. Lastly,
we present an overview of the process performed by the architecture in order to carry out
the search.

3.1. General Description

The proposed architecture focuses on the balance of the population size on run-time.
In order to carry out this objective, specially designed modules, and mechanisms are
proposed, Figure 1. The general performance of LMPB, illustrated in Figure 2, has Module
1 at the core, which will be performing a population-based task such as intensification
and diversification. Also, all dynamic data generated on run-time will be managed by
module 3 which generates knowledge as output that is employed by module 2 in order
to carry out key mechanism which gives adaptability in the search. In this context, two
mechanisms rule over the search process: the learning mechanism and the population
balance mechanism. The employed learning process can be described as a greedy learning
mechanism proposed in [11], and its based on constant feedback of knowledge between
the learning model and the decision-making component in order to influence/guide the
search. The process is as follows, at certain times (a learning season) while carrying out the
search, a previously configured threshold value (α) will be defining the seasonal learning
on which the dynamic data will be transformed, generating knowledge as feedback to the
architecture. This learning strategy is suitable to perform while searching in an unknown
solution space, the constant feedback given to LMPB will end up generating a better
response through the iterations. This quick and constant knowledge can be a key issue to
take into consideration in the design of hybrid approaches in order to keep a continuously
smart performance through the search. Regarding the mechanism balancing the population
size, the modification process is ruled by the threshold β which defines the number of
iterations to perform before carrying out the modification in the number of agents that are
performing the search. The configured values are defined as schemes, which are multiple
population sizes previously defined. The scheme selection process is ruled by probabilities,
which are initially equally assigned values selected by the approach to perform. These
probabilities are modified in run-time when threshold α is met and the values employed
are based on the knowledge generated in that instance. For instance, the priority of a
scheme (higher probability assigned) will be granted based on the best possible prognostic
achieved, thus, the component will always search for a better or more fitted configuration
in order to improve the performance. In Figure 3 we illustrate a graphic example of how
the proposed thresholds are applied through the search.

The general process can be described as follows:

Step 1: Set initial parameters for the population-based method.
Step 2: Set population sizes to be used as schemes.
Step 3: Set initial probabilities to be selected for each scheme.
Step 4: Select a scheme to perform and generate the initial population.
Step 5: Perform SHO: diversification movement operators.
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Step 6: All the dynamic data generated in 5 is stored and sorted.
Step 7: Perform SHO: intensification movement operators.
Step 8: All the dynamic data generated in 7 is stored and sorted.
Step 9: if β amount of iterations has been carried out: the selection mechanism will be

choosing the next scheme to perform.
Step 10: if α amount of iterations has been carried out: the data is processed, knowledge is

generated, and probabilities are updated influenced by the learning-model feedback.
Step 11: if the termination criteria are not met, the search keeps being carried out, return to

Step 5.

Module 1: 
movements

Module 3: 
Learning-based 

models

Module 2: 
Management

Architecture LMPB: components

Spotted Hyena 
Optimizer

Searching for prey
(Diversification)

Attacking prey 
(Intensification)

Encircling prey
(Diversification)

Hunting
(Diversification)

Selection 
mechanism 

Management of 
probabilities

Population 
control

Admin (Logistic  
regression)

Model 1: Ridge  
regression

Model 2: Lasso  
regression

Model 3: 
GammaRegressor  

regression

Model 4: Bayesian 
Ridge regression

Model 5: 
ElasticNet 
regression

Figure 1. Graphic illustration of the proposed components for LMPB.
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Search Agents

Module 1: Movements
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Intensification

Diversification

Dynamic data

Module 2: Management

Selection mechanism
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employment by roulette

Update

Figure 2. Graphic illustration of the proposed components for LMPB.
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Figure 3. Graphic illustration of the applied thresholds through the search.
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3.2. Proposed Modules

As mentioned before, the proposed architecture includes three modules, which are
described as follows.

3.2.1. Module 1: Movements

The solving methodology employed in the proposed architecture is, as mentioned
before, a population-based strategy. In this regard, multiple agents are generated in order to
search the solution space, they evolve through the interaction between the environment and
themselves. This interaction is usually defined and structured by the movement operators
defined by the algorithm. In this work, we instantiate the SHO algorithm, and employ his
four movement operators in order to solve the optimization problems.

Regarding the description from the movement operators, encircling prey is employed
first, the objective corresponds to the position update of each agent towards the current best
candidate solution (agent with the best solution among the population in that iteration).
In order to carry out the perturbation on each agent, we employ Equations (1) and (2). In (1),
Dh is the distance between the current agent being updated (P) and the actual best agent in
the population (Pp). Also, in Equation (2), each agent is modified (updated). In both equa-
tions, B and E correspond to coefficient values, which are illustrated in Equations (3) and (4),
where rd1 and rd2 are random [0, 1] values. In Equation (5), CI corresponds to the current
iteration and TI to the total amount of iterations.

Dh =
∣∣B · Pp(x)− P(x)

∣∣ (1)

P(x + 1) = Pp(x)− E · Dh (2)

B = 2 · rnd1 (3)

E = 2h · rnd2 − h (4)

h = 5− (CI ∗ (5/TI)) (5)

The second movement concerns hunting, we employ Equations (6)–(8) in the popula-
tion. In (6) and (7), Dh represents the distance, Ph represents the actual best agent in the
population, Pk is the current agent being updated, and B and E correspond to coefficient
values. In (7), and N indicates the number of agents.

Dh = |B · Ph − Pk| (6)

Pk = Ph − E · Dh (7)

Ch = Pk + Pk+1 + · · ·+ Pk+N (8)

Attacking the prey is illustrated as the third movement and it is concerned with
the performance of exploitation in the search space. In (8), each agent belonging to Dh,
generated in (7), will be updated. The last movement exclusively concerns the performance
of a passive exploration and is named search for prey. The work proposes the work
performed behind coefficients B and E with random values to force the agents to move far
away from the actual best agents in the population. This mechanism improves the global
search of the approach.

P(x + 1) = Ch/N (9)

3.2.2. Module 2: Management

This module has three main objectives, the first objective concerns population manip-
ulation, where two tasks are performed. Firstly, the elimination of agents from the current
population. In this regard, the agents which have the currently worst performance are
removed from the population in the scenario where the size of the new selected scheme
is smaller. The second task focuses on the addition of new randomly generated agents
to the current population; this scenario needs to be carried out when a new scheme is
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selected, and the size value is bigger. The second objective concerns the scheme selection
mechanism, which follows a Monte Carlo roulette strategy, where the main issue is the
selection through the probability assigned for each scheme to perform. The population
sizes are configured values for each scheme employed by the architecture as illustrated in
Table 1. The third objective has a close relationship with objective 2, it is focused on the
management of probabilities, as mentioned before, each scheme has a certain probability of
being selected and defines the next population size to perform, Table 2. At the beginning,
the probabilities are defined as follows.

1
scheme1

+
1

scheme2
+

1
scheme3

+
1

scheme4
= 1

where these probabilities will be modified by the output from the learning-based models,
the evaluation is carried out as follows.

W(schemei) = MIN(yschemei
, yschemei+1

, ..., yschemen)

where W(schemei) represents the scheme with the highest possibility to achieve better
performance in the next β iterations. For instance, in Table 3 is illustrated a case in which
scheme 3 has won and is given a higher probability to be selected.

Table 1. Population sizes employed as schemes.

ID Amount of Agents

scheme 1 20
scheme 2 30
scheme 3 40
scheme 4 50

Table 2. Probabilities initially assigned to each scheme.

ID Probability to Be Selected

scheme 1 0.25
scheme 2 0.25
scheme 3 0.25
scheme 4 0.25

Table 3. Modified probabilities for each scheme to be selected.

ID Probability to be Selected

scheme 1 0.20
scheme 2 0.20
scheme 3 0.40
scheme 4 0.20

3.2.3. Module 3: Learning-Based Methods

The objective behind this module is diagnosis generation, which takes into considera-
tion the performance achieved given the scheme employed. In other words, the general
idea is the processing of dynamic data into knowledge, and posterior feedback to module 2.
In order to design this module, multiple features were considered, such as the accuracy
of the methods, complexity regarding data management, the less expensive (computing
time), and implementation complexity. The data transformation process is carried out by
the work of 6 different learning methods [8,32], which focus on 2 tasks: administrating
and predicting.

