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Abstract: Evolutionary approaches have a critical role in different disciplines such as real-world
problems, computer programming, machine learning, biological sciences, and many more. The design
of the stochastic model is based on transition probabilities and non-parametric techniques. Positivity,
boundedness, and equilibria are investigated in deterministic and stochastic senses. An essential tool,
Euler–Maruyama, is studied for the solution of said model. Standard and nonstandard evolutionary
approaches are presented for the stochastic model in terms of efficiency and low-cost approximations.
The standard evolutionary procedures like stochastic Euler–Maruyama and stochastic Runge–Kutta
fail to restore the essential features of biological problems. On the other hand, the proposed method
is efficient, of meager cost, and adopts all the desired feasible properties. At the end of this paper the
comparison section is presented to support efficient analysis.

Keywords: Lassa fever disease; stochastic epidemic model; stochastic evolutionary approaches;
stability analysis
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1. Literature Review

In 2020, Onah et al. formulated a dynamical system for the Lassa fever model de-
pending on socio-economic class. The effect of the disease on the economy was studied
worldwide [1]. In 2020, Peter et al. modified a fundamental disease model with the op-
timal control strategies [2]. In 2020, Bakare et al. worked on the transmission dynamics
of the disease and derived a nonlinear ordinary differential equation by introducing the
seasonal parameters. Although stochastic methods are suitable for quantitative study via
a mathematical model, they play an important role in data analysis, such as in environ-
mental cases [3–5], finance [6], energy [7], and epidemiology [8]. For this purpose, some
steps are recommended, such as preventive measures, educational campaigns, commu-
nity hygiene, and isolation of infected humans [9]. In 2021, Collins et al. formulated a
mathematical model for control measures of Lassa fever. According to epidemiologists,
the population was divided into higher and lower socio-economic classes, and control
measures such as treatments, an educational campaign, community hygiene, and rodent
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safety were discussed [10]. Caraballo et al. [11] studied the epidemic model through the
comparative analysis of random and stochastic techniques. Jesus et al. [12] investigated the
random perturbations of an ecoepidemiological model. In 2017, Obabiyi et al. developed a
mathematical model for Lassa fever and divided the population into two parts: humans
and rodents. They suggested early-stage treatment, working in a hygienic environment,
and controlling the rodent population, affecting the human race [13]. In 2020, Dachollom
et al. addressed the epidemic with a broader double-dimensional approach, such as the
natural and medical sciences. They developed a mathematical model to control Lassa fever
infection [14]. In 2013, Bawa et al. derived a deterministic model for a disease-free state and
obtained RO to control disease dynamics [15]. In 2020, Sattler et al. developed an animal
model of Lassa fever from 2018 to 2019. The Nigerian fatality rate was 25.4%, and the
socio-economic burden occurred massively in the endemic region [16]. In 2020, Okolo et al.
developed a mathematical model for controlling Lassa fever by isolation and treatments.
They proved that the disease-free equilibrium is locally asymptotically stable [17]. In 2019,
Marien et al. derived a mathematical model based on field data for rodent control to fight
Lassa fever. This model recommended continuous control or rodent vaccination as the only
policy [18]. In 2019, Akhmetzhanov measured the periodic parameters of transmission
for Lassa fever. This model is based on human infection and rodent population and also
analyzed the infectious disease outbreaks in humans, animals, and plants [19]. In 2019,
Nwasuka et al. analyzed the treatment as a control measure, formulated a mathematical
model of Lassa fever with separation of the infected individual, and evaluated the trans-
mission dynamics [20]. In 2019, Zhao et al. developed the association between disease
reproduction number and local rainfall. The reproduction number was calculated from
four different growth models: (1) Richards, (2) three-parameter logistics, (3) Gompertz,
and (4) Weibull [21]. In 2020, Martins et al. developed a mathematical model to control
the spreading Lassa fever and analyzed the existence and stability of a disease-free equi-
librium [22]. In 2020, Abdulkarim et al. discussed the objective factors and death rates
of the Bauchi state of Nigeria. The data was from 2015 to 2018, when the outbreaks and
fatality rates increased, and death mainly occurred seven days later than the symptoms
were shown [23]. In 2015, James et al. analyzed the transmission dynamics of Lassa fever.
They derived that the zero-equilibrium state is stable when the population is less than the
death rate or both are equal [24]. In 2017, Innocent et al. developed an understanding of
Lassa fever and its control measures, developed a mathematical model for investigating
the dynamics of the disease, and suggested avoiding contact with species that carried
viruses and introducing vaccines for humans [25]. In 2018, Akinpelu et al. developed
a mathematical model for sensitivity analysis of Lassa fever. This model is divided into
five compartments of susceptible (S), latent (L), infected (I), isolated (I), and recovered (R)
by using the next-generation method and obtained RO, showing that disease-free equilib-
rium was locally and globally asymptotically stable [26]. In 2015, James et al. analyzed
stability for Lassa fever and suggested quarantines and making strategies for permanent
immunity [27]. In 2019, Obasi et al. derived the primary reproduction number of the Lassa
fever epidemic. RO is inversely proportional to the square of the inter-epidemic period
of an infectious disease [28]. Aznar-Gimeno et al. [29] studied the stepwise algorithm for
linearly combining biomarkers under index theory. The suitable way of mathematical
modeling infectious diseases in all circumstances is stochastic. Many approaches are used
to handle the stochastic models based on stochastic differential equations used in literature,
such as Milstein, Euler–Maruyama, and many more. All existing techniques do not have
symmetry with the fundamental structure of the continuous model, including positivity,
boundedness, and dynamical consistency. The construction of a stochastic nonstandard
finite difference method is needed to handle such issues and make symmetry with the
continuous model. The strategy of our paper is as follows: in Section 2, the deterministic
model and the analysis of the Lassa fever disease model are formulated. Section 3 is based
on the invention of the disease model in the stochastic form. In Section 4 the computational
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approaches to model the Lassa fever disease and their results are described. Finally, the
conclusion and future framework are discussed.

