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Abstract: In the context of the new era of high digitization and informatization, the emergence of
the internet and artificial intelligence technologies has profoundly changed people’s lifestyles. The
traditional cyber attack detection has become increasingly weak in the context of the increasingly
complex network environment in the new era, and deep learning technology has begun to play
a significant role in the field of network security. There are many kinds of attacks against web
applications, which are very harmful, including SQL (Structured Query Language) injection, XSS
(Cross-Site Scripting), and command injection. Based on the detection of SQL injection and XSS
attacks, this paper combines the detection of command injection attacks, which are also very harmful,
and proposes a multi-classification detection method for web injection attacks. We extract features
in the URL (Uniform Resource Locator) and request body of HTTP (Hyper Text Transfer Protocol)
requests and combine deep learning technology to build a multi-classification model for injection
attacks. Firstly, aiming at the problem of imbalanced distribution of training samples and low
detection accuracy of command injection attack, a sample generation method is proposed. The
experimental results show that the proposed method ensures a higher detection rate of command
injection attacks and lower false alarms. Secondly, we propose a more expressive feature fusion
model, which effectively combines the features extracted by deep learning with the discrete features
extracted manually. The experimental results show that the feature fusion model proposed in this
work is more effective compared with a single deep learning model. The accuracy of the model is
improved by about 1%.

Keywords: cyber attacks; command injection; deep learning; cyber security; feature fusion; sample
generation

MSC: 68T07

1. Introduction

As information and digitization are highly processed in society with the rapid de-
velopment of information science and technology, various emerging technologies have
brought more opportunities for the development of the new era. The emerging internet
technology represented by artificial intelligence has deeply changed people’s styles of
life and production. Facing the information revolution brought by emerging internet
technology, on the one hand, we should take the opportunities; on the other hand, we
are also facing a severe issue—network security. Network security issues are becoming
increasingly prominent, and the consequences of network security events are becoming
more and more serious. Ensuring the security of web applications has become more and
more important. In web applications, due to the lack of security awareness of programmers
in various companies and the varying programming level of the team, there are often a
large number of vulnerabilities or security risks in the server-side applications that process
users’ HTTP requests. These vulnerabilities and risks make it possible for attackers to
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access a large number of users’ personal information and sensitive data in the background
of the website, and even control the webserver by constructing or injecting malicious values
into parameters or bodies of HTTP requests. Many types of web attacks are realized in
this way. For example, the web injection attacks in HTTP include command injection, SQL
injection [1], and XSS [2] attacks.

In December 2021, accounts of more than three million users of the U.S.-based Flex-
Booker appointment scheduling service have been stolen and traded on hacker forums [3].
In February 2022, Croatian phone carrier A1 Hrvatska disclosed a data breach that has
impacted 10% of its customers, roughly 200,000 people [4]. At the same time, Japanese
automaker Toyota Motors has announced that it stopped car production operations. The
outage was forced by a system failure at one of its suppliers of vital parts, Kojima Industries,
which reportedly suffered a cyberattack [5]. The expected impact is a 5% drop in Toyota’s
monthly production in Japan, which translates to roughly 13,000 units.

According to the report of the IT Governance [6], there are 266 security incidents
between January and March 2022, of which 161 were cyber attacks, accounting for 61%
of those publicly disclosed. These incidents accounted for 75,099,482 breached records.
Therefore, we should also consider its possible undetected security vulnerabilities and
threats while web technology is widely used in all walks of life. For the entire security
industry, in the face of massive log data, it is difficult for security practitioners to quickly
and accurately detect all attacks. The traditional intrusion detection methods based on
blacklist and rules are not enough to deal with the flexible and diverse web attacks of
attackers. The emergence of artificial intelligence technology has brought new ideas to
the field of network security. Deep learning technology is data-driven. Through deeply
and abstractly learning of the features of a large number of malicious sample data and
normal data, it can more accurately and quickly identify various types of attacks, and
greatly improve the ability of intrusion detection and security protection. Therefore, the
network security technology based on artificial intelligence has gradually become the
research hotspot of researchers.

We mainly focus on the detection of web injection attacks with deep learning. Based
on the detection of SQL injection and XSS attacks, we combine the detection of command
injection attacks, which are paid less attention to in previous research but cause great
harm. According to the research on the most widely used artificial intelligence technology—
deep learning—we proposed a new detection method. The method learns the differences
between normal and abnormal traffic through the deep learning model. Then, it realizes
the multi-classification detection of injection attacks based on deep learning. The main
contributions in this paper are as follows.