Firstly, the objective behind the administrator corresponds to the smart selection of a
predictor which aims to decide the most suited regression method to perform when α is
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met. This method is defined by the means of logistic regression, which despite its name,
corresponds to a linear model for classification [33]. The values associated with y, which
are the objectives to be predicted, take only small numbers of discrete values, and the fitted
function can be illustrated as the following equation.

1
1 + ez (10)

where z = β0 + β1x1 + · · ·+ βrxn

Thus, on each learning season (given by the transition of α iterations), this admin-
istrator will be carrying out 5 different regressions and deciding which method is more
suited/fitted to give a proper prognostic about future performance. Also, the defined
dependent variables (xi) employed can be described as the percentage on which the prog-
nostic output of each method has been employed and the quality of the output given by the
accuracy of the prediction. This quality was defined by the percentage of accuracy, which
is specified as detecting improvements in the performance when it is successfully selected
as the fittest method to perform.

Regarding the predictors, they focus on learning-based methods which aim to give a
diagnosis of a possible improved performance given different population configurations
(schemes) and performance metrics. They follow the definition of linear models, which
can be expressed as a linear combination of multiple features, the fitted function can be
described as follows.

y(β, x) = β0 + β1x1 + · · ·+ βnxn (11)

where the classic approach is tackled by the minimization of the residual sum of squares,
which can be described as follows.

minfi‖Xβ− y‖2
2 (12)

where β = β0 + β1 + · · ·+ βn

Firstly, the proposed methods include the employment of Lasso, GammaRegressor,
Bayesian, Ridge, and ElasticNet regressions [8]. In this regard, when threshold α is met,
each method will be performing over all the schemes configured as illustrated in Figure 4.
The dynamic data obtained through the search, such as the feasible/infeasible solution, best
solution, and the respective scheme employed which achieved the data are employed to
prognostic a possible future fitness value. Thus, every predictor method will have its best
prognostic achieved and the final word will be given to the administrator, which decides
the scheme to be employed based on the best full prognostic delivered by the predictors.

Administrator 
Logistic 

regression

Predictor 
ElasticNet

Predictor 
Ridge

Predictor 
Lasso

Predictor 
GammaRegressor

Predictor 
Bayesian

Scheme 1 %Feasible solutions %Infineasible solutions Best solution

Scheme 2 %Feasible solutions %Infineasible solutions Best solution

Scheme 3 %Feasible solutions %Infineasible solutions Best solution

Scheme 4 %Feasible solutions %Infineasible solutions Best solution

Figure 4. Graphic learning-based models.
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The description of each method employed can be described as follows. Lasso and
Ridge regressions [34,35] involve adding penalties to the regression functions. They include
types of regularization techniques, which are usually used to deal with the over-fitting in
the model. Lasso performs L1 regularization, which consists of the addition of a sum of
coefficients in the optimization objective. Thus, lasso regression optimizes the following
equation.

minfi

{
1

2nsamples
‖Xβ− y‖2

2 + α‖β‖1

}
(13)

where the penalty applied corresponds to α‖β‖1, with α as a constant value, which can
impact the magnitude of the coefficients. Regarding Ridge regression, it performs L2
regularization, which adds a factor of the sum of squares of coefficients in the optimization
objective. Thus, the optimization goes as follows.

minfi

{
‖Xβ− y‖2

2 + α‖β‖2
2

}
(14)

Here, it is important to highlight relevant differences, such as the ridge taking major
advantage of the shrinkage of the coefficients, thus, reducing the model complexity and
including all or none of the features in the model. Also, Lasso performs a shrinkage of the
coefficients and feature selection. GammaRegressor [36] can be included as a generalized
linear regression in which a gamma distribution is applied as a probability density function.
The generalized linear model can be mathematically described as follows.

minfi

{
1

2nsamples
∑

i
d(yi, ŷi) +

α

2
‖β‖2

}
(15)

Here, the gamma distribution defines the target domain yas(0, ∞) where the unit
deviance d(yi, ŷi) is defined as 2(log ŷ

y + y
ŷ − 1). Regarding ElasticNet [37], is defined as a

linear regression that trains with both L1 and L2 regularization in the coefficients. Thus, it
is a combination of features from Lasso and Ridge and is fitted to be employed when there
are several features correlated between them. The objective function to be minimized is
described as follows.

minfi

{
1

2nsamples
‖Xβ− y‖2

2 + αp‖β‖1 +
α(1− p)

2
‖β‖2

}
(16)

Lastly, Bayesian linear regression [38] is a statistical analysis that employs Bayesian
inference, which is distinguished by the usage of probabilities to express all forms of
uncertainty. The main features of this model comprehend the adaptation to the data and
give possibilities to add regularization parameters in the statistical work. The probabilistic
model can be described as follows.

p(y | X, w, α) = N(y | Xw, α) (17)

Here, the output y is assumed to be Gaussian distributed around Xw, and α is manip-
ulated as a stochastic variable that needs to be estimated from the data (disadvantage in
the time-consuming inference task).

3.3. Proposed Algorithm

The proposed general search process is illustrated Algorithm 1. In this regard, the solv-
ing structure follows a traditional population-based method, where the search is developed
under iterative performance, the movement operators of SHO are employed sequentially
over each agent in the population. Finally, Algorithm 2 presents the process where the
learning components carry out their work.
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Algorithm 1 Proposed Architecture

1: SHO: Set initial parameters
2: Set the size values to perform as schemes
3: Select a new scheme to perform
4: Generate initial population based on the scheme selected
5: while (stooping criteria is not met) do
6: SHO: Perform movements operators
7: Dynamic data stored and sorted
8: if check β amount iterations then
9: Select a new scheme to perform

10: Balance the population based on the scheme selected
11: end if
12: if check α amount iterations then
13: Call to Algorithm 2: Learning Model
14: Check MIN(outputAlgorithm2)
15: Data structures with probabilities are updated
16: end if
17: end while

Algorithm 2 Learning Model

1: Data processed: percentage of feasible solutions generated over α iterations
2: Data processed: percentage of infeasible solutions generated over α iterations
3: Data processed: best solutions generated over α iterations
4: Performs predictor: lasso
5: Historical performance data stored and sorted
6: Performs predictor: ridge
7: Historical performance data stored and sorted
8: Performs predictor: gammaregressor
9: Historical performance data stored and sorted

10: Performs predictor: bayesian
11: Historical performance data stored and sorted
12: Performs Administrator: logistic
13: Check most suited results to be employed as diagnosis

4. Experimental Results

This section illustrates the experimental design and results achieved by the proposed
approach. The experimentation is carried out in two phases, solving continuous optimiza-
tion functions and a well-known discrete optimization problem such as the multidimen-
sional knapsack problem. Thus, each phase describes the optimization problem tackled
in detail, and comparison of performance against reported SOTA results. Also, the same
configuration of LMPB parameters were employed in both phases, which are illustrated in
Table 4.

Table 4. Configuration parameters defined for LMPB.

Parameters Values

Search agents Scheme (20, 30, 40, 50)
Control parameter (h) [5, 0]

M constant [0.5, 1]
Number of generations 5000

α 50
β 1000

4.1. Continuous Optimization Problem

In this work, in order to test the performance on continuous optimization problems,
a set of 15 continuous functions, illustrated in Table 5, are selected to be tackled by LMPB.
They are composed of three main categories, such as unimodal [39], multimodal [40],
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and fixed-dimension multimodal [39,40]. Regarding unimodal functions, they include
f1 to f4 and correspond to Sphere, Schwefel No.2.22, Schwefel No.1.2, and Generalised
Rosenbrock functions. The detailed description is as follows.

Table 5. Optimum values reported for the benchmark functions in the literature, with their corre-
sponding solutions, and search subsets.