2. Model Formulation

For any time t, the variables and constants of the model are as follows: SH(t) : denoted
as the susceptible class, IH (t) : represented as the infectious class, RH(t) : represented
as the recovered class, characterized SR(t) : represented as the susceptible rats, IR(t) :
represented as the infectious rats, NH(t) : represented as whole humans’ population. The
dynamics of Lassa fever are presented in Figure 1 as follows [30]:
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Figure 1. Flow chart of Lassa fever model.

Table 1 is presented the physical relevance of the constants as follows:

Table 1. Physical applicability of the model.

Parameters Descriptions Values (Per Day)/[30]

NH Represented the human population. ≥0
α1 Represented infection rate of vectors. 1.00166 (DFE) 3.00166 (EE)
α2 Represented as the force of infection. 1.0004 (DFE) 3.0004 (EE)
α3 Represented infection rate of humans interact. 0.1
τc Represented the connection of humans with drugs. 0.7

τnc
Represented the rate at which humans do not have a

relationship with drugs. 0.9

rc Represented the rate of awareness. 0.2
γ Represented the loss of immunity 0.220

ΛH The birth rate of humans. 0.8 (Assumed)
µH The death rate of humans. 0.8 (Assumed)
δ Represented the rate of mortality of an infectious class. 0.133

ΛR The birth rate of vectors. 0.8 (Assumed)
µR The death rate of vectors. 0.8 (Assumed)

σi: i = 1, 2, 3, 4, 5 Randomness of each sub-population. 0 ≤ i ≤ 1
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The model with equations is as follows:

dSH(t)
dt

= ΛH −
α1α2SH(t)IR(t)

NH
+ γRH(t) + τnc IH (t)− µHSH(t), t ≥ 0 (1)

dIH (t)
dt

=
α1α2SH(t)IR(t)

NH
− τc IH (t)− rc IH (t)− τnc IH (t)− δIH (t)− µH IH (t), t ≥ 0 (2)

dRH(t)
dt

= τc IH (t) + rc IH (t)− γRH(t)− µH RH(t), t ≥ 0 (3)

dSR(t)
dt

= ΛR −
α1α3SR(t)IH (t)

NH
− µRSR(t), t ≥ 0 (4)

dIR(t)
dt

=
α1α3SR(t)IH (t)

NH
− µR IR(t), t ≥ 0 (5)

where SH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, SR(0) ≥ 0, IR(0) ≥ 0.

2.1. Positivity and Boundedness

For any time t ≥ 0, the feasible region of the model is as follows:

Π =

{
(SH , IH , RH , SR, IR)εR5

+ : SH + IH + RH ≤
ΛH
µH

, SR + IR ≤
ΛR
µR

, SH ≥ 0, IH ≥ 0, RH ≥ 0, SR ≥ 0, IR ≥ 0
}

Lemma 1. The solutions (SH , IH , RH , SR, IR)εR5
+ of the Equations (1)–(5) are positive at any

time t ≥ 0, with given non-negative initial conditions.

Proof. It is clear from the Equations (1)–(5) that:

dSH
dt

∣∣∣
SH=0

= ΛH + γRH + τnc IH ≥ 0, dIH
dt

∣∣∣
IH=0

= α1α2SH IR
NH

≥ 0, dRH
dt

∣∣∣
RH=0

= τc IH + rc IH ≥ 0,

dSR
dt

∣∣∣
SR=0

= ΛR ≥ 0, dIR
dt

∣∣∣
IR=0

= α1α3SR IH
NH

≥ 0,

as desired. �

Lemma 2. The solutions (SH , IH , RH , SR, IR)εR5
+ of the Equations (1)–(5) are bounded at any

time t ≥ 0, to prove lim
t→∞

Sup NH(t) ≤ ΛH
µH

, and lim
t→∞

Sup NR(t) ≤ ΛR
µR

.

Proof. By considering the function as follows:

NH(t) = SH + IH + RH ,
dNH

dt = dSH
dt + dIH

dt + dRH
dt ,

dNH
dt = ΛH − µH NH ,

NH(t) = A + ΛH
µH

,

By Gronwall’s inequality, we get NH(t) ≤ NH(0) +
ΛH
µH

, t ≥ 0,

lim
t→∞

Sup NR(t) ≤ ΛH
µH

.

Let,

NR(t) = SR + IR,

dNR
dt = dSR

dt + dIR
dt ,

dNR
dt = ΛR − µRNR

NR(t) = B + ΛR
µR

,
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By Gronwall’s inequality, we get

NR(t) ≤ NR(0) +
ΛR
µR

, t ≥ 0,

lim
t→∞

Sup NR(t) ≤ ΛR
µR

,

as desired. �

2.2. Model Equilibria

There are two equilibria of Equation (1) to Equation (5), as follows: disease-free
equilibrium (DFE) = (SH , IH , RH , SR, IR) =

(
ΛH
µH

, 0, 0, ΛR
µR

, 0
)

and endemic equilibrium

(EE) = (S∗H , I∗H , R∗H , S∗R, I∗R) where S∗H =
ΛH+ γA1 I∗H+A2 I∗H

µH
, I∗H = ΛH+A4µR

A4α1α3+γA1+A2
, R∗H =

( τc+rc)I∗H
γ+µH

= A1 I∗H , S∗R = ΛR
α1α3 I∗H+µR

, I∗R =
α1α3S∗R I∗H

µR
. And, A1 = ( τc+rc)

γ+µH
, A2 = τc + rc + δ +

µH , A3 = τc + rc + τnc + δ + µH , A4 = A3µHµR
α2

1α2α3ΛR
.

