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Abstract: Estimating shear strength is a crucial aspect of beam design. The goal of this research
is to develop a shear strength calculation technique for ultra-high performance fiber reinforced
concrete (UHPFRC) beams. To begin, a shear test database of 200 UHPFRC beam specimens is
established. Then, random forest (RF) is used to evaluate the importance of influence factors for
the shear strength of UHPFRC beams. Subsequently, three machine learning (ML)-based models,
including artificial neural network (ANN), support vector regression (SVR), and eXtreme-gradient
boosting (XGBoost), are proposed to compute shear strength. Results demonstrate that the area
of longitudinal reinforcement has the greatest influence on the shear capacity of UHPFRC beams,
and ten parameters with high importance (e.g., the area of longitudinal reinforcement, the stirrup
strength, the cross-section area, the shear span ratio, fiber volume fraction, etc.) are selected as input
parameters. The models of ANN, SVR, and XGBoost have close accuracy, and their R2 are 0.8825,
0.9016, and 0.8839, respectively, which are much larger than those of existing theoretical models. In
addition, the average ratios of prediction values of ANN, SVR, and XGBoost models to experimental
results are 1.08, 1.02, and 1.10, respectively; the coefficients of variation are 0.28, 0.21, and 0.28,
respectively. The SVR model has the best accuracy and reliability. The accuracy and reliability of
ML-based models are much better than those of existing models for calculating the shear strength of
UHPFRC beams.

Keywords: ultra-high performance fiber reinforced concrete (UHPFRC); beams; machine learning-
based models; shear strength

MSC: 62P30

1. Introduction

High-performance materials play a significant advantage in improving the perfor-
mance of structures, reducing self-weight and saving materials, and leading to the de-
velopment of high-performance structures [1]. Ultra-high-performance fiber reinforced
concrete (UHPFRC), a newly developed high-performance material in civil engineering,
offers remarkable features such as ultra-high strength, high durability, and micro-crack solid
self-healing capacity, which may help structures last longer and require less maintenance.
The application of UHPFRC in concrete structures can significantly improve their mechan-
ical performance and durability and reduce the size of the cross-section, saving concrete
consumption. The research on the mechanical properties of UHFRPC members is the basis
of the application of UHPFRC material in concrete structures, and the shear strength is
an essential index for the evaluation and design of UHPFRC beams, so it is necessary to
conduct in-depth discussion and research on the shear strength of UHPFRC beams.

The shear performance of UHPFRC beams has been experimentally investigated in
depth. These shear tests have examined the effects of fiber volume fraction and type,
shear-span ratio, stirrup configuration, longitudinal reinforcement configuration, and
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other parameters on the flexure and shear properties of UHPFRC beams. The experiment
results show that the inclined cracks of the UHPFRC beam are dense and fine under shear
force [2–5]. The bearing capacity and ductility of UHPFRC beams with fibers may be
significantly increased compared to UHPC beams without fibers [3,6–10]. Brittle shear
failure can be converted to ductile flexure failure thanks to the fibers [11–15]. The shear and
flexural performance of UHPFRC beams may be significantly improved by increasing the
fiber volume fraction [4,6,11,15–18]. The performance of UHPFRC beams is influenced by
different kinds of fibers. Lowering the shear span ratio, which is similar to that of reinforced
concrete beams, can improve the shear capacity of UHPFRC beams [5,12,17,19,20]. Shear
experiments on UHPFRC beams reveal that fiber and stirrup can enhance beam shear
strength, whereas fibers can lower the stirrup ratio [6,8,21,22]. As a result, numerous
researchers have investigated the use of fibers to minimize the minimum stirrup ratio of
UHPFRC beams [2,6,9,23–25]. The shear strength of UHPFRC beams without stirrups rises
as concrete strength and fiber volume fraction increase, and the fibers aid in the shift from
shear tension to shear compression failure mode [18,26–28].

However, there are limited theoretical studies on the strength calculation technique
for UHPFRC beams. In general, the complex tensile stress distribution of UHPFRC in
the tensile zone is equivalent to a rectangular distribution with the constant stress of kf t,
where f t is the tensile strength of UHPFRC and k is a constant that indicates the stress re-
duction coefficient [29]. The existing theoretical models for the flexural strength of UHPFRC
beams proposed by the above scholars are based on the assumption of a flat cross-section
and take into account the tensile stress after cracking of the UHPFRC section. Qi et al. [30]
proposed a method for calculating the shear strength of UHPFRC beams, which considers
the influence of fibers, compressive UHPFRC, and stirrups. Shear tests of T-shaped UH-
PFRC beams confirmed the accuracy and dependability of the method. Ahmad et al. [31]
combined UHPFRC with high-strength steel bars and applied them to beam members and
conducted shear loading tests on ten beam specimens. Based on the test data of the ten
beams, the formula for calculating the shear capacity of UHPFRC beams was fitted.

In recent years, the method based on computer machine learning has been widely used
in the mechanical analysis of civil structures. This method can comprehensively consider
the influence of various factors through computer algorithms and has high prediction
accuracy. Roya et al. [32] collected UHPFRC beam test data from previous literature
and used data-driven machine learning (ML) framework to predict the failure mode and
strength of UHPFRC beams, and the methods included support vector machine (SVM),
artificial neural networks (ANN), k-nearest neighbor (k-NN), and genetic programming
(GP). The prediction accuracy was examined by the collected test data, and the research
results showed that the proposed method has reasonable accuracy. Kim et al. [33] used the
ML methods of CatBoost, eXtreme-gradient boosting, histogram gradient boosting, and
random forest to predict the interfacial bonding strength of FRP–concrete, and the results
indicate that the proposed models have high prediction accuracy. Yaseen et al. [34] used
a new support vector regression algorithm coupled with particle swarm optimization to
establish the method for the shear strength of fiber reinforced concrete beams, and the
comparative analysis results show that this prediction method has reasonable accuracy
and can provide a reference for the shear strength design of fiber reinforced concrete
beams. Mangalathu et al. [35] collected the test data of the existing beam-column joint
specimens and used these data to train the machine learning techniques and established
the prediction model for failure modes and shear strength of beam-column joint members,
and the prediction accuracy of the method was examined by the test data. The research
results show that this prediction method has a good calculation efficiency and reasonable
accuracy. Payam et al. [36] proposed three innovative ML-based models to calculate the
shear strength of reinforced concrete (RC) walls, and the combination of the support vector
regression with meta-heuristic optimization algorithms such as teaching–learning-based
optimization (TLBO), particle swarm optimization (PSO), and Harris Hawks optimization
(HHO) are used for establishing the models. The results indicate that the proposed ML-
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based models have better accuracy than the methods proposed by the design codes and
the researchers. Chen et al. [37] utilized a hybrid intelligence algorithm including the
artificial neural network and particle swarm (ANN-PSO) to propose an ML-based model
to predict the shear strength of squat RC walls. A total of 139 test results of squat walls
are collected and utilized to train and test the hybrid ANN–PSO model. The results show
that the proposed ML-based model has good prediction accuracy of the shear strength
of such RC walls. Keshtegar et al. [38] combined an artificial neural network (ANN)
with adaptive harmony search optimization (AHS) algorithm to establish an ML-based
model for the shear strength of RC walls, and the results indicate that the proposed ANN-
AHS model has excellent prediction accuracy in modeling the shear strength of RC shear
walls. Gondia et al. [39] utilized genetic programming (GP) to develop an elegant shear
strength prediction expression using a dataset of 254 Squat reinforced concrete shear
walls with boundary constraints. The results show that the proposed expression can
better predict the shear strength of RC walls compared to other shear strength prediction
methods in design codes and literature. Wu et al. [40] used a back-propagation (BP) neural
network algorithm to predict the shear strength of discontinuities with different joint wall
compressive strength (DDJCS), and the input parameters include the joint wall strength
combination, normal stress, and joint roughness. The results indicate that the prediction
accuracy of the developed ML-based model is better than the multivariate regression model.
Nguyen et al. [41] utilized an artificial neural network (ANN) to establish an ML-based
model for predicting the shear strength of squat flanged RC walls, and the test data of a
total of squat flanged RC wall specimens were collected to train and test the ANN model.
The results show that the developed ANN model has better prediction accuracy than the
existing equations.