Function Search Subsets Opt Sol

f1(x) [−100, 100]30 0 [0]30

f2(x) [−10, 10]30 0 [0]30

f3(x) [−100, 100]30 0 [0]30

f4(x) [−30, 30]30 0 [1]30

f5(x) [−500, 500]30 −12596.487 [420.9687]30

f6(x) [−5.12, 5.12]30 0 [0]30

f7(x) [−32, 32]30 0 [0]30

f8(x) [−600, 600]30 0 [0]30

f9(x) [−50, 50]30 0 [1]30

f10(x) [−65.536, 65.536]2 1 [−32]2

f11(x) [−5, 5]2 −1.0316285 (0.08983, −0.7126) and
(−0.08983, 0.7126)

f12(x) [−5, 10] for x1
and [0, 15] for x2

0.397887 (−3.142, 12.275), (3.142, 2.275),
and (9.425, 2.425)

f13(x) [−2, 2]2 3 (0, −1)
f14(x) [0, 1]3 −3.86 (0.114, 0.556, 0.852)
f15(x) [0, 1]6 −3.32 (0.201, 0.150, 0.477, 0.275, 0.275, 0.377, 0.657)

f1(x) = f (x1, x2, . . . , xn) =
n

∑
i=1

x2
i (18)

f2(x) =
n

∑
i=1
|xi|+

n

∏
i=1
|xi| (19)

f3(x) =
n

∑
i=1

(
i

∑
j=1

xj

)2

(20)

f4(x) =
n−1

∑
i=1

[
100(x2

i − xi+1)
2 + (1− xi)

2
]

(21)

Regarding multimodal functions, they include f5 to f9 and correspond to Generalised
Schwefel No.2.26, Generalised Rastrigin, Ackley, Generalised Griewank, and Generalised
Penalised Functions. The detailed description is as follows.

f5(x) = −
n

∑
i=1

xi sin (
√
|xi|) (22)

f6(x) = 10n +
n

∑
i=1

(x2
i − 10 cos (2πxi)) (23)

f7(x) = −20exp(−0.2

√
1
n

n

∑
i=1

x2
i )− exp(

1
n

n

∑
i=1

cos (2πxi)) + 20 + exp(1) (24)

f8(x) = 1 +
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos (
xi√

i
) (25)

f9(x) =
π

n
×
{

10 sin2(πy1) +
n−1

∑
i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

+
n

∑
i=1

u(xi, 10, 100, 4)

(26)
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where u(xi, a, k, m) is equal to

1. k(xi − a)m if xi > a

2. 0 if −a ≤ xi ≤ a

3. k(−xi − a)m if xi < −a

and

1. yi = 1 + 1
4 (xi + 1)

Regarding multimodal functions with fixed-dimension, they include f10 to f15 and
correspond to Shekel’s Foxholes, Six-hump Camel Back, Branin, Goldstein-Price, Hartman
No.1, and Hartman No.2 functions. The detailed description is as follows.

f10(x) =

[
1

500
+

25

∑
j=1

1

j + ∑2
i=1
(

xi − ai,j
)6

]−1

(27)

where:

ai,j =

[
−32 −16 0 16 32 −32 . . . 0 16 32
−32 −32 −32 −32 −32 −16 . . . 32 32 32

]

f11(x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 (28)

f12(x) =

(
x2 −

5.1x2
1

4π2 +
5x1

π
− 6

)2

+ 10
(

1− 1
8π

)
cos(x1) + 10 (29)

f13(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
[
30 + (2x1 − 3x2)

2
(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)] (30)

f14(x) = −
4

∑
i=1

ci e

[
−

3

∑
j=1

ai,j
(
xj − pi,j

)2
]

(31)

where the values of a, c, and p are tabulated in Table 6.

Table 6. Values of aij, ci, and pij for function f14(x); n = 3 and j = 1, 2, 3.

i aij ci pij

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 30 3.2 0.03815 0.5743 0.8828

f15(x) = −
4

∑
i=1

ci e

[
−

6

∑
j=1

ai,j
(

xj − pi,j
)2
]

(32)

where the values of a, c and p are tabulated in Table 7.
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Table 7. Values of aij, ci, and pij for function f15(x); n = 6 and j = 1, 2, . . . , 6.

i aij ci pij

1 10 3 17 3.5 1.7 8 1 0.131 0.169 0.556 0.012 0.828 0.588
2 0.05 10 17 0.1 8 14 1.2 0.232 0.413 0.830 0.373 0.100 0.999
3 3 3.5 1.7 10 17 8 3 0.234 0.141 0.352 0.288 0.304 0.665
4 17 8 0.05 10 0.1 14 3.2 0.404 0.882 0.873 0.574 0.109 0.038

4.1.1. Algorithms Used and Results Comparison

Regarding the results achieved, we carry out multiple comparisons in order to evaluate
the current performance, possible short-term improvements, and long-term evolutions in
the design. Firstly, in Tables 8–10, we illustrate results reported by SOTA MH, which have
proved to reach good performance tackling this set of functions [41–43]. They include parti-
cle swarm optimization (PSO) [44], gravitational search algorithm (GSA) [45], differential
evolution (DE) [46], whale optimization algorithm (WOA) [41], vapor–liquid equilibrium
(VLE) [42], and a specifically designed approach to tackle on this type of benchmark named
INMDA, which is a hybrid between Nelder–Mead algorithm and dragonfly algorithm [47].
In this regard, general ideas can be presented, for instance, most standard deviation (Std-
Dev) presented illustrates small values, which can be interpreted as being stagnated in local
optima. Also, the proposed INMDA outperforms on most average (Avg) values reported,
which presented interesting ideas about the hybridization of stochastic features into an
exact method. In this phase, we can observe LMPB achieving competitive results, however,
standard deviation (StdDev) computed depicts high values ( f4, f5, f6, and f7) which illus-
trates potential windows to improvement in the performance, for instance, incrementing
the amount of generation for LMPB to work on.
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Table 8. Results comparison in unimodal benchmark functions.

F LMPB WOA DE GSA PSO VLE INMDA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

f1 0.0907 2.0386 0.0000 0.0000 8.2000× 10−14 5.9000× 10−14 2.5300× 10−16 0.0000 1.3600× 10−4 2.0200× 10−4 4.4989× 10−7 1.413× 10−6 0.0000 0.0000
f2 0.0346 0.5293 0.0000 0.0000 1.5000× 10−9 9.9000× 10−10 5.5655× 10−2 0.1941 4.2144× 10−2 4.5421× 10−2 3.0840× 10−6 6.0498× 10−6 0.0000 0.0000
f3 0.0000 0.0000 5.3900× 10−7 2.9300× 10−6 6.8000× 10−11 7.4000× 10−11 8.9353× 102 3.1896× 102 70.126 22.119 5.2020 0.7986 0.0000 0.0000
f4 28.5342 70.0454 27.866 0.7636 0.0000 0.0000 67.543 62.225 96.718 60.116 79.199 37.400 0.0000 0.0000

Table 9. Results comparison in multimodal benchmark functions.

F LMPB WOA DE GSA PSO VLE INMDA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

f5 −914.1975 4974.5174 −5.0808× 103 6.9580× 102 −1.1080× 104 5.7470× 102 −2.8211× 103 4.9304× 102 −4.8413× 103 1.1528× 103 −1.2566× 104 68.705 −2245.1500 2.8400
f6 0.1865 5.2889 0.0000 0.0000 69.200 38.800 25.968 7.4701 46.704 11.629 34.5830 17.8860 0.0000 0.0000
f7 7.6581 9.7217 7.4043 9.8976 9.7000× 10−8 4.2000× 10−8 6.2087× 10−2 0.23628 0.27602 0.50901 3.1704 3.9211 0.0000 1.6200× 10−16

f8 0.0056 0.1538 2.8900× 10−4 1.5860× 10−3 0.0000 0.0000 27.702 5.0403 9.2150× 10−3 7.7240× 10−3 0.5074 0.5041 0.0000 0.0000
f9 1.8286 1.5985× 10−9 0.3397 0.2149 7.9000× 10−15 8.0000× 10−15 1.7996 0.95114 6.9170× 10−3 2.6301× 10−2 0.2369 0.2877 0.0000 0.0000

Table 10. Results comparison in multimodal benchmark functions with fixed-dimension.