The next-generation matrix method is used to calculate the reproduction number.
The transmission matrix, denoted by F, and transition matrix, denoted by V, are obtained
by considering the infected classes from the system (1)–(5) and adding the disease-free
equilibrium. The reproduction number is represented as the largest eigenvalue of FV−1.

F =


α1α2SH

NH
0 0

0 0 0
0 0 α1α3SR

NH

, V =

τc + rc + τnc + δ + µH 0 0
−τc − rc γ + µH 0

0 0 µR

. So,

FV−1 =
1

(τc + rc + τnc + δ + µH)(γ + µH)µR


α1α2 µRΛH(γ+µH)

µH NH
0 0

0 0 0
0 0 α1α2ΛR

µR NH
(τc + rc + τnc + δ + µH)(γ + µH)


where R0 = α1α2ΛH

µH NH(τc+rc+ τnc+δ+ µH)
, is called the reproduction number.

3. Stochastic Formulation Phase-I

A transition matrix technique, also known as a stochastic or probability matrix,
is a square matrix representing the transition probabilities of a stochastic system. Let
C = [SH , IH , RH , SR, IR]

T be a vector for the disease model. The changes in the disease
model concerning time are calculated in Table 2.

Expectation = E∗[∆C]= ∑12
i=1 Pi(T)i =



ΛH−α1α2SH IR
NH

+ γRH + τnc IH − µHSH
α1α2SH IR

NH
− τnc IH − τC IH + rC IH − δIH + µH IH

YRH + τC IH + rc IH − µH RH

ΛR − α1α3SR IH
NH

− µRSR
α1α3SR IH

NH
− µR IR


∆t.

Variance = ∑12
i=1 PiTi(Ti)

T .

=


P1 + P2 + P3 + P4 + P5 −P2 − P4 −P3 0 0

−P2 − P4 P2 + P4 + P6 + P7 −P6 0 0
−P3 −P6 P3 + P6 + P3 0 0

0 0 0 P9 + P10 + P11 −P10
0 0 0 −P10 P10 + P12

.
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Drift = G(C, t) =
E∗[∆C]

∆t
=



ΛH−α1α2SH IR
NH

+ γRH + τnc IH − µHSH
α1α2SH IR

NH
− τnc IH − τC IH + rC IH − δIH + µH IH

YRH + τC IH + rc IH − µH RH

ΛR − α1α3SR IH
NH

− µRSR
α1α3SR IH

NH
− µR IR


(6)

Diffusion = H(C, t) =
√

E∗[∆C ∆CT]
∆t =√√√√√√√√√


P1 + P2 + P3 + P4 + P5 −P2 − P4 −P3 0 0

−P2 − P4 P2 + P4 + P6 + P7 −P6 0 0
−P3 −P6 P3 + P6 + P3 0 0

0 0 0 P9 + P10 + P11 −P10
0 0 0 −P10 P10 + P12

.
(7)

Table 2. Possible changes in the process of the model.

Transition Probabilities

(∆C)1 = [1 0 0 0 0]T P1 = (∧H)∆t

(∆C)2 = [−1 1 0 0 0]T P2 = (α1α2SH IR)∆t

(∆C)3 = [1 0 −1 0 0]T P3 = (YRH)∆t

(∆C)4 = [1 −1 0 0 0]T P4 = (τnc IH)

(∆C)5 = [−1 0 0 0 0]T P5 = (µHSH)∆t

(∆C)6 = [0 −1 1 0 0]T P6 = (τC IH + rC IH)∆t

(∆C)7 = [0 −1 0 0 0]T P7 = (δIH + µH IH)∆t

(∆C)8 = [0 0 −1 0 0]T P8 = (µH RH)∆t

(∆C)9 = [0 0 0 1 0]T P9 = (∧R)∆t

(∆C)10 = [0 0 0 −1 1]T P10 = (α1α2SR IH)∆t

(∆C)11 = [0 0 0 −1 0]T P11 = (µRSR)∆t

(∆C)12 = [0 0 0 0 −1]T P12 = (µR IR)∆t

Thus, dC(t) = G(C, t)dt + H(C, t)dB(t).

d


SH
IH
RH
SR
IR

 =



ΛH−α1α2SH IR
NH

+ γRH + τnc IH − µHSH
α1α2SH IR

NH
− τnc IH − τC IH + rC IH − δIH + µH IH

YRH + τC IH + rc IH − µH RH

ΛR − α1α3SR IH
NH

− µRSR
α1α3SR IH

NH
− µR IR


dt

+

√√√√√√√√√


P1 + P2 + P3 + P4 + P5 −P2 − P4 −P3 0 0
−P2 − P4 P2 + P4 + P6 + P7 −P6 0 0
−P3 −P6 P3 + P6 + P3 0 0

0 0 0 P9 + P10 + P11 −P10
0 0 0 −P10 P10 + P12

dB(t).