The above studies indicate that the ML-based models have high prediction accuracy
for estimating the shear strength of RC members, while they are currently focused on the
establishment of shear strength models of RC beams and walls, and little related research
has been conducted on UHPFRC beams. Many parameters have a critical influence on the
shear strength of RC members, and each parameter has different importance coefficients for
the shear strength. The input parameters of the above ML-based models adopt the empirical
critical parameters commonly used in theoretical models, such as stirrup strength, stirrup
ratio, cross-section size, etc., while the other critical parameters may be not considered. In
ML-based models, selecting the parameters with high importance as the input parameters
can ensure the accuracy of the model prediction and improve computational efficiency.
Therefore, it is necessary to evaluate the importance coefficient of each parameter to the
shear capacity of RC members, while it is not considered in the previous ML-based models.
The fibers in UHPFRC are distributed randomly in the beam specimens, and the direction
and position of the fibers can affect the performance of the beam, but it cannot consider
the effect of each individual fiber owing to a large number of fibers in the beams. In many
theoretical models, an effective coefficient is used to consider the effect of fibers on average,
and the coefficient is mostly a fixed value, and the empirical value obtained by the test is
mostly used, but there is no uniform value for this value at present. In ML-based models,
through machine learning, the complex mapping relationship between fibers and beam
shear strength can be comprehensively established, and the effect of randomly distributed
independent fibers on beam shear capacity can be accurately equivalent.

The method for shear strength of UHPFRC beams is an essential influencing parameter
for its design, while the research on the shear bearing capacity of UHPFRC beams is
relatively insufficient, so it is necessary to conduct in-depth research on the estimation
for shear capacity to promote the application of UHPFRC in concrete structures. The
existing theoretical methods have many assumptions, simplifications, and considered
parameters, so their prediction accuracy may be not high. The ML-based method can
accurately consider the influence of each parameter on the prediction targets, and it can
address the gaps in the theoretical methods. To this end, this paper collects the test data
of 200 UHPFRC beam specimens, and establishes three prediction models of the shear
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strength utilizing the machine learning (ML) methods, including ANN, SVR, and XGBoost.
The accuracy and applicability of the proposed models are evaluated by comparing them
to the existing theoretical methods.

2. Experimental Database

The shear tests of UHPFRC beam specimens in the previous literature are summarized,
and the corresponding database is established to provide experimental verification for
the subsequent research on the shear capacity of UHPFRC beams in this paper, as well as
test data support for relevant theories and finite element research on UHPFRC beams. At
present, the loading setup for shear tests of UHPFRC beams can be divided into four-point
loading and three-point loading setups (Figure 1a,b), where a in the figure is shear span,
and p is peak shear force of the beam specimens.

The experimental database contains 200 UHPFRC beam specimens failing in shear, as
listed in Table A1 in Appendix A, which summarizes 24 parameters of the beam specimens,
including dimension and reinforcement details. In Table A1, As is the longitudinal reinforce-
ment area, fyw is stirrup strength, Aso is the beam cross-section area, A is the total section
area, λ is shear span ratio, As

′ is the area of compression longitudinal reinforcement, a is the
shear span, Vf is the fiber volume fraction, ρw is the stirrup ratio, tw is web thickness, fy is
longitudinal reinforcement yielding strength, UHPC-fc and ft are, respectively, compressive
and tensile strength of UHPFRC, ρs is the ratio of longitudinal reinforcement, I is the depth
of section moment of inertia, bf is compressive flange width, ho is the effective height of
cross-section, ρs

′ is the ratio of compressive longitudinal reinforcement, h is the height
of the cross-section, s is the stirrup spacing, tf is the thickness of top flange, and tb is the
thickness of the bottom flange.

The purpose of this shear testing was to see how various conditions affected the
shear performance of UHPFRC beams. According to the findings, the effects of the shear
span ratio, longitudinal reinforcement ratio, and stirrup reinforcement ratio on the shear
performance of UHPFRC beams are similar to those of reinforced concrete beams. Fibers in
UHPFRC can ensure the integrity of the beams after the full development of inclined cracks,
and it is conducive to enhancing the ductility of the components. The bridging effect of
fibers at inclined fractures after UHPFRC cracking can produce tension stress, effectively
increasing beam shear performance.

Figure 1. Cont.
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Figure 1. Shear loading tests of beams: (a) four-point loading setup; (b) three-point loading setup.

Figure 2 shows the key parameter distributions of the collected UHPFRC beam speci-
mens. The cross-section forms of these beam specimens include rectangular (123 pieces),
I-shaped (67 pieces), and T-shaped (10 pieces). The shear span ratios of the models range
from 0.79 to 8.46, and most of them range from 1.38 to 3.74. The compressive strength
values of UHPFRC used in the specimens are between 78 and 222 MPa, and most UHPFRC
with a strength between 78 and 96 MPa do not have fibers or have a low volume fraction
of fibers, which has relatively low compressive strength. In some literature, the data on
the tensile strength of UHPFRC material is not given, and its tensile strength is calculated
according to 0.6

√
fc. The fiber volume fractions of UHPFRC used in beam specimens are

between 0 and 5%, and the yield strength of longitudinal bars is between 365 and 1835 MPa.
The collected UHPFRC beam specimens include some illustrations without stirrups. The
stirrup strength of the stirrups is between 284 and 568 MPa, and the stirrup ratio is between
0 and 1.7%. In conclusion, the dimensions of these beam specimens are various, and these
UHPFRC beam specimens have investigated the influence of all critical parameters on the
shear strength, so the research parameters are sufficient. Moreover, the variation range
of the parameters is wide, and the parameter values of different beam specimens have
obvious differences. The above features of the collected data allowing the ML-based model
for the shear strength of UHPFRC beams to be effectively verified.

Figure 2. Cont.
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Figure 2. Parameter distributions of UHPFRC beam specimens.

3. Parameter Evaluation and Selection
3.1. Parameter Evaluation Method

The ML algorithm of random forest (RF) is used to evaluate the importance of the
given parameters. RF combines the ensemble learning theory of Bagging with the random
subspace method and introduces the random sampling of samples and random sampling
of features to achieve a more accurate classification than the single algorithm. So, RF is
composed of Bootstrap resampling, decision tree generation, and random forest formation,
and the classification results are as follows:

h(x) = arg max
y

k

∑
i=1

(Ihi(x, θi) = y) (1)

where h(x) represents the classification results determined by voting of multiple decision
trees, hi is the ith decision tree classification model; x is the vector of characteristic parame-
ters to be identified, θi is the self-help training set for training the ith decision tree, k is the
number of decision trees; I(.) is an indicator function.

Gini coefficient (GC) is commonly utilized to split nodes during the generation of
decision trees, and the parameter importance is obtained by calculating the average Gini
coefficient change of feature fi [42]. The GC can be defined as:

Gini(p) =
M

∑
m=1

pm(1− pm) (2)

where pm is the probability of a sample belonging to class m, and there is a total of M classes.
Analogously, the GC of Database D can be defined as:

Gini(D) =
M

∑
m=1

|Cm|
|D|

(
1− |Cm|

|D|

)
(3)

where Cm is the subset of the samples in class m of Dataset D. On node n, feature fi divides
Dataset D into two parts, D1 and D2, so the changes in the Gini coefficient can be obtained by:

VIMgini
i,n = Gini(D)− |D1|

|D| Gini(D1)−
|D1|
|D| Gini(D2) (4)

So, the importance of fi in kth decision tree can be expressed as:

VIMgini
i,k =

Ni

∑
n=1

VIMgini
i,k (5)
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where Ni is the node number divided by feature fi. Therefore, fi importance can be obtained by

VIMgini
i =

K
∑

k=1
VIMgini

i,k

d
∑

j=1

K
∑

k=1
VIMgini

i,k

(6)

where d is the feature number, and K is the decision tree number in the RF model.