• Aiming at the unbalanced distribution of training samples, a sample generation
method is proposed, which effectively alleviates the overfitting problem of model
training caused by missing samples. The experimental results show the effectiveness
of this method;

• We propose a feature fusion model with more expressive ability based on deep learn-
ing. Compared with other classification methods, it effectively improves the overall
detection accuracy, reduces the false alarms, and realizes the multi-classification detec-
tion of web injection attacks.

The remainder of this paper is organized as follows. In Section 2, we introduce related
work. The system models and the main problem are discussed in Section 3. Section 4
presents the experiments and carry out an evaluation on our method. In Section 5, we
provide a discussion of our work. Finally, a conclusion is drawn in Section 6.

2. Related Work

We mainly detect SQL injection [7], XSS, and command injection attacks in Web
attacks. The traditional detection of web attacks is mostly based on blacklists and rule
matching [8–13], which have strong limitations and poor adaptability. In recent years, some
works [14–17] have used machine learning methods to classify and detect malicious Web
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traffic, but this method is not effective as a general detection method to specifically detect
command injection attacks.

Traditional SQL injection detection methods mainly include static detection [18],
dynamic detection [19] and combined detection [12]. Static detection refers to detecting
errors and correctness through static source code analysis such as the white box test. Gould
et al. [18] developed a code analysis tool called JDBC checker, which can only detect some
types of SQL injection but can not prevent them. Wassermann et al. [20] extended the white
box test to detect tautological SQL injection. The above two methods can only detect some
types of SQL injection attacks.

Dynamic detection refers to validating errors or correctness by performing dynamic
penetration tests at run time. Yi et al. [19] designed an analysis model embedded in web
applications. They parse SQL statements into SQL syntax tree through taint analysis and
then determine whether there is a SQL injection attack. Appiah et al. [8] proposed an
improved pattern matching method of SQL injection attack detection framework on the
base of signature, which distinguishes between SQL queries and malicious queries by
integrating fingerprint identification and pattern matching. Pandurang et al. [11] proposed
a mapping model for detecting and preventing SQL injection.

Combined detection is a combination of static detection and dynamic detection to
detect and prevent SQL injection attacks. Xiao et al. [12] proposed a method to detect
and defend SQL injection based on URL-SQL mapping by analyzing user behavior and
the response of SQL execution. They extracted pre-defined URLs and corresponding
SQL queries to establish a mapping model between HTTP requests and SQL queries.
However, there are many uncertainties when the system performs SQL statements. If the
extraction of state variables of web applications is not comprehensive enough, it will lead
to false positives.

The above methods have something in common. First, researchers usually extract
features based on previous experience and then perform string matching to detect SQL
injection attacks. However, these methods cannot deal with the increasingly complex
and diverse injection attacks in web requests. In recent years, the detection of SQL injec-
tion based on artificial intelligence technology has gradually become a research hotspot.
Anamika et al. [21] proposed an SQL injection attack detection method based on the Naive
Bayesian algorithm and role-based access control mechanism. They achieved a classifica-
tion accuracy rate of 93.3% on the dataset. Li Qi et al. [22] proposed a method to detect SQL
injection attacks based on the LSTM (Long Short-Term Memory) [23] model. Aiming at the
problem that shallow machine learning finds it difficult to extract features manually and
easily causes overfitting, they proposed a positive sample generation method to expand
the dataset and then solved the problem effectively. Finally, the model achieved a relatively
high accuracy rate.

In recent years, researchers have proposed many methods to detect cross-site script
vulnerabilities. Gupta et al. [13] proposed a method of detecting code files vulnerable
to XSS attacks in web applications through a prediction model based on Text Mining.
The method extracts text functions from the source code of a web application using a
custom marking process, converts every file into a set of unique text functions with related
frequencies, and generates a prediction model based on these features. However, this
approach is limited to detecting vulnerable code from the application’s source code.

Goswami et al. [12] proposed an XSS attack detection method based on unsupervised
attribute clustering. They used a cross-entropy Monte Carlo algorithm for ranking aggrega-
tion. The clusters are divided into two categories: malicious script and benign script. The
method uses divergence measure to detect XSS vulnerabilities on the client. If it exceeds
the threshold, then the request is discarded. Otherwise, the request is forwarded to the
proxy for further processing. The method needs an environment deployed on the client
and proxy server, which lacks flexibility and interferes with the use of customers.