(8)
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The Euler–Maruyama scheme is implemented on Equation (8) to find its stimulating
results by using the scientific literature of the model. This is presented in Table 1 and is
as follows:

Cn+1 = Cn + G(Cn, t)∆t + H(Cn, t)dB.
SH

n+1

IH
n+1

RH
n+1

SR
n+1

IR
n+1

 =


SH

n

IH
n

RH
n

SR
n

IR
n

+



ΛH−α1α2SH IR
NH

+ γRH + τnc IH − µHSH
α1α2SH IR

NH
− τnc IH − τC IH + rC IH − δIH + µH IH

YRH + τC IH + rc IH − µH RH

ΛR − α1α3SR IH
NH

− µRSR
α1α3SR IH

NH
− µR IR


∆t

+

√√√√√√√√√



P1 + P2 + P3 + P4 + P5 −P2 − P4 −P3 0 0
−P2 − P4 P2 + P4 + P6 + P7 −P6 0 0
−P3 −P6 P3 + P6 + P3 0 0

0 0 0 P9 + P10 + P11 −P10
0 0 0 −P10 P10 + P12

∆t

∆Bn.

where ∆t is the discretization parameter.

4. Formulation Phase-II

Considering the dynamical system (1)–(5), add uncertainty parameter with Brownian
motion as follows [31]:

dSH(t)
dt

= ΛH −
α1α2SH(t)IR(t)

NH
+ γRH(t) + τnc IH (t)− µHSH(t) + σ1SH(t)

dB(t)
dt

, t ≥ 0 (9)

dIH (t)
dt

=
α1α2SH(t)IR(t)

NH
− τc IH (t)− rc IH (t)− τnc IH (t)− δIH (t)− µH IH (t) + σ2 IH (t)

dB(t)
dt

, t ≥ 0 (10)

dRH(t)
dt

= τc IH (t) + rc IH (t)− γRH(t)− µH RH(t) + σ3RH(t)
dB(t)

dt
, t ≥ 0 (11)

dSR(t)
dt

= ΛR −
α1α3SR(t)IH (t)

NH
− µRSR(t) + σ4SR(t)

dB(t)
dt

, t ≥ 0 (12)

dIR(t)
dt

=
α1α3SR(t)IH (t)

NH
− µR IR(t) + σ5 IR(t)

dB(t)
dt

, t ≥ 0 (13)

where σi, i = 1, 2, 3, 4, 5 represents each compartment’s randomness and B(t) is the
Brownian motion.

4.1. Fundamental Properties of the Stochastic Model

In this section, the positivity and boundedness of systems (9)–(13) are discussed. Let
us consider the vectors as follows:

U(t) = (SH(t), IH(t), RH(t)) and V(t) = (SR(t), IR(t))

And the norms
|U(t)| =

√
S2

H(t) + I2
H(t) + R2

H(t) (14)

And
|V(t)| =

√
S2

R(t) + I2
R(t) (15)

Also, denote C2,1
1
(

R3x(0, ∞) : R+
)

and C2,1
2
(

R2x(0, ∞) : R+
)

are the families of all non-
negative functions V1(U, t) and V2(V, t) defined on R3x(0, ∞), respectively. Also, twice
differentiable in U and V and once in t.
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We define the differential operators L1 and L2 associated with three dimensional SDEs:

dU(t) = H1(U, t)dt + K1(U, t)dB(t) (16)

dV(t) = H2(V, t)dt + K2(V, t)dB(t) (17)

as,

L1 =
∂

∂t
+ ∑3

i=1 H1i (U, t)
∂

∂Ui
+

1
2 ∑3

i,j=1(K
T
1 (U, t)K1(U, t)i,j x

∂2

∂Ui∂Uj

and

L2 =
∂

∂t
+ ∑2

i=1 H2i (V, t)
∂

∂Vi
+

1
2 ∑2

i,j=1(K
T
2 (V, t)K2(V, t)i,j x

∂2

∂Vi∂Vj
.

If L1 , L2 acts on a function U∗, V∗ ∈ C2,1(R3x(0, ∞) : R3
+

)
then we denote

L1U∗(U, t) = U∗t (U, t) + U∗U(U, t)H1(U, t) + 1
2 Trace(KT

1 (U, t)U∗UU(U, t)K1(U, t).

L2V∗(V, t) = V∗t (V, t) + V∗V(V, t)H2(V, t) + 1
2 Trace(KT

2 (V, t)V∗VV(V, t)K2(V, t).

where T means Transportations.

Theorem 1. For system (9)–(13) and any given initial conditions (SH(0), IH(0), RH(0)) ∈
R3
+, and (SR(0), IR(0)) ∈ R2

+, there are unique solutions (SH(t), IH(t), RH(t)), and (SR(t),
IR(t)) t ≥ 0, respectively, and it will remain in R5

+ with probability one.

Proof. Since the local Lipschitz constraints are satisfied with all model parameters. There-
fore, by Ito’s formula, the given model admits a positive solution in the sense of local on
[0, τe], and explosion time is denoted by τe. To prove, the model has a global solution that
is τe = ∞.