3.2. Results and Discussions

Figure 3 shows the influence importance of various parameters on the shear strength
of UHPFRC beams by the above ML methods. It can be seen that the sectional area of
longitudinal reinforcement has the greatest influence on the shear capacity of the UHPFRC
beam with the importance coefficient of 0.14, and the stirrup strength, the cross-section area,
the shear span ratio, etc., all have significant influence of the shear strength of UHPFRC
beams. According to the existing shear tests on the UHPFRC beams, these parameters
have a significant impact on the shear capacity, indicating that the parameter evaluation is
reasonable. The sum of the importance coefficients of the first 12 parameters has reached
0.96. To simplify the calculation and maintain a certain calculation accuracy, the first
10 parameters are selected as input parameters.

Figure 3. The influence importance of various parameters on the shear strength of UHPFRC beams.

4. ML Methods

Three commonly used ML algorithms were used to build the prediction models:
ANN, SVR, and XGBoost. Based on statistical data, ML algorithms combine data and
mathematical algorithms to find the relationships between the parameters and targets.
After selecting appropriate parameters, the model usually achieves high accuracy, that is,
ML methods are highly sensitive to parameter selection.

4.1. Prediction Steps

According to the workflow shown in Figure 4, the prediction models of shear capacity
of UHPFRC beam based on ANN, SVR, and XGBoost are respectively established. The
detailed prediction steps are as follows:
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Figure 4. Flowchart of developing the ML model.

Step 1. Dividing the dataset. The dataset is divided into a training dataset and a testing
dataset in the ratio of 8:2.

Step 2. Model training. ANN, SVR, and XGBoost are respectively used to establish
the prediction models based on the training database. Cross-validation and grid search
strategies were used to optimize the hyperparameters, and MSE (mean square error) was
used as the loss function. Finally, the prediction model was obtained. During the training
process, dropout and L2 regularization were used to avoid the overfitting of ANN models.
Dropout randomly makes some neurons invalid at a probability of p during each epoch of
training, and all neurons will be used for final models. Of course, to maintain the scale of
predicted value, the weight of neurons in the final models will multiply p. In this study,
p = 0.2. L2 regularization used a penalty coefficient to avoid the network becoming too
complex. SVR used its regularized risk function to help it avoid overfitting. In XGBoost
models, max depth and gamma were used to avoid overfitting. By and large, the smaller
the maximum depth, the larger the gamma, and the more difficult the models are to overfit.
Moreover, overfitting and underfitting can be prevented by controlling the MSE of the
training set and the testing set.

Step 3. Prediction accuracy evaluation. The model obtained in Step 2 is evaluated
by the testing dataset, and new samples are used for the prediction evaluation, which is
verified by the fit goodness of R2. R2 represents the degree of fitting of regression results to
measured values, and the closer it is to 1, the better fitting degree of regression results. The
calculation formula is as follows:

R2 = 1−

n
∑

i=1
(yi − pi)

2

n
∑

i=1
(yi − ym)

2
(7)

where yi and pi are, respectively, the measured and predicted results, and ym is the mean
value of measured results.

Meanwhile, the ratios of predicted to measured values are used to evaluate the accu-
racy of the prediction model, that is, the coefficient of variation (CoV) of the ratio is used
for the evaluation. CoV is used for evaluating the reliability of the ML-based models.

CoV =

[
n
∑

i=1

(
pi
yi
− σ

)2
/

n− 1

]0.5

σ
(8)

where σ is the mean value of pi/yi.
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4.2. ML Methods
4.2.1. Artificial Neural Network (ANN)

ANN has three parts: the input layer, hidden layer, and output layer. Neurons in
each layer can receive messages from all neurons in the previous layers, and generate
signal output to the next layer, the signal from the input layer to the output layer does
one-way propagation. For the training data in the input, each neuron in the first-layer
network receives the input training data equally, and the training data received by each
neuron should take into account the connection weight w and bias b between the input data.
After processing by the activation function, the input value of this layer is generated and
transferred to the next layer. After that, the output value of the neural network is finally
obtained. In this way, a neural network resembles a composite function nested through
layers of simple functions. In the training of the neural network model, the loss function to
be optimized should be determined first, and in most cases, the mean square error function
should be used as the loss function. The classification problem can also adopt the cross
entropy function, where the loss function is assumed to be J, and then the model is trained
by a gradient descent algorithm. As for the gradient derivative, it is easy to obtain the
gradient of the jth node at the Nth layer to the last layer of the neural network, and it can
be expressed as:

δN
j =

∂J
∂wN

j
=

∂J
∂yN

j
·

∂yN
j

∂uN
j
·

∂uN
j

∂wN
j

(9)

where yN
j is the output value of the corresponding node. When the mean square error

function is chosen, J can be expressed as:

J =
1
2

∥∥∥yN
j − yN

j

∥∥∥2
(10)

uN
j is the input value of the function activated for the node:

uN
j = wN

j · xN
j + bN

j (11)

where wN
j and bN

j are, respectively, the weight and bias of the corresponding node, xN
j is

the input value of the node. When the node adopts the Sigmoid function as the activation
function, the gradient can be obtained as follows:

δN
j = −yN

j (1− yN
j )(y

N
j − yN

j )xN
j (12)

After the gradient is obtained, the weight of this layer is updated according to the set
step size, and the gradient of N − 1 layer can be further obtained as:

δN−1
j =

∂J
∂wN−1

j

= ∑
k

∂J
∂uN

j
·

∂uN
j

∂xN
j
·

∂xN
j

∂wN−1
j

(13)

It can be seen that the gradient of N − 1 layer is related to all nodes connected to N
layer. Equation (13) can be regarded as the multiplication of three parts. The first part is
the calculation content of the N layer, which is given in Equation (12). The middle reflects
the content of the connection between the two layers, and the result of the derivative is the
weight wN

j . The last part is the derivation calculation of this layer, which can be referred to
Equation (9). Repeat the above process until the weight of all layers is updated to complete
a step of training, the above process is the back propagation algorithm.

We can refer to Equation (9) and repeat the above process until the weight of all
layers is updated to complete a step of training, the above process is the back propagation
algorithm.