F LMPB WOA DE GSA PSO VLE INMDA

Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev Avg StdDev

f10 11.6858 7.8237 2.1120 2.4986 0.99800 3.3000× 10−16 5.8598 3.8313 3.6272 2.5608 0.99800 2.5294× 10−7 N/A N/A
f11 0.0001 0.0022 4.2000× 10−7 −1.0316 3.1000× 10−13 −1.0316 4.8800× 10−16 −1.0316 6.2500× 10−16 −1.0315 1.8408× 10−4 N/A N/A
f12 −1.3549 0.2814 0.39791 2.7000× 10−5 0.39789 9.9000× 10−9 0.39789 0.0000 0.39789 0.0000 0.39815 4.5697× 10−4 N/A N/A
f13 0.0001 0.0022 3.0000 4.2200× 10−15 3.0000 2.0000× 10−15 3.0000 4.1700× 10−15 3.0000 1.3300× 10−15 3.0097 1.6256× 10−2 N/A N/A
f14 −1.4299 0.7508 −3.8562 2.7060× 10−3 N/A N/A −3.8628 2.2900× 10−15 −3.8628 2.5800× 10−15 −3.8628 6.6880× 10−5 N/A N/A
f15 −0.8621 0.4242 −2.9811 0.37665 N/A N/A −3.3178 2.3081× 10−2 −3.2663 6.0516× 10−2 −3.3179 2.1311× 10−2 N/A N/A
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Secondly, in Tables 11 and 12, we illustrate detailed results achieved by the implemen-
tations of a hybrid framework that also has been specifically designed to tackle this type of
benchmark, named learning-based linear balancer (LB2) [11] and a classic implementation
of SHO assisted by IRace. Regarding the comparison of results, the three approaches
presented a competitive performance, however, key elements need to be highlighted and
discussed. The proposed LMPB reaches better values (Best) in comparison to LB2 and
SHO-IRace solving the benchmark function. After applying Mann-Whitney, LMPB keeps
a difference in functions f13 compared to LB2, and f3, f6, f9, f10, and f13 compared to
SHO-IRace. In this context, the differences in performance are statistically significant
(p-values < 0.05), thus, LMPB is statistically superior in those functions. Also, contrary
to the observed StdDev values computed for LB2, LMPB and SHO-IRace do not fall on
constant stagnation (local optima). However, if we observe the average time (Avg time)
achieved by the approaches, LB2 is clearly superior on all the functions solved. This issue
can be discussed based on the design and complexity behind both architectures. In this
regard, the learning-based component employed by LB2 was designed by a simple linear
model. On the other hand, a more complex design was proposed on LMPB, where multiple
linear models are working in parallel, which is mainly the reason for the extra compu-
tation time to meet the termination criteria. In this context, new ideas can be proposed
as consequence, such as the improvement of the termination criteria by implementing
a learning-based component in order to smartly end the search when no possible im-
provements in the results can be achieved. Lastly, we can confirm that the interaction
between machine learning and MH outperforms the classic approach, the idea of profiting
through the dynamic data generated can improve the adaptiveness and performance of the
methods employed.

4.1.2. Overall Discussion

The comparison against SOTA illustrates that there is no method that is capable of
perfectly tackling any optimization problem better than all the others, this also implies that
there exists a high difficulty in designing a perfect component for a method in order to
keep a suitable balance in the solving strategy for all the optimization problems. On the
other hand, after carefully analyzing the results achieved and the performance displayed
by the proposed approach to continuous space, positive thoughts about future research are
highlighted. Firstly, being able to achieve a competitive performance by tackling the contin-
uous benchmark means that LMPB successfully carried out intensification/diversification
and avoided local optima.

• Exploitation analysis: unimodal functions are suitable for benchmarking this issue,
the good results achieved can be interpreted that LMPB successfully performed in
terms of exploiting optimum values.

• Exploration analysis: multimodal functions are suitable for benchmarking this issue,
the competitive performance has proved its merits in terms of exploration and local
minima avoidance.
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Table 11. Detailed result comparison between the proposed LMPB and LB2.

F Opt LMPB LB2

Best Worst Avg StdDev Avg Time (s) Best Worst Avg StdDev Avg Time (s)

f1 0 0 28.2786 0.0907 2.0386 150.1993 0 0 0 0 50.2377
f2 0 0 14.7092 0.0346 0.5293 190.9703 0 0 0 0 80.7524
f3 0 0 0 0 0 986.8423 0 0 0 0 96.3627
f4 0 0 29.4957 28.5342 70.0454 296.1747 1.59197× 10−7 1.2262× 10−6 6.7549× 10−7 5.4204× 10−7 71.0024
f5 −12569.487 −12569.487 9016.3258 −914.1975 4974.5174 250.7817 −1.2570× 104 −1.2567× 104 −1.2569× 104 0.0014 110.3354
f6 0 0 1.8934 0.1865 1.2189 217.4014 0 0 0 0 60.6482
f7 0 0 20.0001 7.6581 9.7217 427.1252 4.4408× 10−16 4.4409× 10−16 4.4409× 10−16 0 24.9122
f8 0 0 7.3880 0.0056 0.1538 255.7067 0 0 0 0 21.7758
f9 0 1.8290 1.8290 1.8290 0 2223.4575 1.8285 1.8286 1.8286 1.5985× 10−9 24.9172
f10 1 6.9407 12.7187 11.6858 7.8237 901.5922 1 1 1 0 17.5661
f11 −1.0316 0 0.0233 0.0001 0.0022 142.0010 0 0 0 0 7.5244
f12 0.3979 −1.1395 −1.5122 −1.3549 0.2814 23.0392 1.1905 2.0325 1.5436 0.4223 4.5528
f13 3 0.0012 0 0.0001 0.0022 129.0010 32.6845 32.6845 32.6845 1.4854× 10−8 3.6846
f14 −3.86 −2.0080 −0.0554 −1.4299 0.7508 229.6161 −2.0081 −2.0080 −2.0081 5.0800× 10−10 7.1120
f15 −3.32 −1.1676 −0.0056 −0.8621 0.4242 330.3406 −2.1676 −2.1676 −2.1676 0 8.1145
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Table 12. Detailed result comparison between the proposed LMPB and SHO-IRace.

F Opt LMPB SHO-IRace

Best Worst Avg StdDev Avg Time (s) Best Worst Avg StdDev Avg Time (s)

f1 0 0 28.2786 0.0907 2.0386 150.1993 0 86.4729 0.1002 2.1974 130.2574
f2 0 0 14.7092 0.0346 0.5293 190.9703 0 22.2119 0.0362 0.5566 181.1410
f3 0 0 0 0 0 986.8423 0 2118.0295 97.4849 352.2949 882.2675
f4 0 0 29.4957 28.5342 70.0454 296.1747 0 188.6322 28.5221 69.3946 271.6308
f5 −12569.487 −12569.487 9016.3258 −914.1975 4974.5174 250.7817 −12569.4862 9016.3365 −925.5051 4981.0787 229.1431
f6 0 0 1.8934 0.1865 1.2189 217.4014 0 2382.5545 0.2687 13.1434 163.7028
f7 0 0 20.0001 7.6581 9.7217 427.1252 4.4408× 10−16 22.2358 7.3976 9.6549 325.4619
f8 0 0 7.3880 0.0056 0.1538 255.7067 0 3.4690 0.0593 0.4755 195.3925
f9 0 1.8290 1.8290 1.8290 0 2223.4575 35.5837 1766.7315 526.3003 410.1304 2060.7682
f10 1 6.9407 12.7187 11.6858 7.8237 901.5922 12.7186 498.9434 13.1147 9.6306 855.9498
f11 −1.0316 0 0.0233 0.0001 0.0022 142.0010 0 0.1745 0.0001 0.0021 120.5488
f12 0.3979 −1.1395 −1.5122 −1.3549 0.2814 23.0392 −1.1395 −1.6328 −1.4191 0.2372 21.7540
f13 3 0.0012 0 0.0001 0.0022 129.0010 32.6846 635.1801 255.2925 237.1631 204.8439
f14 −3.86 −2.0080 −0.0554 −1.4299 0.7508 229.6161 −2.0080 0.0467 -1.2319 0.7848 183.3399
f15 −3.32 −1.1676 −0.0056 −0.8621 0.4242 330.3406 −2.0080 −1.6155 −0.8480 0.4529 313.5484
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It is proved that the interaction of multiple optimization tools brings new possibilities
in order to solve hard optimization problems. The complexity at the initial step in defining
a design is addressed as an arduous task, the aim is for the selection of certain useful
methods (problem-related), identification of potential drawbacks, and the improvement of
them by another method. However, knowledge of the features (positive and negative) of
every method needs to be clear, thus making it a task for experienced researchers. On the
other hand, the incorporation of several methods can bring an increment in the usage
of computational resources which is closely related to the design behind the complexity
in the framework/architecture. In this experimental test, compared to other approaches,
the average solving time was higher and the complexity in the implementation is an issue.
In this regard, it is well-known that there is no assurance for techniques to equally perform
in different problems/issues, thus, the experimentation with several methods would open
new major challenges. Also, in order to tackle the exponential increment in computational
time, interesting ideas can be presented such as the improvement in the termination criteria
or the employment of sophisticated techniques at the implementation level. Regarding the
optimization of continuous problems, two topics will be considered challenging, tackling
more complex functions, such as IEEE CEC composite functions and higher dimensional
ones, also tackling real-world problems.