Let mo = 0 be sufficiently large for SH(0), IH(0), RH(0), SR(0) and IR(0) lying with
the interval

{
1

mo
, mo

}
. For each integer m ≥ 0, define a sequence as follows:

τm = in f

t ∈ [0, τe] : (t) ∈
(

1
m , m

)
or EH(t) ∈

(
1
m , m

)
or IH(t) ∈

(
1
m , m

)
or

SV(t) ∈
(

1
m , m

)
or EV(t) ∈

(
1
m , m

)
or IV(t) ∈

(
1
m , m

)  (18)

where, we set in f∅ = ∞ (∅ is empty set). Since τm is non-decreasing as m→∞,

τ∞ = lim
m→∞

τm (19)

Then τ∞ ≤ τe. Now, we wish to show τ∞ = ∞, as desired. If this statement is violated,
then there exist T > 0 and a1 ∈ (0, 1) such that

P(τm ≤ T) > a1 , ∀ m ≥ m1. (20)

Define a c3 functions f : R3
+ → R+ by

f (SH , IH , RH) = (SH − 1− ln SH) + (IH − 1− ln IH) + (RH − 1− ln RH). (21)

Define a c2 functions f : R2
+ → R+ by

g(SR, IR) = (SR − 1− ln SR) + (IR − 1− ln IR) (22)

By Ito’s formula on (21), we have
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d f (SH , IH , RH) =
(

1− 1
SH

)
dSH +

(
1− 1

IH

)
dIH +

(
1− 1

RH

)
dRH +

σ2
1+σ2

2+σ2
3

2 dt

d f (SH , IH , RH) =
(

1− 1
SH

)[(
ΛH − α1α2SH IR

NH
+ γRH + τnc IH − µHSH

)
dt + σ1SHdB(t)

]
+
(

1− 1
IH

)[(
α1α2SH IR

NH
− τc IH −

rc IH − τnc IH − δIH − µH IH ) dt + σ2 IHdB(t)] +
(

1− 1
RH

)
[(τc IH + rc IH − γRH − µH RH)dt+ σ3RHdB(t)].

d f (SH , IH , RH) ≤
[

ΛH + µH + δ +
σ2

1 + σ2
2 + σ2

3
2

]
dt + σ1SH(t)dB(t) + σ2 IH(t)dB(t) + σ3rH(t)dB(t) (23)

For simply, we let N1 = ΛH +µH + δ+
σ2

1+σ2
2+σ2

3
2 , then Equation (23) will be written as

d f (SH , IH , RH) ≤ N1dt + [σ1SH(t) + σ2 IH(t) + σ3RH(t)]dB(t). (24)

where, N1 is positive constant. By integrating Equation (24) from 0 to τmΛτ.

∫ τmΛτ

0
d f (SH(s), IH(s), RH(s)) ≤

∫ τmΛτ

0
N1ds +

∫ τmΛτ

0
(σ1SH(s) + σ2 IH(s) + σ3RH(s))dB(s) (25)

where τmΛτ = min(τm, T), then Expectation will be

EU∗(SH(τmΛτ), IH(τmΛτ), RH(τmΛτ) ≤ U∗(SH(0), IH(0), RH(0)) + N1T. (26)

Set Ωm = {τm ≤ T} f or m > m1 and from Equation (14), we have P ( Ωm ≥ a1}. For
every r1 ∈ Ωm there are some i such that Ui(τm, v1) equals either m or 1

m for I = 1,2,3. Hence,

U∗(SH(τm, v1), IH(τm, v2), RH(τm, v3)) is less than min
{

m− 1− lnm, 1
m − 1− ln 1

m

}
.

Then we obtain

U∗(SH(0), IH(0), RH(0)) + N1T ≥ E(IΩm(v1)U
∗(SH(τm), IH(τm), RH(τm)) ≥

{
min

{
m− 1− lnm,

1
m
− 1− ln

1
m

}}
(27)

The indicator function is represented by IΩm(v1)
of Ωm. Letting m→ ∞ leads to the

contradiction.
∞ = U∗(SH(0), IH(0), RH(0)) + N1T < ∞.

as desired.
Again, by applying Ito’s formula on Equation (22), we have

dg(SR, IR) =

(
1− 1

SR

)
dSR +

(
1− 1

IR

)
dIR +

σ2
4 + σ2

5
2

dt

dg(SR, IR) =

(
1− 1

SR

)[(
ΛR −

α1α3SR IH
NH

− µRSR

)
dt + σ4SR(t)dB(t)

]
+

(
1− 1

IR

)[(
α1α3SR IH

NH
− µR IR

)
dt + σ5 IR(t)dB(t)

]

dg(SR, IR) ≤
[

ΛR + µR +
σ2

4 + σ2
5

2

]
dt+(σ4SR(t) + σ5 IR(t))dB(t). (28)

To simplify, we let N2 = ΛR + µR +
σ2

4+σ2
5

2 , then Equation (28) as

dg(SR, IR) ≤ N2dt + [σ4SR(t) + σ5 IR(t)]dB(t). (29)

where, N2 is a positive constant by integrating Equation (29) from 0 to τm Λτ.