Mathematics 2022, 10, 2918 10 of 26

4.2.2. Support Vector Regression (SVR)

SVR adopts statistical learning theory with the principle of structural risk minimiza-
tion, and the sample generalization performance is very strong, avoiding the high depen-
dence on sample data. The training set is given as:

T = {(x1, y1 ), (x2, y2), . . . , (xn, yn)} (14)

The regression function is assumed as:

y = f (x) = wT(x) + b; i = 1, 2, . . . , n (15)

To improve the generalization ability, it is necessary to enlarge the ε pipeline. This
minimizes the possibility of the unknown point going beyond the region. However, when
the training set is nonlinear, the generalization performance of the regression function
obtained is very poor even after the optimization is completed. Therefore, the kernel
function K(xi·xj) is introduced to transform the low-dimensional nonlinear problem into a
high-dimensional linear problem, and finally, the regression problem is transformed into
the following optimization problem:

min
n

∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi, xj) + ε
n

∑
i=1

(αi + α∗i )−
n

∑
i=1

(αi − α∗i ) (16)

where αi and α∗i are diagonal matrices for the undetermined coefficients. So we can get the
optimal nonlinear regression function:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi · xj) + b (17)

The radial basis function is selected as the kernel function [43], which is expressed as:

K(xi, xj) = exp
(
−γ
∥∥xi − xj

∥∥2
)

(18)

4.2.3. eXtreme-Gradient Boosting (XGBoost)

XGBoost is a promotion algorithm proposed by Chen et al. [44] of the University of
Washington. The lifting algorithm is to train a large number of weak learners through
certain strategies, for example, the shallow decision tree model, and then combine the
prediction results of these weak classifiers through certain methods, and finally achieve the
algorithm of greatly improving the prediction effect. XGBoost uses a shallow regression
tree as the weak classifier. For the first shallow regression tree model obtained by training,
assuming that it is represented as F0(t) and t represents the instance vector in the feature
space, let the classifier obtained in the first step be y;0′. On this basis, train the 1, 2, 3, etc.
M shallow regression tree model Fm(t). XGBoost first calculates and obtains the first and
second derivatives hi and gi of the loss function of the error between the classifier and the
predicted value obtained in the previous step, namely m − 1, then the objective function of
Fm(t) can be obtained according to the second-order expansion of Taylor function:

obj(m) =
N

∑
i=1

[
giFm(ti) +

1
2

hiF2
m(ti)

]
+ Ω(Fm) (19)

Ω(Fm) is the regularization term, which can prevent the algorithm from blindly in-
creasing the model complexity to improve the accuracy, thus leading to overfitting. Ω(Fm)
can be expressed as:

Ω(Fm) = γT + 1/2λ||w||2 (20)

where γ and λ are both penalty coefficients, T is the number of regression leaf nodes, and
‖w‖2 expresses the influence of the weight of regression leaf nodes on model complexity. It
can be seen from Equation (17) that the fitting object in the iteration of XGBoost objective
function is the residual between the predicted value and the observed value of the sample.
The training process is to make obj(m) reach the minimum value, and the regression tree
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node splitting can adopt the mean square error to select the splitting feature. Finally, a new
shallow tree model Fm(t) can be obtained and the classifier is updated as:

y′m(t) = y′m−1(t) + Fm(t) (21)

Figure 5 represents the XGBoost regression mechanism.

Figure 5. XGBoost regression mechanism.

4.3. Parameter Settings

(1) The number of hidden layers and neurons n was optimized by using the grid search
method and cross-validation strategy. Figure 6 shows the variation in the goodness
of fit with the number of hidden layers and neurons. As mentioned in Alavi et al.’s
work [45], different metrics have different preferences. In this study, we used R2 to
perform a grid search and find the optimal values of hyperparameters since tradi-
tional models usually R2 use to depict the performance. Moreover, we used mean
absolute error as the index to explore the performance of parameter tuning. Results
showed that the hyperparameters obtained by using R2 also made models have lower
mean absolute errors, i.e., in this study, the selection of metrics does not cause a big
difference. Finally, one hidden layer containing 20 units was selected as the final
ANN model structure. The activation function dropout was 0.2, and the regularized
parameter L2 was 0.001.

(2) SVR uses the kernel function to nonlinearly map low-dimensional data to high-
dimensional feature space and then obtains regression function in high-dimensional
feature space. The same grid search method and cross-validation strategy were used
to optimize the hyperparameters in SVR: penalty coefficient C and kernel function
parameter γ. Finally, the hyperparameters C = 3500 and γ = 0.8 were selected.

(3) In XGBoost, at each boosting iteration, the 1st and 2nd order gradient for the objective
function “squared error” was calculated for each training case. The model was built
using XGBoost′s scikit-learn compatibility. The best results were achieved using
tree-based learners in XGBoost, and the parameters are listed in Table 1.
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Figure 6. Goodness of fit with different numbers of hidden layers and neurons.

Table 1. Parameters of XGBoost.

Parameters Values

Number of estimators 30

Learning rate 0.2

Max depth 3

Min child weight 2

Gamma 2000

Subsample 0.3

Colsample bytree 0.4

Scale pos weight 0.7

5. Comparative Analysis
5.1. Existing Models for Calculating Shear Strength of Fiber Reinforced Concrete Beams

(1) Qi et al. model for UHPFRC beams [30]

Qi et al. [30] suggested a calculating model for UHPFRC beam shear strength. The
shear strength of UHPFRC beams is made up of three aspects: the shear capacity
(Vc) provided by the shear-compression zone of the cross-section, the shear capacity
supplied by the stirrups (Vs), the shear strength (Vfi) provided by the fibers, and the
expression of the shear strength is shown as Equations (29) and (30). Vs is calculated
using the truss model. The angle of the inclined crack is assumed to be 45◦, and the
shear strength provided by the fiber is calculated using the Mesoscale Fiber-Matrix
Discrete (MFMD) Model.

Vu1 = Vc + Vs + Vf i (22)
Vc =

2
3 bc
√

ft( ft + 0.425 fc)

Vs = ρv fvybd cot(ϕ)

Vf i =
1.28Vf bdl f τb cot ϕ

πd f

(23)

where c is the height of the compression zone of the cross-section, τb is the bond
strength between a single fiber and the matrix.
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(2) Ahmad et al. model for UHPFRC beams [31]

Based on the shear test data of UHPFRC beams, Ahmad et al. [31] fitted the formula
of shear strength, which is expressed as Equation (31). Vu2 =

[
0.35

√
fc + 132ρl

d
a + 14F5.8

1

(
d
a

)1.1
]
· b · h +

Asv · fvy ·d
s

F1 = (l f /d f ) ·Vf · α
(24)

where α is a bond factor (for straight steel fibers = 0.5), a is the shear span, ρ is the
ratio of longitudinal reinforcement, and h is the overall depth of the beam.

(3) The method for shear strength of fiber reinforced concrete (FRC) beams in China
Association for Engineering Construction Standardization (CECS) 38:2004 [46]

This formula (Equation (32)) is suitable for calculating the shear strength of FRC
beams. In this paper, the above test data is used to explore its applicability to the
shear capacity of UHPFRC beams.

Vu3 = 0.7 ftbd(1 + βvλ f ) + fvy
Asv

s
d (25)

where βv is the fiber shape coefficient, the straight shape is 0.7, the irregular shape is

0.5, and λf is the fiber characteristic value, λ f =
Vf l f
d f

.

(4) Sharma et al. [47] model for shear strength of FRC beams

Sharma et al. [47] developed an equation for shear strength, which is illustrated in
Equation (33). The aforesaid test data is utilized in this research to investigate its
application to the shear strength of UHPFRC beams.

Vu4 = Vc + Vf =

[
2
3

f ′t

(
d
a

)0.25
]

bd, f ′t = 0.79
√

fc (26)

5.2. Comparison and Analysis

The values of shear strength of each UHPFRC beam specimen are derived using the
above ML models and compared to the corresponding experimental data, as shown in
Figure 7, to examine the correctness and reliability of the aforementioned methodologies. It
compares the experimental and calculated values obtained by the models proposed in this
paper. They appear to be in accord. The models of ANN, SVR, and XGBoost have close
goodness of fit, and their R2 are, respectively, 0.8825, 0.9016, and 0.8839, and the mean value
is 0.8893. Figure 7d compares the experimental and calculated shear strength obtained by
the model proposed by Qi et al. [30], and the R2 is 0.6427, which is much smaller than those
obtained by the ML-based models. The model may underestimate the shear strength of the
UHPFRC beams. In the experimental and estimated shear strengths of UHPFRC specimens
obtained by Ahmad et al. [31], the R2 is 0.7026. The actual and predicted shear strength
of UHPFRC specimens produced using the shear strength equations for FRC beams are
shown in Figure 7f,g, and it can be observed that the discreteness is rather substantial. The
goodness of fit of the prediction results obtained by the ML models are much larger than
those of the existing models for calculating the shear strength of UHPFRC beams, and the
ML models can better predict the shear strength of UHPFRC beams.