4.2. Discrete Optimization Problem

In this work, in order to test the performance of the proposed approach to tackling
discrete optimization problems, the Multidimensional Knapsack Problem (MKP) was
selected to be solved. In this regard, 6 different instance sets from Beasley’s OR library
were employed. The details concerning the solved benchmark are illustrated in Table 13.

Table 13. Configuration details from MKP instances employed in this work.

ID Test Problem Optimal Solution n m

mknapcb1

5.100.00 24381 100 5
5.100.01 24274 100 5
5.100.02 23551 100 5
5.100.03 23534 100 5
5.100.04 23991 100 5

mknapcb2

5.250.00 59312 250 5
5.250.01 61472 250 5
5.250.02 62130 250 5
5.250.03 59463 250 5
5.250.04 58951 250 5

mknapcb3

5.500.00 120148 500 5
5.500.01 117879 500 5
5.500.02 121131 500 5
5.500.03 120804 500 5
5.500.04 122319 500 5

mknapcb4

10.100.00 23064 100 10
10.100.01 22801 100 10
10.100.02 22131 100 10
10.100.03 22772 100 10
10.100.04 22751 100 10

mknapcb5

10.250.00 59187 250 10
10.250.01 58781 250 10
10.250.02 58097 250 10
10.250.03 61000 250 10
10.250.04 58092 250 10

mknapcb6

10.500.00 117821 500 10
10.500.01 119249 500 10
10.500.02 119215 500 10
10.500.03 118829 500 10
10.500.04 116530 500 10
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The Multidimensional Knapsack Problem (MKP) can be defined as an NP-hard prob-
lem and can be considered the generalized form of the classic Knapsack Problem (KP).
The main objective of MKP is to search for a subset of given objects that maximize the
total profit while satisfying all constraints on resources. Also, the KP is a well-known
optimization problem that has been applied in multiple real-world fields, such as cryptog-
raphy, allocation problems, scheduling, and production [48,49]. The model can be stated
as follows.

Maximize
n

∑
j=1

cjxj

Subject to
n

∑
j=1

aijxj ≤ bi, i ∈ M = 1, 2, . . . , m

xj ∈ {0, 1}, j ∈ N = 1, 2, . . . , n

where n is the number of items and m is the number of knapsack constraints with capacities
bi. Each item j requires aij units of resource consumption in the ith knapsack and yields cj
units of profit upon inclusion. The goal is to find a subset of items that yield maximum
profit without exceeding the resource capacities. Additionally, SHO was initially designed
to work on a continuous space, in order to tackle the MCDP, SCP, and MKP, a transformation
of the domain is needed. In this work, this task is performed by applying binarization
strategies, where each strategy is composed of a transfer function [50] and a discretization
method. In this regard, we follow the strategy proposed in [51], which employs the transfer
function V4 + Elitist discretization.

4.2.1. Algorithms Used and Results Comparison

Regarding the results achieved, we carry out multiple comparisons in order to evaluate
the current performance, possible short-term improvements, and long-term evolutions in
the design. Regarding the reported approaches employed to carry out the comparison,
they include the filter-and-fan heuristic (F&F) [52], a Binary version of the PSO algorithm
(3R-BPSO) [53], and a hybrid quantum particle swarm optimization (QPSO) algorithm [54].
The design behind these methods focuses on solving efficiently the MKP. For instance,
the 3R-BPSO algorithm employs three repair operators in order to fix infeasible solutions
generated on run-time. Table 14 illustrates the reported performance by the SOTA methods,
where the RPD value represents the relative percentage deviation computed as follows.

RPD =
(S− Sopt)

Sopt
× 100 (33)

This RPD value will help us to understand the distance between the values reached
(Best) against the optimum (Opt) value for each instance. Thus, if we observe the results
illustrated, the proposed LMPB achieves equal or better performance in comparison to the
SOTA solving the instances mknapcb1, mknapcb2, mknapcb4, and mknapcb5. In Table 15,
we illustrate the results achieved by the proposed LMPB vs the implemented SHO assisted
by IRace. Regarding the general performance, if we observe the RPD values, the proposed
approach is clearly superior achieving 20 optimum values vs 0 reached by SHO-IRace.
Also, this can be confirmed after applying Mann-Whitney, which given statistical signif-
icance (p-values < 0.05) in the achieved performance tackling the instance 5.100.04 from
mknapcb1, all instances from mknapcb2, mknapcb4, and mknapcb5 in comparison to
SHO-IRace. In Tables 16–18, we illustrate the results achieved by the proposed LMPB
vs the classic implemented SHO, TS, and SA. Regarding the general performance, if we
observe the RPD values, the three classic version falls behind in comparison to the proposed
approach. Also, this can be confirmed after applying Mann-Whitney, which given statistical
significance (p-values < 0.05) in the achieved performance tackling all the instances in
comparison to SHO, TS, and SA. We highlight that all approaches do not seem to stagnate
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in local optima (StdDev), which allows us to understand how solid/well-balanced these
proposed methods were initially defined (especially classic methods). Also, SHO, TS,
SA, and SHO-IRace reported considerably better solving times in almost all instances in
comparison to LMPB. It is a fact that hybrid approaches are leading the current optimiza-
tion field and are a better answer to complex problems where adaptability in the search
space is needed and a key issue to consider in the future. The issue with hybrids is the
selection of algorithms, for instance, it is well-known the no-free-lunch theorem has been
addressed to MH, where there is no certainty on an MH to achieve an equal performance
tackling different kinds of problems. Moreover, an equal situation can be addressed in
ML techniques, where the performance is not guaranteed and the complexity between
supervised learning vs a deep learning technique is hard to measure.

4.2.2. Overall Discussion

In this experimentation test solving discrete optimization problems, the good overall
performance has given us new ideas regarding fully tackling this domain. Firstly, we
observed equal phenomena illustrated on the continuous experimentation, competitive
performance was achieved against specifically designed approaches. Regarding the perfor-
mance of SHO, TS, and SA, the achieved results illustrate great deficiencies in comparison
to optimum values, also, slightly better values were reached with the assistance of IRace.
In addition to all the observations presented in Section 4.1.2, what is interesting to highlight
is the change of domain applied to the movements operator of SHO. In the literature,
several scientific studies have highlighted the good performance of continuous MH solving
discrete optimization problems in comparison to discrete MH [50,51,55]. In this work, we
employed the binarization strategy based on V4 + Elitist discretization, however, several
combinations can be tested in order to probably achieve better performance. This binariza-
tion issue can be a challenging option to be tackled by a smart component in order to give
multiple opportunities in the transformation of the domain to the search in run-time.



Mathematics 2022, 10, 2920 21 of 28

Table 14. Computational results achieved by LMPB and state-of-the-art approaches solving the MKP.

LMPB QPSO 3R—PSO F & F
ID Test Problem Opt Best Avg RPD (%) Best Avg RPD (%) Best Avg RPD (%) Best Avg RPD (%)