∫ τm Λτ

0
dg(SR(s), IR(s)) ≤

∫ τm Λτ

0
N2ds +

∫ τm Λτ

0
[σ4SR(s) + σ5 IR(s)]dB(s) (30)

where τm Λτ = min(τm, τ), then expectation will be

EV∗(SR(τmΛτ), IR(τmΛτ)) ≤ V∗(SR(0), IR(0)) + N2T (31)
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Hence, V∗(SR(τm, V1), IR(τm, V1)) is less than min
{

m− 1− ln m, 1
m − 1− ln 1

m

}
. Then

we obtain,

V∗(SR(0), IR(0)) + N2T ≥ E
(

IΩm(v1)
V∗(SR(τm), IR(τm)

)
) ≥
{

min
{

m− 1− ln m,
1
m
− 1− ln

1
m

}}
. (32)

∞ = V∗(SR(0), IR(0)) + N2T < ∞.

as desired. �

4.2. Stochastic Euler Approach

The discretization of the system (9)–(13) under the rules of the stochastic Euler ap-
proach is as follows:

Sn+1
H = Sn

H + h
[

ΛH −
α1α2sn

H In
R

NH
+ γRn

H + τnc In
H − µHSn

H + σ1Sn
H∆Bn

]
(33)

In+1
H = In

H + h
[

α1α2Sn
H In

R
NH

− τc In
H − ∆c In

H − τnc − δIn
H − µH In

H + σ2 In
H∆Bn

]
(34)

Rn+1
H = Rn

H + h [ τc In
H + ∆c In

H − γRn
H − µH Rn

H + σ3Rn
H∆Bn] (35)

Sn+1
R = Sn

R + h
[

ΛR −
α1α3Sn

RIn
H

NH
− µRSn

R + σ4Sn
R∆Bn

]
(36)

In+1
R = In

R + h
[

α1α3Sn
R In

H
NH

− µR In
R + σ5 In

R∆Bn

]
(37)

where h is any discretization parameter and n ≥ 0.

4.3. Stochastic Runge—Kutta Approach

The discretization of the system (9)–(13) under the rules of the stochastic Runge–Kutta
approach is as follows:

First Stage

K1 = h
[
∧H −

α1α2Sn
H In

R
NH

+ YRn
H + τnc In

H − µHSn
H + σ1Sn

H∆ Bn

]
L1 = h

[
α1α2Sn

H In
R

NH
− τc In

H − ∆c In
H − τnc In

H − δIn
H − µH In

H + σ2 In
H∆ Bn

]
M1 = h

[
τc In

H + rc In
H − γRn

H − µH Rn
H + σ3Rn

H∆ Bn
]

N1 = h
[
ΛR −

α1α3Sn
R In

H
NH

− µRSn
R + σ4Sn

R∆ Bn

]
O1 = h

[
α1α3Sn

R In
H

NH
− µR In

R + σ5 In
R∆ Bn

]
Second Stage

K2 = h

[
ΛH −

α1α2

(
Sn

H+
K1
2

)(
In
R+

O1
2

)
NH

+ γ
(

Rn
H + M1

2

)
+ τnc

(
In
H + L1

2

)
− µH

(
Sn

H + K1
2

)
+ σ1

(
Sn

H + K1
2

)
∆Bn

]

L2 = h

[
α1α2

(
Sn

H+
K1
2

)(
In
R+

O1
2

)
NH

− τc

(
In
H + L1

2

)
− rc

(
In
H + L1

2

)
− τnc

(
In
H + L1

2

)
− δ
(

In
H + L1

2

)
− µH

(
In
H + L1

2

)
+ σ2

(
In
H + L1

2

)
∆Bn

]
M2 = h

[
τc

(
In
H + L1

2

)
+ rc

(
In
H + L1

2

)
− γ

(
Rn

H + M1
2

)
− µH

(
Rn

H + M1
2

)
+ σ3

(
Rn

H + M1
2

)
∆Bn

]
N2 = h

[
ΛR −

α1α3

(
Sn

R+
N1
2

)(
In
H+

L1
2

)
NH

− µR

(
Sn

R + N1
2

)
+ σ4

(
Sn

R + N1
2

)
∆Bn

]

O2 = h

[
α1α3

(
Sn

R+
N1
2

)(
In
H+

L1
2

)
NH

− µR

(
In
R + O1

2

)
+ σ5

(
In
R + O1

2

)
∆Bn

]
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Third Stage

K3 = h

[
ΛH −

α1α2

(
Sn

H+
K2
2

)(
In
R+

O2
2

)
NH

+ γ
(

Rn
H + M2

2

)
+ τnc

(
In
H + L2

2

)
− µH

(
Sn

H + K2
2

)
+ σ1

(
sn

H + K2
2

)
∆Bn

]

L3 = h

[
α1α2

(
Sn

H+
K2
2

)(
In
R+

O2
2

)
NH

− τc

(
In
H + L2

2

)
− rc

(
In
H + L2

2

)
− τnc

(
In
H + L2

2

)
− δ
(

In
H + L2

2

)
− µH

(
In
H + L2

2

)
+ σ2

(
In
H + L2

2

)
∆Bn

]
M3 = h

[
τc

(
In
H + L2

2

)
+ rc

(
In
H + L2

2

)
− γ

(
Rn

H + M2
2

)
− µH

(
Rn

H + M2
2

)
+ σ3

(
Rn

H + M2
2

)
∆Bn

]
N3 = h

[
ΛR −

α1α3

(
Sn

R+
N2
2

)(
In
H+

L2
2

)
NH

− µR

(
Sn

R + N2
2

)
+ σ4

(
Sn

R + N2
2

)
∆Bn

]

O3 = h

[
α1α3

(
Sn

R+
N2
2

)(
In
H+

L2
2

)
NH

− µR

(
In
R + O2

2

)
+ σ5

(
In
R + O2

2

)
∆Bn

]
Fourth Stage

K4 = h
[
ΛH −

α1α2(Sn
H+K3)(In

R+O3)
NH

+ γ
(

Rn
H + M3

)
+ τnc

(
In
H + L3

)
− µH

(
Sn

H + K3
)
σ1
(
Sn

H + K3
)
∆Bn

]
L4 = h

[
α1α2(Sn

H+K3)(In
R+o3)