By analyzing and comparing the ratios (Vpre/Vexp) of the calculated values of shear
capacity (Vpre) to the experimental values (Vexp) obtained by the above methods, the
prediction accuracy and reliability of the above models are further analyzed and evaluated.
The Vpre/Vexp ratios of each model are shown in Figure 8. The CoV is a parameter used
to evaluate the calculation reliability of the model. The lower the value, the higher the
reliability of the model. This value is very important for the engineering application of
theoretical models. The average values of the ratio (Vpre/Vexp) obtained by the above three
ML models (ANN, SVR, XGBoost) in this paper are, respectively, 1.08, 1.02, and 1.10, and
the coefficients of variation are, respectively, 0.28, 0.21, and 0.28, so the SVR prediction
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model shows better accuracy and reliability. Figure 8c shows the distribution of the ratio
(Vpre/Vexp) obtained by the model proposed by Qi et al. [30]. The average value is 0.72 and
the coefficient of variation is 0.36. This model underestimates the shear strength of UHPFRC
beams and shows reasonable reliability. Figure 8e presents the distribution of the ratios
(Vpre/Vexp) obtained by the method proposed by Ahmad et al. [31]. The average value is
1.10 and the coefficient of variation is 0.41. The fitted calculation formula is fairly accurate,
and the accuracy and reliability may be enhanced further by increasing the amount of fitted
data. Figure 8f,g shows the distribution diagrams of the ratios (Vpre/Vexp) obtained by the
methods of the shear strength of FRC beams, and it can be seen that the methods have a lot
of discreteness and need to be improved for estimating shear strength of UHPFRC beams.
The CoV obtained by the SVR prediction model is much smaller than those obtained by the
exciting theoretical models, and the average value of the ratios (Vpre/Vexp) obtained by the
SVR prediction model is also closer to 1, so the SVR prediction model has better prediction
accuracy and reliability.

Figure 7. Cont.



Mathematics 2022, 10, 2918 15 of 26

Figure 7. Comparison between predicted and experimental values of shear strength. (a) ANN; (b)
SVR; (c) XGBoost; (d) Qi et al.; (e) Ahmad et al.; (f) CECS 38:2004; (g) Sharma et al.
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The R2, maximum, minimum, mean, and coefficients of variation of the ratios
(Vpre/Vexp) obtained by the above models are all summarized in Table 2.

Table 2. Accuracy evaluation details of the above prediction methods.

Methods R2
Vpre/Vexp

Max Min Mean CoV

ANN 0.8825 1.91 0.64 1.08 0.28

SVR 0.9016 1.74 0.62 1.02 0.21

XGBBOOST 0.8839 1.91 0.63 1.1 0.28

Qi et al. 0.6427 2 0.27 0.72 0.36

Ahmad et al. 0.7026 2.05 0.25 1.1 0.41

CECS 38:2004 0.7149 1.95 0.37 1.04 0.49

Sharma et al. 0.5618 3 0.21 1.35 0.54

6. Conclusions

In this study, ML-based models (ANN, SVR, and XGBoost) for the shear strength of
UHPFRC beams are developed and their accuracy is also compared with existing analytical
models. The correctness of the suggested model is studied and assessed using primary
shear test data of UHPFRC beam specimens. The following are the results:

(1) The ML algorithm of random forest (RF) is used to evaluate the importance of the
given parameters for the shear strength of UHPFRC beams, and the studies show
that the area of longitudinal reinforcement has the greatest influence on the shear
capacity of UHPFRC beam, and its importance coefficient is 0.14. To simplify the
calculation and maintain certain calculation accuracy, the first 12 parameters of the



Mathematics 2022, 10, 2918 17 of 26

area of longitudinal reinforcement, the stirrup strength, the cross-section area, the
shear span ratio, fiber volume fraction, etc., are selected as input parameters.

(2) The suggested approach is evaluated for accuracy and reliability using a shear test
database, and it is also compared to existing methods for shear strength of UHPFRC
and FRC beams. The models of ANN, SVR, and XGBoost have close goodness of fit,
and their R2 are, respectively, 0.8825, 0.9016, and 0.8839, the mean value is 0.8893,
and it is much larger than those obtained by the existing models for calculating
shear strength of UHPFRC beams. The computed to experimental shear strength
ratios generated by the suggested ML models (ANN, SVR, XGBoost), respectively,
have the average values of 1.08, 1.02, and 1.10, and the coefficients of variation are,
respectively, 0.28, 0.21, and 0.28, so the SVR prediction model has better accuracy and
reliability. The accuracy and reliability of ML-based models are much better than
those of existing models for calculating the shear strength of UHPFRC beams, and the
existing analytical methods for determining the shear strength of FRC beams are not
applicable for UHPFRC beams.
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AHS Harmony search optimization
BP Back-propagation
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Mathematics 2022, 10, 2918 18 of 26

Appendix A

Table A1. Test data of UHPFRC beam specimens.

Ref. C lo ho λ l hw tw bf′ tf′ bf tf Aw Awo I fc ft Vf fy As $s fy′ As′ $s′ fyw dsw s $sw Fv

[2]

I 760 305 2.5 2000 380 65 270 45 230 105 51,250 34,000 887,612,083 203 8.5 2.5 551 2061 6.06 551 314 0.92 0 0 0 0 455

I 760 305 2.5 2000 380 65 270 45 230 105 51,250 34,000 887,612,083 205 8.6 2 551 2061 6.06 551 314 0.92 0 0 0 0 448

I 760 305 2.5 2000 380 65 270 45 230 105 51,250 34,000 887,612,083 187 8.2 0 551 2061 6.06 551 314 0.92 0 0 0 0 181

I 760 305 2.5 2000 380 65 270 45 230 105 51,250 34,000 887,612,083 157 7.5 4.7 551 2061 6.06 551 314 0.92 0 0 0 0 249

[3]

I 1100 320 3.4 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 185 8.2 2 900 2198 5.1 550 251 0.79 550 10 125 0.63 270

I 1100 320 3.4 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 184 8.1 2 900 2198 5.1 550 251 0.79 550 10 125 0.63 289

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 154 7.5 0 900 2198 5.1 550 251 0.79 550 10 125 0.63 169

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 173 7.9 0 900 2198 5.1 550 251 0.79 550 10 125 0.63 185

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 170 7.8 2 900 2198 5.1 550 251 0.79 550 10 200 0.39 222

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 163 7.7 2 900 2198 5.1 550 251 0.79 550 10 200 0.39 258

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 169 7.8 1 900 2198 5.1 550 251 0.79 550 10 200 0.39 223

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 168 7.8 0 900 2198 5.1 550 251 0.79 550 10 200 0.39 150

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 170 7.8 2 900 2198 5.1 550 251 0.79 550 10 300 0.26 223

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 166 7.7 1 900 2198 5.1 550 251 0.79 550 10 300 0.26 199

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 175 7.9 0 900 2198 5.1 550 251 0.79 550 10 300 0.26 127

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 160 7.6 2 900 2198 5.1 550 251 0.79 0 0 0 0 126

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 188 8.2 2 900 2198 5.1 550 251 0.79 0 0 0 0 160

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 178 8 2 900 2198 5.1 550 251 0.79 0 0 0 0 179

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 162 7.6 1 900 2198 5.1 550 251 0.79 0 0 0 0 133

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 175 7.9 1 900 2198 5.1 550 251 0.79 0 0 0 0 99.5

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 187 8.2 1 900 2198 5.1 550 251 0.79 0 0 0 0 154

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 161 7.6 0 900 2198 5.1 550 251 0.79 0 0 0 0 41

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 170 7.8 0 900 2198 5.1 550 251 0.79 0 0 0 0 31.5

I 1000 320 3.1 3000 350 60 200 60 200 60 37,800 31,800 572,635,000 167 7.7 0 900 2198 5.1 550 251 0.79 0 0 0 0 25.5

[4]
R 1397 235 5.9 3658 270 180 48,600 42,300 295,245,000 167 15 436 398 0.94 0 0 0 0 0 0 0 63.3

R 610 235 2.6 3658 270 180 48,600 42,300 295,245,000 167 15 436 531 1.26 0 0 0 0 0 0 0 88.6
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Table A1. Cont.