5.100.00 24381 24381 18193.2647 0.00 24381 24381 0.00 24381 24381 0.00 24381 N/A 0.00
5.100.01 24274 24274 17674.1159 0.00 24274 24274 0.00 24274 24274 0.00 24274 N/A 0.00
5.100.02 23551 23551 17860.9433 0.00 23551 23551 0.00 23538 23538 0.06 23551 N/A 0.00
5.100.03 23534 23534 19692.4754 0.00 23534 23534 0.00 23534 23508 0.00 23534 N/A 0.00

mknapcb1

5.100.04 23991 23991 17863.3812 0.00 23991 23991 0.00 23991 23961 0.00 23991 N/A 0.00
5.250.00 59312 59312 46587.9561 0.00 59312 59312 0.00 N/A N/A N/A 59312 N/A 0.00
5.250.01 61472 61472 47299.2074 0.00 61472 61470 0.00 N/A N/A N/A 61468 N/A 0.01
5.250.02 62130 62130 49261.7206 0.00 62130 62130 0.00 N/A N/A N/A 62130 N/A 0.00
5.250.03 59463 59463 46365.1888 0.00 59427 59427 0.06 N/A N/A N/A 59436 N/A 0.05

mknapcb2

5.250.04 58951 58951 47005.2385 0.00 58951 58951 0.00 N/A N/A N/A 58951 N/A 0.00
5.500.00 120148 101980 88110.0778 15.12 120130 120105 0.01 120141 102101 0.01 120134 N/A 0.01
5.500.01 117879 99901 90506.6091 15.25 117844 117834 0.03 117864 117825 0.01 117864 N/A 0.01
5.500.02 121131 102559 91014.0520 15.33 121112 121092 0.02 121129 121103 0.00 121131 N/A 0.00
5.500.03 120804 100864 91796.0122 16.50 120804 120740 0.00 120804 120722 0.00 120794 N/A 0.01

mknapcb3

5.500.04 122319 102520 91771.7789 16.18 122319 122300 0.00 122319 122310 0.00 122319 N/A 0.00
10.100.00 23064 23064 22275.5321 0.00 23064 23064 0.00 23064 23050 0.00 23064 N/A 0.00
10.100.01 22801 22801 21295.6074 0.00 22801 22801 0.00 22801 22752 0.00 22801 N/A 0.00
10.100.02 22131 22131 20486.6556 0.00 22131 22131 0.00 22131 22119 0.00 22131 N/A 0.00
10.100.03 22772 22772 18785.5884 0.00 22772 22772 0.00 22772 22744 0.00 22772 N/A 0.00

mknapcb4

10.100.04 22751 22751 22604.2587 0.00 22751 22751 0.00 22751 22651 0.00 22751 N/A 0.00
10.250.00 59187 59187 55818.9961 0.00 59182 59173 0.01 N/A N/A N/A 59164 N/A 0.04
10.250.01 58781 58781 55302.6930 0.00 58781 58733 0.00 N/A N/A N/A 58693 N/A 0.15
10.250.02 58097 58097 52907.7982 0.00 58097 58096 0.00 N/A N/A N/A 58094 N/A 0.01
10.250.03 61000 61000 57342.3073 0.00 61000 60986 0.00 N/A N/A N/A 60972 N/A 0.05

mknapcb5

10.250.04 58092 58092 55037.2680 0.00 58092 58092 0.00 N/A N/A N/A 58092 N/A 0.00
10.500.00 117821 103226 93309.3655 12.38 117744 117733 0.07 117790 117699 0.03 117734 N/A 0.07
10.500.01 119249 105088 96823.8780 11.87 119177 119148 0.06 119155 119125 0.08 119181 N/A 0.06
10.500.02 119215 104870 96151.9076 12.03 119215 119146 0.00 119211 119094 0.00 119194 N/A 0.02
10.500.03 118829 104308 95338.5665 12.22 118775 118747 0.05 118813 118754 0.01 118784 N/A 0.04

mknapcb6

10.500.04 116530 101380 92260.2844 13.00 116502 116449 0.02 116470 116509 0.05 116471 N/A 0.05
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Table 15. Computational results achieved by LMPB and SHO-IRace solving the MKP.

LMPB SHO-IRace

ID Opt Best Worst Avg StdDev RPD (%) Avg Time (s) Best Worst Avg StdDev RPD (%) Avg Time (s)

5.100.00 24381 24381 17595 18193.2647 689.3522 0.00 4669.6999 20661 17595 18269.0889 719.6834 15.25 5872.1652
5.100.01 24274 24274 17401 17674.1159 522.1186 0.00 5697.6984 19792 17401 17680.8992 536.9595 18.46 5553.4974
5.100.02 23551 23551 17692 17860.9433 395.5785 0.00 4292.5007 20119 17692 17956.3902 485.5376 14.57 4467.5135
5.100.03 23534 23534 19685 19692.4754 49.3286 0.00 5347.2370 20703 19685 19692.8931 74.2092 12.02 3854.0709
5.100.04 23991 23991 17744 17863.3812 320.1172 0.00 5747.0107 19525 17744 17840.1698 265.9275 18.61 4897.6560
5.250.00 59312 59312 46049 46587.9561 858.5338 0.00 8670.5223 50256 46049 46612.2596 903.5159 15.26 6656.1823
5.250.01 61472 61472 46890 47299.2074 749.7909 0.00 7810.9763 51527 46890 47277.6690 738.8178 16.17 6568.5947
5.250.02 62130 62130 49237 49261.7206 163.3191 0.00 5671.1701 50292 49237 49257.9839 117.6427 19.05 4843.4766
5.250.03 59463 59463 42804 46365.1888 2137.5436 0.00 16606.7606 50890 42804 46275.6829 2190.8037 14.41 15333.6760
5.250.04 58951 58951 46870 47005.2385 369.0429 0.00 6987.2142 49893 46870 46979.8645 348.9194 15.36 6414.6560
5.500.00 120148 101980 73168 88110.0778 11544.9826 15.12 31594.7054 101400 73168 89634.3614 10969.3236 15.60 40985.2208
5.500.01 117879 99901 71265 90506.6091 11400.2546 15.25 41155.1138 99123 71265 90470.8571 11432.0737 15.91 41596.6308
5.500.02 121131 102559 74678 91014.0520 12735.6287 15.33 33245.1504 103579 74678 94113.1442 11512.8562 14.49 39693.0396
5.500.03 120804 100864 74715 91769.0122 10609.5044 16.50 44675.9107 101572 74715 91395.0128 10851.0576 15.92 39272.9026
5.500.04 122319 102520 74537 91771.7789 10591.1422 16.18 42645.1608 102057 74537 90647.5024 11272.3193 16.56 43738.2077
10.100.00 23064 23064 17298 22275.5321 670.6074 0.00 7179.9602 19751 17298 17766.0012 587.7123 14.36 8278.5790
10.100.01 22801 22801 17352 21295.5074 44.2336 0.00 6618.0995 19081 17352 17470.8750 284.2832 16.31 4660.8592
10.100.02 22131 22131 15699 20486.6556 948.5033 0.00 8081.3328 19342 15699 16531.9192 901.2227 12.60 5975.8820
10.100.03 22772 22772 18817 19795.5884 469.0794 0.00 6866.3064 20017 18817 18861.1892 148.7656 12.09 5070.9132
10.100.04 22751 22751 17564 22604.2587 436.9923 0.00 6945.8575 19667 17564 17804.0787 443.9254 13.55 5626.2527
10.250.00 59187 59187 48086 55818.9961 11675.8756 0.00 9550.5818 52250 48086 48545.8764 815.5280 11.72 7242.5197
10.250.01 58781 58781 43173 55302.6930 5750.7501 0.00 13587.1938 50869 43173 46824.4194 3789.4850 13.46 8701.9378
10.250.02 58097 58097 45538 52907.7982 10827.5062 0.00 15849.1611 50261 45538 46420.7704 1018.7772 13.48 13069.1670
10.250.03 61000 61000 47587 57342.3073 10802.1653 0.00 11107.4894 52286 47587 48855.7066 1996.1527 14.28 6072.3390
10.250.04 58092 58092 47703 55037.2680 11251.2648 0.00 9075.8829 51403 47703 48273.0614 868.3146 11.51 7042.7040
10.500.00 117821 103226 74746 93309.3655 13265.1931 12.38 33763.7203 103608 74746 91656.5522 13723.0371 12.06 30478.6163
10.500.01 119249 105088 76531 96823.8780 12237.0902 11.87 38343.9976 104996 76531 97534.9325 11834.3923 11.95 42585.3414
10.500.02 119215 104870 74620 96151.9076 11857.6879 12.03 46075.8874 105329 74620 95092.7730 12464.6680 11.64 37875.6117
10.500.03 118829 104308 74845 95338.5665 11119.6133 12.22 47983.9497 103663 74845 94803.7957 11431.0257 12.76 43169.6069
10.500.04 116530 101380 74441 92260.2844 10578.1152 13.00 43098.1306 101869 74441 92366.4123 10647.4900 12.58 43326.2896
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Table 16. Computational results achieved by LMPB and SHO solving the MKP.