NH
− τc

(
In
H + L3

)
− rc

(
In
H + L3

)
− τnc

(
In
H + L3

)
− δ
(

In
H + L3

)
− µH

(
In
H + L3

)
+ σ2

(
In
H + L3

)
∆Bn

]
M4 = h

[
τc
(

In
H + L3

)
+ rc

(
In
H + L3

)
− γ

(
Rn

H + M3
)
− µH

(
Rn

H + M3
)
+ σ3

(
Rn

H
)
∆Bn

]
N4 = h

[
ΛR −

α1α3(Sn
R+N3)(In

H+L3)
NH

− µR
(
Sn

R + N3
)
+ σ4

(
Sn

R + N3
)
∆Bn

]
O4 = h

[
α1α3(Sn

R+N3)(In
H+L3)

NH
− µR

(
In
R + O3

)
+ σ5

(
In
R + O3

)
∆Bn

]
Final Stage

SH
n+1 = Sn

H +
1
6
[K1 + 2K2 + 2K3 + K4] (38)

IH
n+1 = In

H +
1
6
[L1 + 2L2 + 2L3 + L4] (39)

RH
n+1 = Rn

H +
1
6
[M1 + 2M2 + 2M3 + M4] (40)

SR
n+1 = Sn

R +
1
6
[O1 + 2O2 + 2O3 + O4] (41)

IR
n+1 = In

R +
1
6
[P1 + 2P2 + 2P3 + P4] (42)

where h is any discretization parameter and n ≥ 0.

4.4. Stochastic Nonstandard Finite Difference Approach

The stochastic non-standard finite difference scheme for Equations (9)–(13) can be
defined as follows [32,33]:

Sn+1
H =

Sn
H + hΛH + γhRn

H + hτnc In
H + hσ1Sn

H∆Bn

1 + hα1α2 In
R

NH
+ µHh

(43)

In+1
H =

In
H +

hα1α2Sn
H In

R
NH

+ hσ2 In
H∆Bn

1 + hτc + rch + hτnc + δh + µHh
(44)

Rn+1
H =

Rn
H + hτc In

H + ∆c In
H + hσ3Rn

H∆Bn

1 + γh + µHh
(45)

Sn+1
R =

Sn
R + hΛR + hσ4Sn

R∆Bn

1 + hα1α3 In
H

NH
+ µRh

(46)

In+1
R =

In
R +

hα1α3Sn
R In

H
NH

+ hσ5 In
R∆Bn

1 + µRh
(47)
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where h is any discretization parameter and n ≥ 0.

4.5. Stability Analysis

Considering the functions A, B, C, D, and E for the system (43)–(47) by assuming the
∆Bn = 0 as follows:

A = SH+hΛH+γhRH+hτnc IH

1+ hα1α2 IR
NH

+µH h
, B =

IH+
hα1α2SH IR

NH
1+hτc+rch+hτnc+δh+µH h , C = RH+hτc IH+rc IH

1+γh+µH h , D = SR+hΛR

1+ hα1α3 IH
NH

+µRh
.

E =
IR+

hα1α3SR IH
NH

1+µRh .

The elements of Jacobean matrix as follows:

∂A
∂SH

= 1
1+µH h , ∂A

∂IH
= hτnc

1++µH h , ∂A
∂RH

= γh
1+µH h , ∂A

∂SR
= 0, ∂A

∂IR
= −

(SH+hΛH+γhRH+hτnc IH)
(

hα1α2
NH

)
(

1+ hα1α2 IR
NH

+µH h
)2 ,

∂B
∂SH

=
hα1α2 IR

NH
1+hτc+rch+hτnc+δh+µH h , ∂B

∂IH
= 1

1+hτc+rch+hτnc+δh+µH h
∂B

∂RH
= 0, ∂B

∂SR
= 0,

∂B
∂IR

=
hα1α2SH

NH
1+hτc+rch+hτnc+δh+µH h , ∂C

∂SH
= 0, ∂C

∂IH
= hτc+rc

1+γh+µH h , ∂C
∂RH

= 1
1+γh+µH h , ∂C

∂SR
= 0,

∂C
∂IR

= 0, ∂D
∂SH

= 0, ∂D
∂IH

= −
(SR+hΛR)

(
hα1α3

NH

)
(

1+ hα1α3 IH
NH

+µRh
)2 , ∂D

∂RH
= 0, ∂D

∂SR
= 1

1+µRh , ∂D
∂IR

= 0, ∂E
∂SH

= 0,

∂E
∂IH

=
hα1α3SR

NH
1+µRh , ∂E

∂RH
= 0, ∂E

∂SR
=

hα1α3 IH
NH

1+µRh , ∂E
∂IR

= 1
1+µRh .

Theorem 2. For n ≥ 0, the eigenvalues of the Jacobian matrix at the disease-free equilibrium for
the system (43)–(47) lie in the unit circle if R0 < 1.