Ref. C lo ho λ l hw tw bf′ tf′ bf tf Aw Awo I fc ft Vf fy As $s fy′ As′ $s′ fyw dsw s $sw Fv

[5]

I 504 180 2.8 200 20 200 20 110 40 11,200 9000 65,853,333 150 10 3 500 785 8.72 0 0 0 500 0.94 115

I 504 180 2.8 200 20 200 20 110 40 11,200 9000 65,853,333 150 10 3 500 785 8.72 0 0 0 0 0 0 0 92

I 1120 320 3.5 350 58 200 58 200 58 36,772 30,772 562,963,969 166 7.7 2 900 2200 7.15 0 0 0 550 1.35 379

I 1120 320 3.5 350 58 200 58 200 58 36,772 30,772 562,963,969 170 7.8 2 900 2200 7.15 0 0 0 550 0.9 352

I 1120 320 3.5 350 58 200 58 200 58 36,772 30,772 562,963,969 170 8 2 900 2200 7.15 0 0 0 0 0 0 0 244

I 1120 320 3.5 350 58 200 58 200 58 36,772 30,772 562,963,969 166 7.7 1 900 2200 7.15 0 0 0 550 0.9 314

I 1120 320 3.5 350 58 200 58 200 58 36,772 30,772 562,963,969 174 7.9 1 900 2200 7.15 0 0 0 0 0 0 0 204

R 436 218 2 300 150 45,000 32,700 337,500,000 156 7.5 2 474 2000 6.12 0 0 0 0 0 0 0 375

R 327 218 1.5 300 150 45,000 32,700 337,500,000 152 7.4 2 474 2000 6.12 0 0 0 0 0 0 0 425

R 660 220 3 290 150 43,500 33,000 304,862,500 167 12 1.5 618 2640 8 0 0 0 0 0 0 0 476

R 660 220 3 290 150 43,500 33,000 304,862,500 167 12 1.5 618 2640 8 0 0 0 538 0.6 538

R 660 220 3 290 150 43,500 33,000 304,862,500 167 12 1.5 618 2640 8 0 0 0 538 0.9 552

[6]

I 900 360 2.5 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 0 0 0 0 121

I 828 360 2.3 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 0 0 0 0 160

I 900 360 2.5 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 0 0 0 0 70

I 828 360 2.3 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 0 0 0 0 129

I 828 360 2.3 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 0 0 0 0 119

I 900 360 2.5 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 0 0 0 0 189

I 828 360 2.3 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 0 0 0 0 80

I 900 360 2.5 4000 400 60 140 60 140 80 35,200 29,600 625,853,333 138 12 1 365 380 1.28 0 0 0 502 8 100 1.67 154

[7]

R 300 130 2 900 150 100 15,000 13,000 28,125,000 127 6.8 0 550 157 1.2 0 0 0 0 0 0 0 18.2

R 300 130 2 900 150 100 15,000 13,000 28,125,000 127 6.8 0 550 226 1.7 0 0 0 0 0 0 0 22.1

R 300 130 2 900 150 100 15,000 13,000 28,125,000 130 6.8 0.5 550 157 1.2 0 0 0 0 0 0 0 21

R 300 130 2 900 150 100 15,000 13,000 28,125,000 130 6.8 0.5 550 226 1.7 0 0 0 0 0 0 0 27

R 300 130 2 900 150 100 15,000 13,000 28,125,000 135 7 0.5 550 157 1.2 0 0 0 0 0 0 0 26.9

R 300 130 2 900 150 100 15,000 13,000 28,125,000 135 7 0.5 550 226 1.7 0 0 0 0 0 0 0 30.2

[8]

R 277 350 0.8 750 400 80 32,000 28,000 426,666,667 173 7.9 1.5 491 1017 3.63 408 314 1.12 400 6 150 0.47 445

R 277 350 0.8 750 400 80 32,000 28,000 426,666,667 173 7.9 1.5 491 1017 3.63 408 314 1.12 400 8 150 0.84 530

R 329 350 0.9 750 400 80 32,000 28,000 426,666,667 173 7.9 1.5 491 1017 3.63 408 314 1.12 400 6 150 0.47 415

R 329 350 0.9 750 400 80 32,000 28,000 426,666,667 173 7.9 1.5 491 1017 3.63 408 314 1.12 400 8 150 0.84 455

R 329 350 0.9 750 400 80 32,000 28,000 426,666,667 173 7.9 1.5 491 1017 3.63 408 314 1.12 400 8 75 1.68 505
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Table A1. Cont.

Ref. C lo ho λ l hw tw bf′ tf′ bf tf Aw Awo I fc ft Vf fy As $s fy′ As′ $s′ fyw dsw s $sw Fv

[9]

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 78 5.5 0 520 401 3.4 0 0 0 0 0 0 0 35.5

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 94 9.2 0.5 520 401 3.4 0 0 0 0 0 0 0 66.5

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 98 11 1 520 401 3.4 0 0 0 0 0 0 0 70

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 103 15 1.5 520 401 3.4 0 0 0 0 0 0 0 77.5

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 110 15 2 520 401 3.4 0 0 0 0 0 0 0 82.5

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 110 15 2 589 559 4.9 0 0 0 0 0 0 0 108

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 110 15 2 609 628 5.9 0 0 0 0 0 0 0 113

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 101 14 2 520 401 3.4 0 0 0 0 0 0 0 77.5

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 93 13 2 520 401 3.4 0 0 0 0 0 0 0 75

R 280 112 2.5 1200 140 100 14,000 11,200 22,866,667 110 15 2 520 401 3.4 0 0 0 0 0 0 0 125

R 336 112 3 1200 140 100 14,000 11,200 22,866,667 110 15 2 520 401 3.4 0 0 0 0 0 0 0 97.5

R 280 112 2.5 1200 140 100 14,000 11,200 22,866,667 98 11 1 520 401 3.4 0 0 0 0 0 0 0 100

R 504 112 4.5 1200 140 100 14,000 11,200 22,866,667 98 11 1 520 401 3.4 0 0 0 0 0 0 0 55

R 392 112 3.5 1200 140 100 14,000 11,200 22,866,667 125 17 2 520 401 3.4 0 0 0 0 0 0 0 94

[10]

I 2000 600 3.3 4000 650 50 400 100 250 100 87,500 75,000 5,349,479,167 161 19 2.5 1750 1716 2.29 0 0 0 0 0 0 0 430

I 2000 600 3.3 4000 650 50 400 100 250 100 87,500 75,000 5,349,479,167 160 21 2.5 1750 1716 2.29 0 0 0 0 0 0 0 497

I 2000 600 3.3 4000 650 50 400 100 250 100 87,500 75,000 5,349,479,167 149 22 2.5 1750 1716 2.29 0 0 0 0 0 0 0 428

I 2000 600 3.3 4000 650 50 400 100 250 100 87,500 75,000 5,349,479,167 164 18 1.3 1750 1716 2.29 0 0 0 0 0 0 0 337

I 2000 600 3.3 4000 650 50 400 100 250 100 87,500 75,000 5,349,479,167 171 22 2.5 1750 1716 2.29 0 0 0 0 0 0 0 440

I 2000 600 3.3 4000 650 50 400 100 250 100 87,500 75,000 5,349,479,167 157 18 2.5 1750 1716 2.29 0 0 0 0 0 0 0 330

I 2000 600 3.3 4000 650 50 400 100 250 100 87,500 75,000 5,349,479,167 169 25 2.5 1750 1716 2.29 0 0 0 0 0 0 0 400

[11]