LMPB SHO

ID Opt Best Worst Avg StdDev RPD (%) Avg Time (s) Best Worst Avg StdDev RPD (%) Avg Time (s)

5.100.00 24381 24381 17595 18193.2647 689.3522 0.00 4669.6999 17950 16391 17109.1000 658.0524 26.36 210.4372
5.100.01 24274 24274 17401 17674.1159 522.1186 0.00 5697.6984 17854 16486 17055.0500 541.3379 26.44 181.5390
5.100.02 23551 23551 17692 17860.9433 395.5785 0.00 4292.5007 17886 16256 17297.0000 639.4370 24.05 150.7572
5.100.03 23534 23534 19685 19692.4754 49.3286 0.00 5347.2370 18445 17889 17963.2500 161.9119 21.62 190.4938
5.100.04 23991 23991 17744 17863.3812 320.1172 0.00 5747.0107 17678 17430 17528.4000 105.7115 26.31 140.3210
5.250.00 59312 59312 46049 46587.9561 858.5338 0.00 8670.5223 44891 44453 44596.0000 143.7212 24.31 1230.0471
5.250.01 61472 61472 46890 47299.2074 749.7909 0.00 7810.9763 45928 44306 45047.0000 480.1600 25.28 848.3955
5.250.02 62130 62130 49237 49261.7206 163.3191 0.00 5671.1701 42563 42520 42522.1500 9.3716 31.49 1292.4814
5.250.03 59463 59463 42804 46365.1888 2137.5436 0.00 16606.7606 46782 46038 46257.8500 272.5830 21.32 15333.6760
5.250.04 58951 58951 46870 47005.2385 369.0429 0.00 6987.2142 45445 43815 44565.4000 446.6804 22.91 1076.0837
5.500.00 120148 101980 73168 88110.0778 11544.9826 15.12 31594.7054 91110 89807 90131.7000 417.4011 24.16 2191.6924
5.500.01 117879 99901 71265 90506.6091 11400.2546 15.25 41155.1138 91701 89479 90880.9500 521.3980 22.20 2157.1687
5.500.02 121131 102559 74678 91014.0520 12735.6287 15.33 33245.1504 92436 91702 91753.8500 169.8229 23.68 2873.9049
5.500.03 120804 100864 74715 91769.0122 10609.5044 16.50 44675.9107 93638 91512 93040.6500 487.9807 22.48 2986.8021
5.500.04 122319 102520 74537 91771.7789 10591.1422 16.18 42645.1608 90328 87825 90077.7000 750.9000 26.15 2664.4909
10.100.00 23064 23064 17298 22275.5321 670.6074 0.00 7179.9602 19626 18043 19071.1000 576.5332 14.90 112.5756
10.100.01 22801 22801 17352 21295.5074 44.2336 0.00 6618.0995 17546 16036 17085.5500 377.4207 23.04 99.3756
10.100.02 22131 22131 15699 20486.6556 948.5033 0.00 8081.3328 18057 17012 17309.7000 337.4800 18.40 120.5140
10.100.03 22772 22772 18817 19795.5884 469.0794 0.00 6866.3064 20024 18755 19178.6000 401.2019 12.06 99.6616
10.100.04 22751 22751 17564 22604.2587 436.9923 0.00 6945.8575 18651 18099 18185.0000 171.6164 18.02 97.3623
10.250.00 59187 59187 48086 55818.9961 11675.8756 0.00 9550.5818 45143 44493 44914.5000 310.0302 23.72 566.9247
10.250.01 58781 58781 43173 55302.6930 5750.7501 0.00 13587.1938 48090 47356 47735.0500 297.7889 18.18 590.0571
10.250.02 58097 58097 45538 52907.7982 10827.5062 0.00 15849.1611 47536 45938 47088.3000 421.6500 18.17 492.0703
10.250.03 61000 61000 47587 57342.3073 10802.1653 0.00 11107.4894 47968 46884 47176.6500 330.7825 21.36 589.1354
10.250.04 58092 58092 47703 55037.2680 11251.2648 0.00 9075.8829 47139 44895 46559.7500 854.3255 18.85 933.7649
10.500.00 117821 103226 74746 93309.3655 13265.1931 12.38 33763.7203 90995 89690 90281.8000 381.1162 22.76 2665.9732
10.500.01 119249 105088 76531 96823.8780 12237.0902 11.87 38343.9976 90207 87691 89507.1500 602.0926 24.35 3015.1351
10.500.02 119215 104870 74620 96151.9076 11857.6879 12.03 46075.8874 94196 91359 92369.0500 615.9669 20.98 2569.8929
10.500.03 118829 104308 74845 95338.5665 11119.6133 12.22 47983.9497 94549 91796 93328.1000 614.4442 20.44 2707.8142
10.500.04 116530 101380 74441 92260.2844 10578.1152 13.00 43098.1306 91234 89336 90872.6500 450.8905 21.70 2465.6711
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Table 17. Computational results achieved by LMPB and TS solving the MKP.

LMPB TS

ID Opt Best Worst Avg StdDev RPD (%) Avg Time (s) Best Worst Avg StdDev RPD (%) Avg Time (s)

5.100.00 24381 24381 17595 18193.2647 689.3522 0.00 4669.6999 17920 14646 17200.2660 441.6150 26.50 9.2408
5.100.01 24274 24274 17401 17674.1159 522.1185 0.00 5697.6984 17895 15281 17209.6480 764.0746 26.28 8.1997
5.100.02 23551 23551 17692 17860.9432 395.5784 0.00 4292.5006 17557 15473 16471.3200 537.5266 25.45 9.0440
5.100.03 23534 23534 19685 19692.4753 49.3286 0.00 5347.2370 18153 14953 18068.7160 764.7306 22.86 6.9277
5.100.04 23991 23991 17744 17863.3811 320.1171 0.00 5747.0107 17599 15722 17760.1780 245.7550 26.64 8.1933
5.250.00 59312 59312 46049 46587.9560 858.5338 0.00 8670.5223 45431 41916 45392.1620 297.6204 23.40 51.9413
5.250.01 61472 61472 46890 47299.2073 749.7908 0.00 7810.9763 44651 39048 42666.3920 1629.9833 27.36 90.8240
5.250.02 62130 62130 49237 49261.7205 163.3190 0.00 5671.1700 44587 42244 43400.5440 710.5724 28.24 55.6142
5.250.03 59463 59463 42804 46365.1887 2137.5435 0.00 16606.7606 46510 40376 46108.0680 1191.6083 21.78 73.4146
5.250.04 58951 58951 46870 47005.2385 369.0429 0.00 6987.2141 43622 41511 43578.5660 235.7575 26.00 83.7176
5.500.00 120148 101980 73168 88110.0777 11544.9826 15.12 31594.7054 89365 85199 88040.6580 1055.1352 25.62 657.7096
5.500.01 117879 99901 71265 90506.6090 11400.2546 15.25 41155.1138 91192 87326 90738.1740 1051.4631 22.64 380.6708
5.500.02 121131 102559 74678 91014.0520 12735.6287 15.33 33245.1504 92155 87168 90280.1500 2329.0822 23.92 448.3687
5.500.03 120804 100864 74715 91769.0122 10609.5044 16.50 44675.9107 92344 88444 91129.6820 993.0370 23.56 417.6390
5.500.04 122319 102520 74537 91771.7788 10591.1422 16.18 42645.1608 86955 80832 85634.6120 985.2763 28.91 326.0826

10.100.00 23064 23064 17298 32275.5320 24670.6074 0.00 7179.9601 19365 17117 19292.6880 607.9159 16.04 4.2649
10.100.01 22801 22801 17352 31295.5074 24044.2336 0.00 6618.0994 18535 16420 17955.4980 714.6238 18.71 5.3840
10.100.02 22131 22131 15699 30486.6555 23948.5033 0.00 8081.3327 17523 14835 16785.3360 484.2500 20.82 3.3187
10.100.03 22772 22772 18817 32795.5884 24469.0794 0.00 6866.3063 18229 18179 18190.5000 21.0416 19.95 4.3792
10.100.04 22751 22751 17564 32604.2586 24436.9923 0.00 6945.8575 18833 17619 18463.4220 277.1007 17.22 4.9251
10.250.00 59187 59187 48086 55818.9960 11675.8756 0.00 9550.5818 44135 40025 43711.1320 933.0496 25.43 39.0509
10.250.01 58781 58781 43173 55302.6930 10750.7501 0.00 13587.1938 46438 42427 45226.7400 943.0535 21.00 47.0854
10.250.02 58097 58097 45538 52907.7982 10827.5062 0.00 15849.1611 44080 41890 43428.4520 463.4027 24.13 40.9750
10.250.03 61000 61000 47587 57342.3073 10802.1653 0.00 11107.4894 46377 45074 46255.3360 258.9354 23.97 43.8730
10.250.04 58092 58092 47703 55037.2679 11251.2648 0.00 9075.8829 43049 38232 42366.8760 981.8458 25.90 42.2721
10.500.00 117821 103226 74746 93309.3654 13265.1931 12.38 33763.7203 90919 89123 90331.2340 447.7161 22.83 178.1260
10.500.01 119249 105088 76531 96823.8780 12237.0902 11.87 38343.9976 91968 85869 91923.8820 1797.3181 22.88 231.8760
10.500.02 119215 104870 74620 96151.9075 11857.6879 12.03 46075.8874 95984 92567 95468.6580 1811.0270 19.49 270.4680
10.500.03 118829 104308 74845 95338.5664 11119.6133 12.22 47983.9497 91297 85080 90911.8560 1131.8605 23.17 197.9920
10.500.04 116530 101380 74441 92260.2844 10578.1152 13.00 43098.1306 92792 88027 93015.9780 1423.4816 20.37 342.9408
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Table 18. Computational results achieved by LMPB and SA solving the MKP.