Proof. The Jacobean matrix at disease-free equilibrium (DFE-E0) =
(

ΛH
µH

, 0, 0, ΛR
µR

, 0
)

is
as follows:

J(E0) =



1
1+µH h

hτnc
1++µH h

γh
1+µH h 0 −

(SH+hΛH+γhRH+hτnc IH)
(

hα1α2
NH

)
(

1+ hα1α2 IR
NH

+µH h
)2

hα1α2 IR
NH

1+hτc+rch+hτnc+δh+µH h
1

1+hτc+rch+hτnc+δh+µH h 0 0
hα1α2SH

NH
1+hτc+rch+hτnc+δh+µH h

0 hτc+rc
1+γh+µH h

1
1+γh+µH h 0 0

0 −
(SR+hΛR)

(
hα1α3

NH

)
(

1+ hα1α3 IH
NH

+µRh
)2 0 1

1+µRh 0

0
hα1α3SR

NH
1+µRh 0

hα1α3 IH
NH

1+µRh
1

1+µRh


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|J(E0)− λ| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1+µRh − λ hτnc

1+µH h
γh

1+µH h 0 −
(

ΛH
µH

+hΛH

)(
hα1α2

NH

)
(1+µH h)2

0 1
1+hτc+rch+hτnc+δh+µH h − λ 0 0

hα1α2
ΛH
µH

NH
1+hτc+rch+hτnc+δh+µH h

0 hτc+rc
1+γh+µH h

1
1+γh+µH h − λ 0 0

0 −
(

ΛR
µR

+hΛR

)(
hα1α2

NH

)
(1+µRh)2 0 1

1+µRh − λ 0

0
hα1α3

ΛR
µR

NH
1+µRh 0 0 1

1+µRh − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

λ1 =

∣∣∣∣ 1
1 + µHh

∣∣∣∣ < 1, λ2 =

∣∣∣∣ 1
1 + γh + µHh

∣∣∣∣ < 1, λ3 =

∣∣∣∣ 1
1 + hµR

∣∣∣∣ < 1.

|J(E0)− λ| =

∣∣∣∣∣∣∣∣∣∣
(

1
1+hτc+rch+hτnc+δh+µH h

)
− λ

hα1α2
ΛH
µH

NH
1+hτc+rch+hτnc+δh+µH h

hα1α3
ΛR
µR

NH
1+µRh

1
1+µRh − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

P1 = Trace o f J =
(

1
1 + hτc + rch + hτnc + δh + µHh

)
+

1
1 + µRh

P2 = Determinant o f J =
((

1
1 + hτc + rch + hτnc + δh + µHh

)(
1

1 + µRh

))
−

 hα1α3
ΛR
µR

NH

1 + µRh


 hα1α2

ΛH
µH

NH

1 + hτc + rch + hτnc + δh + µHh

.

�

Lemma 3. For the quadratic equation λ2 − P1λ + P2 = 0 , |λi| < 1, i = 1, 2,3, if and only if the
following conditions are satisfied:

(i) 1 + P1 + P2 > 0.
(ii) 1− P1 + P2 > 0.
(iii) P2 < 1.

Proof. The proof is straightforward. �

4.6. Comparison Section

This section compares the behavior of the graphs of infected humans of Euler Maruyama,
stochastic Euler, and sto-chastic Runge Kutta schemes with the NSFD scheme for different
step sizes.

5. Concluding Remarks

Table 3 predicts the efficacy of the existing methods with the proposed technique. All
methods are consistent in small time steps (the disease behavior for a short period). After
taking an increase in time, the existing methods are not compatible with the solution of
the continuous model, even violating the properties, such as positivity, boundedness, and
dynamical consistency. This means the current techniques are unsuitable for predicting the
disease’s behavior for a long time. The graphical behavior of Euler–Maruyama, stochastic
Euler, stochastic Runge–Kutta, and SNSFD schemes are given in Figures 2 and 3. Figure 4
presents the schematic map of the Lassa fever model. The analysis predicts that mouse-
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to-human transmission rate and mouse death rate are among the most critical parameters.
Hence, the abundance of mice is the most crucial driver of Lassa fever transmission. The
following steps could be adequate to control the disease by decreasing rodent-to-human
communication, e.g., using rodent-safe food containers, collecting garbage far from the
houses, and reducing human-to-human transmission. Our simulations suggest modifying
control parameters corresponding to such measures might mitigate the epidemic, but
they seem insufficient to drive it to extinction. In the future, we shall extend this idea to
annealing genetic GAN for imbalanced web data learning as presented in [34].

Table 3. Comparison of numerical techniques for different step sizes ‘h.

h Euler–Maruyama Stochastic Euler Stochastic Runge Kutta Stochastic NSFD

0.01 Convergence Convergence Convergence Convergence

0.5
1
2

Divergence
Divergence
Divergence

Divergence
Divergence
Divergence

Divergence
Divergence
Divergence

Convergence
Convergence
Convergence
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the help of stochastic differential equations (SDEs) package. (a) The behavior of each subpopulation
for disease-free equilibrium at h = 0.01. (b) The behavior of each subpopulation for endemic
equilibrium at h = 0.01.
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Figure 3. Combined graphical behaviors of NSFD with Euler-Maruyama, stochastic Euler, and
stochastic Runge-Kutta methods at different time-step sizes. (a) The behavior of infected humans
through both methods converge to the proper equilibrium at h = 0.01. (b) Euler-Maruyama method
diverges and even produces negative values after taking the long-term behavior, but the proposed
method is still convergent. (c) The stochastic Euler method depicts the exact behavior of the dis-
ease, like the stochastic nonstandard finite difference method. (d) However, the stochastic Euler
method fails to restore the dynamical properties at h = 1. (e) The stochastic Runge-Kutta methods
converges like stochastic NSFD at h = 0.01 (f) The stochastic Runge-Kutta method diverges when we
take h = 2 days, but the proposed method is convergent and restores the dynamical properties of
the model.
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