I 1000 230 4.3 2300 250 40 150 40 150 40 18,800 15,800 150,276,667 148 7.3 0 471 157 0.8 0 0 0 0 0 100 0 15.8

I 1000 230 4.3 2300 250 40 150 40 150 40 18,800 15,800 150,276,667 163 7.7 1 472 157 0.8 0 0 0 0 0 100 0 26.4

I 1000 230 4.3 2300 250 40 150 40 150 40 18,800 15,800 150,276,667 163 7.7 1 472 226 1.2 0 0 0 0 0 100 0 46.9

I 1000 230 4.3 2300 250 40 150 40 150 40 18,800 15,800 150,276,667 163 7.7 1 468 308 1.7 0 0 0 0 0 100 0 39.4

I 1000 230 4.3 2300 250 40 150 40 150 40 18,800 15,800 150,276,667 163 7.7 1 467 402 2.2 0 0 0 0 0 100 0 55.3

[12] R 750 380 2 2300 400 200 80,000 76,000 1,066,666,667 107 9.9 0.5 475 760 1 0 0 0 0 0 0 0 147
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[13]

R 952 280 3.4 350 200 70,000 56,000 714,583,333 198 12 0 445 2453 4.38 0 0 0 0 0 0 0 120

R 952 280 3.4 350 200 70,000 56,000 714,583,333 198 12 0 445 2453 4.38 0 0 0 422 9.5 150 0.47 258

R 952 280 3.4 350 200 70,000 56,000 714,583,333 117 7.8 2 445 2453 4.38 0 0 0 0 0 0 0 259

R 560 280 2 350 200 70,000 56,000 714,583,333 198 12 0 445 2453 4.38 0 0 0 0 0 0 0 236

R 560 280 2 350 200 70,000 56,000 714,583,333 217 15 2 445 2453 4.38 0 0 0 0 0 0 0 568

R 560 280 2 350 200 70,000 56,000 714,583,333 117 7.8 2 445 2453 4.38 0 0 0 0 0 0 0 493

[14]

I 1588 397 4 460 50 230 70 220 120 56,000 42,140 1,495,429,167 148 20 2 450 2280 5.41 0 0 0 0 0 0 0 130

I 1588 397 4 460 50 230 70 220 120 56,000 42,140 1,495,429,167 144 14 1 450 3040 7.21 0 0 0 0 0 0 0 120

I 1588 397 4 460 50 230 70 220 120 56,000 42,140 1,495,429,167 146 20 2 450 3040 7.21 0 0 0 0 0 0 0 120

I 1588 397 4 460 50 230 70 220 120 56,000 42,140 1,495,429,167 152 25 3 450 3040 7.21 0 0 0 0 0 0 0 165

I 1890 315 6 380 50 170 60 165 110 38,850 28,125 651,852,500 147 20 2 450 1700 6.05 0 0 0 0 0 0 0 80

I 2520 315 8 380 50 170 60 165 110 38,850 28,125 651,852,500 149 21 2 450 1700 6.05 0 0 0 0 0 0 0 70

I 1260 315 4 380 50 170 60 165 110 38,850 28,125 651,852,500 146 20 2 450 1963 6.98 0 0 0 0 0 0 0 110

I 1890 315 6 380 50 170 60 165 110 38,850 28,125 651,852,500 147 20 2 450 1963 6.98 0 0 0 0 0 0 0 90

[15] R 660 220 3 1320 290 150 43,500 33,000 304,862,500 167 12 1.5 618 2641 0.78 0 0 0 0 0 0 0 229

[16]

R 1600 640 2.5 3200 700 50 500 100 500 110 129500 99,500 9,873,704,167 175 10 1 1600 2176 2.19 0 0 0 0 0 0 0 244

R 1600 640 2.5 3200 700 50 500 100 500 110 129,500 99,500 9,873,704,167 181 9.4 1 1600 2176 2.19 0 0 0 0 0 0 0 257

R 1600 640 2.5 3200 700 50 500 100 500 110 129,500 99,500 9,873,704,167 188 14 1.5 1600 2176 2.19 0 0 0 0 0 0 0 264

R 1600 640 2.5 3200 700 50 500 100 500 110 129,500 99,500 9,873,704,167 184 14 1.5 1600 2176 2.19 0 0 0 0 0 0 0 295

R 1600 640 2.5 3200 700 50 500 100 500 110 129,500 99,500 9,873,704,167 186 17 2 1600 2176 2.19 0 0 0 0 0 0 0 356

R 1600 640 2.5 3200 700 50 500 100 500 110 129,500 99,500 9,873,704,167 190 17 2 1600 2176 2.19 0 0 0 0 0 0 0 359

R 2200 640 3.4 4400 700 50 500 100 500 110 129,500 99,500 9,873,704,167 169 10 1 1600 2176 2.19 0 0 0 0 0 0 0 140

R 2200 640 3.4 4400 700 50 500 100 500 110 129,500 99,500 9,873,704,167 167 9.2 1 1600 2176 2.19 0 0 0 0 0 0 0 154

R 2200 640 3.4 4400 700 50 500 100 500 110 129,500 99,500 9,873,704,167 193 14 1.5 1600 2176 2.19 0 0 0 0 0 0 0 202

R 2200 640 3.4 4400 700 50 500 100 500 110 129,500 99,500 9,873,704,167 189 14 1.5 1600 2176 2.19 0 0 0 0 0 0 0 187

R 2200 640 3.4 4400 700 50 500 100 500 110 129,500 99,500 9,873,704,167 189 17 2 1600 2176 2.19 0 0 0 0 0 0 0 219

R 2200 640 3.4 4400 700 50 500 100 500 110 129,500 99,500 9,873,704,167 182 17 2 1600 2176 2.19 0 0 0 0 0 0 0 239

[17]

I 700 230 3 2300 250 50 150 40 150 40 20,500 17,500 154,370,833 121 10 0 470 402 2.3 0 0 0 0 0 0 0 33.4

I 700 230 3 2300 250 50 150 40 150 40 20,500 17,500 154,370,833 143 18 2 470 157 0.9 0 0 0 0 0 0 0 36.8

I 700 230 3 2300 250 50 150 40 150 40 20,500 17,500 154,370,833 143 18 2 470 226 1.29 0 0 0 0 0 0 0 49.9

I 700 230 3 2300 250 50 150 40 150 40 20,500 17,500 154,370,833 143 18 2 470 308 1.76 0 0 0 0 0 0 0 62.7

I 700 230 3 2300 250 50 150 40 150 40 20,500 17,500 154,370,833 143 18 2 470 402 2.3 0 0 0 0 0 0 0 60.1
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[18]
R 279 223 1.3 1400 240 50 120 90 120 90 24,600 22,560 136,980,000 136 21 1.5 512 308 1.37 512 155 0.69 0 0 0 0 100

R 279 223 1.3 1400 240 50 120 90 120 90 24,600 22,560 136,980,000 138 24 1.5 512 308 1.37 512 155 0.69 0 0 0 0 80

[19]

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 119 2.5 0 474 3215 7.5 490 760 1.77 0 0 0 0 245

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 115 3.2 0.8 474 3215 7.49 490 760 1.77 0 0 0 0 288

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 124 6.3 1.5 474 3215 7.49 490 760 1.77 0 0 0 0 454

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 112 2.1 0.8 474 3215 7.49 490 760 1.77 0 0 0 0 296

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 105 4.3 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 334

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 126 2.3 0.8 474 3215 7.49 490 760 1.77 0 0 0 0 347

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 107 4.9 1.5 474 3215 7.49 490 760 1.77 0 0 0 0 377