LMPB SA

ID Opt Best Worst Avg StdDev RPD (%) Avg Time (s) Best Worst Avg StdDev RPD (%) Avg Time (s)

5.100.00 24381 24381 17595 18193.2647 689.3522 0.00 4669.6999 16645 15750 16488.2857 257.5163 31.73 15.5006
5.100.01 24274 24274 17401 17674.1159 522.1185 0.00 5697.6984 16732 15574 16061.4381 560.7617 31.07 15.0110
5.100.02 23551 23551 17692 17860.9432 395.5784 0.00 4292.5006 14663 13380 14398.9333 378.2078 37.74 9.1421
5.100.03 23534 23534 19685 19692.4753 49.3286 0.00 5347.2370 17033 14747 16594.0540 730.5726 27.62 10.4877
5.100.04 23991 23991 17744 17863.3811 320.1171 0.00 5747.0107 17106 16307 16974.1016 296.6305 28.70 12.3591
5.250.00 59312 59312 46049 46587.9560 858.5338 0.00 8670.5223 44861 43230 44563.9048 518.9806 24.36 76.2560
5.250.01 61472 61472 46890 47299.2073 749.7908 0.00 7810.9763 41902 41321 41646.1333 249.8855 31.84 65.4760
5.250.02 62130 62130 49237 49261.7205 163.3190 0.00 5671.1700 43316 40636 42807.8381 791.1798 30.28 54.3458
5.250.03 59463 59463 42804 46365.1887 2137.5435 0.00 16606.7606 48112 41941 46223.6159 2115.7624 19.09 72.0230
5.250.04 58951 58951 46870 47005.2385 369.0429 0.00 6987.2141 44235 42284 44005.2921 447.8486 24.96 91.7240
5.500.00 120148 101980 73168 88110.0777 11544.9826 15.12 31594.7054 91226 87931 90928.0222 669.9465 24.07 333.4513
5.500.01 117879 99901 71265 90506.6090 11400.2546 15.25 41155.1138 90749 88213 90514.8825 512.7554 23.02 365.0060
5.500.02 121131 102559 74678 91014.0520 12735.6287 15.33 33245.1504 88397 86003 87795.4984 701.4480 27.02 219.4263
5.500.03 120804 100864 74715 91769.0122 10609.5044 16.50 44675.9107 89615 88855 89479.8889 290.5674 25.82 289.9401
5.500.04 122319 102520 74537 91771.7788 10591.1422 16.18 42645.1608 87974 84700 87449.4000 952.0907 28.08 393.7943

10.100.00 23064 23064 17298 32275.5320 24670.6074 0.00 7179.9601 18645 17245 18052.5873 629.0033 19.16 7.8250
10.100.01 22801 22801 17352 31295.5074 24044.2336 0.00 6618.0994 18841 17515 18615.5016 423.9138 17.37 10.6280
10.100.02 22131 22131 15699 30486.6555 23948.5033 0.00 8081.3327 17465 16575 17456.6349 70.7870 21.08 8.9347
10.100.03 22772 22772 18817 32795.5884 24469.0794 0.00 6866.3063 18152 15786 17972.5873 402.4176 20.29 8.8359
10.100.04 22751 22751 17564 32604.2586 24436.9923 0.00 6945.8575 18705 17431 18372.9206 553.1250 17.78 8.9342
10.250.00 59187 59187 48086 55818.9960 11675.8756 0.00 9550.5818 43280 39946 42544.8889 940.8290 26.88 31.3592
10.250.01 58781 58781 43173 55302.6930 10750.7501 0.00 13587.1938 46785 43999 46371.5143 752.3758 20.41 56.4902
10.250.02 58097 58097 45538 52907.7982 10827.5062 0.00 15849.1611 43558 42288 43386.3968 320.3015 25.03 46.1420
10.250.03 61000 61000 47587 57342.3073 10802.1653 0.00 11107.4894 42822 40426 42461.4381 766.1158 29.80 51.4840
10.250.04 58092 58092 47703 55037.2679 11251.2648 0.00 9075.8829 41685 40537 41224.6794 456.9968 28.24 82.5832
10.500.00 117821 103226 74746 93309.3654 13265.1931 12.38 33763.7203 90741 87278 90169.9238 720.1538 22.98 139.6827
10.500.01 119249 105088 76531 96823.8780 12237.0902 11.87 38343.9976 89316 87726 89057.6190 400.3709 25.10 171.5081
10.500.02 119215 104870 74620 96151.9075 11857.6879 12.03 46075.8874 91262 89985 91043.4254 445.0307 23.45 205.4551
10.500.03 118829 104308 74845 95338.5664 11119.6133 12.22 47983.9497 90655 89157 90110.2825 511.5386 23.71 175.9941
10.500.04 116530 101380 74441 92260.2844 10578.1152 13.00 43098.1306 91587 88839 91338.3778 528.3976 21.40 349.4433
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5. Conclusions and Future Work

In this paper, a competitive learning-based architecture is proposed, and well-known
methods and techniques are employed to design a novel hybrid approach capable of
tackling discrete and continuous optimization problems. The main objective behind the
proposed design is the interaction between MH and machine learning, where LMPB follows
a population-based solving strategy assisted by multiple linear models that profit from
the dynamic data generated on run-time. Regarding the performance observed through
the experimentation phase, LMPB achieved competitive results tackling both discrete
and continuous optimization problems. In this regard, the proposed architecture went
against specially designed methods which have proved to perform on such problems, while
LMPB employed a unique configuration set of parameters for both cases, which makes
the development of this approach an attractive topic and worth researching. Nevertheless,
it is important to highlight issues observed in the testing which can be potential paths
to carry out future improvements. Firstly, the complexity implementing the architecture
can be described in two topics: MH algorithm and learning method employed. In this
first attempt proposing LMPB, we instantiate SHO as a potential alternative, however, it is
possible to instantiate multiple algorithms in order to define a more complex component
of the architecture. Also, the learning model employed is a key issue, which impacts the
solving time needed to meet the termination criteria. In this regard, the linear model
proved to work for LMPB, however, several learning methods aim for regression. Thus,
multiple experiments need to be carried out in order to find better options in order to
improve the performance and adaptiveness of the architecture. Concerning the increment
in solving time, the complexity behind the architecture and the mechanism employed
are the key issue. Thus, as the results improve, it is worth working on the improvement
of this optimization issue (termination criteria). Regarding future scope, the focus is on
improving modules 1 and 3. In module 1 we want to implement a new population-based
MH in order to have more options for applying intensification and diversification. for
instance, a possible idea is illustrated in Figure 5, where module 1 will be managing two
big groups of movements operators from SHO, Crow Search Algorithm (CSA), and Shuffle
Frog Leaping Algorithm (SFLA) which are modern population MH. On the other hand,
as mentioned in Section 4.2.2, add the capability to try several binarization strategies in
order to smartly guide the transformation of the domain in the variables. In module 3,
the aim is to implement other regression methods, such as SVM, Deep learning approaches,
and so on. The final objective is to have rich adaptability given the most fitted method to
perform prognostic on run-time.

Module 1: Movements

SHO

Intensification

Diversification

Module 1: Movements

Intensification

SHO

CSA 

SFLA

Diversification

SHO

CSA 

SFLA

Transformation

Figure 5. Graphic illustration of the proposed improvement to be carried out in module 1.
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