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 124 5.6 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 466

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 123 5.1 1.5 474 3215 7.49 490 760 1.77 0 0 0 0 474

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 119 7 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 547

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 114 6 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 500

R 390 260 1.5 1350 350 165 57,750 42,900 589,531,250 98 4.4 2 474 3215 7.49 490 760 1.77 0 0 0 0 419

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 95 2.6 0 474 3215 7.49 490 760 1.77 0 0 0 0 70.2

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 117 2.3 0.8 474 3215 7.49 490 760 1.77 0 0 0 0 193

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 103 3.9 1.5 474 3215 7.49 490 760 1.77 0 0 0 0 223

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 115 1.6 0.8 474 3215 7.49 490 760 1.77 0 0 0 0 115

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 94 5.8 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 174

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 134 1.5 0.8 474 3215 7.49 490 760 1.77 0 0 0 0 130

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 132 3.8 1.5 474 3215 7.49 490 760 1.77 0 0 0 0 219

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 117 5.1 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 234

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 110 3.7 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 254

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 124 5.4 2.3 474 3215 7.49 490 760 1.77 0 0 0 0 277

R 858 260 3.3 1900 350 165 57,750 42,900 589,531,250 113 4.6 2 474 3215 7.49 490 760 1.77 0 0 0 0 221

T 1000 300 3.3 3000 350 100 300 50 142 45,000 40,000 53,4375,000 152 7.4 0 557 1256 3.58 557 1256 3.58 552 6 380 0.15 113
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[20]

T 361 114 3.2 1140 140 40 120 35 53 8400 7360 14,577,500 116 7.1 2 761 226 4.96 0 0 0 0 0 0 0 38

T 361 114 3.2 1140 140 40 120 35 53 8400 7360 14,577,500 96 5.2 0.5 761 226 4.96 0 0 0 0 0 0 0 26.1

T 361 114 3.2 1140 140 40 120 35 53 8400 7360 14,577,500 94 6.1 1 761 226 4.96 0 0 0 0 0 0 0 26.3

T 285 114 2.5 1140 140 40 120 35 53 8400 7360 14,577,500 116 7.1 2 761 226 4.96 0 0 0 0 0 0 0 52

T 428 114 3.8 1140 140 40 120 35 53 8400 7360 14,577,500 116 7.1 2 761 226 4.96 0 0 0 0 0 0 0 44

T 361 114 3.2 1140 140 40 120 35 53 8400 7360 14,577,500 121 7.7 2 761 226 4.96 0 0 0 0 0 0 0 34.5

T 361 114 3.2 1140 140 40 120 35 53 8400 7360 14,577,500 113 6.5 2 761 226 4.96 0 0 0 0 0 0 0 33.1

T 361 114 3.2 1140 140 40 120 35 53 8400 7360 14,577,500 121 7.7 2 761 226 4.96 0 0 0 0 0 0 0 23.6

T 361 114 3.2 1140 140 40 120 35 53 8400 7360 14,577,500 113 6.5 2 761 226 4.96 0 0 0 0 0 0 0 38.5

[21]

R 620 310 2 2000 350 200 70,000 62,000 714,583,333 125 7.1 2 474 2944 4.75 474 981 1.58 568 8 200 0.25 991

R 465 310 1.5 2000 350 200 70,000 62,000 714,583,333 125 7.1 2 474 2943 4.75 474 981 1.58 568 8 200 0.25 778

R 620 310 2 2000 350 200 70,000 62,000 714,583,333 125 7.1 2 474 2943 4.75 474 981 1.58 568 8 200 0.25 646

R 775 310 2.5 2000 350 200 70,000 62,000 714,583,333 119 5.2 1 474 2943 4.75 474 981 1.58 568 8 200 0.25 687

R 620 310 2 2000 350 200 70,000 62,000 714,583,333 132 8.9 3 474 2943 4.75 474 981 1.58 568 8 200 0.25 805

R 620 310 2 2000 350 200 70,000 62,000 714,583,333 125 7.1 2 474 2943 4.75 474 981 1.58 0 0 0 0 689

R 620 310 2 2000 350 200 70,000 62,000 714,583,333 125 7.1 2 474 2943 4.75 474 981 1.58 568 8 100 0.5 867

R 620 310 2 2000 350 200 70,000 62,000 714,583,333 125 7.1 2 474 2943 4.75 474 981 1.58 568 8 300 0.17 748

[22]

R 313 125 2.5 1300 150 100 15,000 12,500 28,125,000 118 6.5 2 570 509 4.1 340 57 0.45 0 0 0 0 85.5

R 313 125 2.5 1300 150 100 15,000 12,500 28,125,000 118 6.5 2 570 509 4.1 340 57 0.46 340 6 200 0.28 87.5

R 313 125 2.5 1300 150 100 15,000 12,500 28,125,000 118 6.5 2 570 509 4.1 340 57 0.46 340 6 150 0.38 91.5

R 313 125 2.5 1300 150 100 15,000 12,500 28,125,000 118 6.5 2 570 509 4.1 340 57 0.46 340 6 100 0.56 93.5

R 313 125 2.5 1300 150 100 15,000 12,500 28,125,000 110 6.3 1 570 509 4.1 340 57 0.46 0 0 0 0 79

R 313 125 2.5 1300 150 100 15,000 12,500 28,125,000 100 6 0.5 570 509 4.1 340 57 0.46 0 0 0 0 71

R 313 125 2.5 1300 150 100 15,000 12,500 28,125,000 129 6.8 2 570 509 4.1 340 57 0.46 0 0 0 0 89
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[23]

R 312 260 1.2 1000 300 150 45,000 39,000 337,500,000 108 4.1 0 526 1963 5.23 476 226 0.58 466 6 200 0.19 445

R 312 260 1.2 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 526 1963 5.23 476 226 0.58 466 6 200 0.19 645

R 312 260 1.2 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 526 1963 5.23 476 226 0.58 0 0 0 0 580

R 312 260 1.2 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 526 1963 5.23 476 226 0.58 466 6 100 0.38 670

R 312 260 1.2 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 526 1963 5.23 476 226 0.58 466 6 150 0.25 655

R 312 260 1.2 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 520 1741 4.65 476 226 0.58 466 6 200 0.19 560

R 312 260 1.2 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 519 1520 4.06 476 226 0.58 466 6 200 0.19 490

R 364 260 1.4 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 526 1963 5.23 476 226 0.58 466 6 200 0.19 525

R 416 260 1.6 1000 300 150 45,000 39,000 337,500,000 118 6.4 1 526 1963 5.23 476 226 0.58 466 6 200 0.19 475

[25] R 203 124 1.6 610 152 152 23,104 18,848 44,482,901 121 4.9 0 406 603 3.2 485 85 0.45 0 103

[26]

R 601 258 2.3 1200 300 150 45,000 38,700 337,500,000 125 5.6 3 543 2454 6.34 540 226 0.58 423 6 50 0.75 565

R 599 255 2.4 1200 300 150 45,000 38,250 337,500,000 125 5.6 3 543 1610 4.21 540 226 0.59 423 6 100 0.38 463

R 601 272 2.2 1200 300 150 45,000 40,800 337,500,000 125 5.6 3 543 1473 3.61 540 226 0.55 423 6 150 0.25 436

R 601 272 2.2 1200 300 150 45,000 40,800 337,500,000 125 5.6 3 543 1473 3.61 540 226 0.55 423 6 200 0.19 364

R 601 259 2.3 1200 300 150 45,000 38,850 337,500,000 138 6.8 5 543 1884 4.85 540 226 0.58 423 6 100 0.38 518

R 600 262 2.3 1200 300 150 45,000 39,300 337,500,000 138 6.8 5 543 1572 4 540 226 0.58 423 6 200 0.19 406
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