Vishnu et al. [17] used functions based on common and malicious URLs and JavaScript
to classify and detect cross-site scripting attacks using three machine learning algorithms
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(SVM, naive Bayes, and J48 decision tree). Similarly, Rathore et al. [16] proposed a method
to detect XSS attacks on social networking services (SNS) websites based on machine
learning. This method uses ten different classification algorithms of machine learning to
classify the dataset into XSS or non-XSS based on three parts: URL, web page, and SNS.
However, the characteristic of these methods based on traditional machine learning is that
the features are only extracted manually, which has some limitations.

In the field of command injection attack detection, there are few works. ANASTASIOS
et al. [24] pointed out in 2019 that although command injection attacks are common
and can make a big impact with websites, researchers have paid less attention to this
type of code injection before. Therefore, the author proposes an open source tool called
commix, which can automatically detect and exploit command injection vulnerabilities in
web applications. It does a great help to penetration testers and security researchers for
detecting and exploiting command injection vulnerabilities. Although the tool is powerful,
there are still some shortcomings: firstly, it can be used to test whether there are command
injection vulnerabilities in the target website as a penetration testing tool, but it cannot
perform tests in large quantities; Secondly, it cannot detect command injection attacks
as a dynamic detection tool. We attempt to automatically extract features and perform a
detection of a large number of the attack from the perspective of deep learning. Due to the
imbalance of the actual sample distribution, it is easy to produce the problem of overfitting.

3. Web Injection Attacks Detection Based on Feature Fusion

The detection method based on feature fusion can realize multi-classification detection
of SQL injection, XSS, and command injection attacks on the Web. Web injection attacks
achieve the purpose by constructing and modifying the parameters of Web requests. There-
fore, we build a detection model by analyzing the URL and Body content in HTTP requests.
In our method, the time series features extracted by the GRU (Gate Recurrent Unit) neural
network [25] with the discrete features extracted manually by experts are spliced, and are
input to the full connected neural network for classification.

3.1. A Method of Sample Generation

Collecting training samples has always been one of the most important problems
in machine learning. We need a sufficient number of samples, and at the same time, the
number of positive and negative samples is balanced. As shown in Table 1, we have
collected a total of nearly 90,000 command injection malicious samples and more than
150,000 benign samples. The benign samples are mainly collected in the campus network
monitoring system.

Table 1. The statistics of dataset.

The Type of Samples The Number of Samples

Command Injection 89,911
Benign Data 156,090

Total 246,001

If the above samples (Table 1) are preprocessed and used for model training directly,
the accuracy of the model will be relatively low, and the false positive rate will be high.
The reason is that command injection attacks often occur in some scenarios, such as file
uploading on web pages, online watermarking, etc. In these scenarios, the web application
takes user input as a parameter to execute system call functions such as exec and return the
result. Due to the limit source of data (network traffic in Campus), traffic with scene char-
acteristics occupies a very small proportion of benign samples, resulting in the emergence
of training overfitting problems.

After in-depth analysis and research on the sample data of command injection attacks,
we summarize these malicious sample data into the following two characteristics: (1)
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Command injection occurs in some dynamic web pages, and the type names of server-side
scripts such as CGI, ASPX, and PHP often appear directly in the beginning part of the URL;
(2) The part of command injection often appears at the end of the URL and is concatenated
with the Linux operators shown in [24]. Furthermore, these malicious data can be abstractly
represented as a normal part of URL + shell command operator + command injection part
+ rest part (usually empty). According to the statistics of nearly 90,000 existing malicious
samples, the data that meet the above characteristics accounts for more than 70% of all
sample data. The samples of command injection attacks are shown in Table 2.

Table 2. The sample data of URLs in command injection attacks.

/ShowJd.aspx?id=9201&mid=219&pid=‘ping -c 5 127.0.0.1’
/cgi-bin/bsguest.cgi?email=x;ls

/public/column/43086?type=4&action=type%20%25systemroot%25%5Cwin%2Eini
/info_156.aspx?itemid=22425&&ls

/login.cgi?cli=aa%20aa%27;wget%20http://128.199.251.119/t.php%27$
/site/search/4288919?keywords=%0a%20SomeCustomInjectedHeader:injected_by_wvs

/News/info_325.aspx?itemid= ‘cat /etc/hosts’

Given the above situation, this work proposes a corresponding sample generation
method. The generated samples are added to the benign samples in a fixed proportion to
make the distribution of positive and negative samples more balanced. At the same time,
we also perform the relevant comparison experiments. The detailed steps of the sample
generation method are as follows:

• Classifying command injection malicious samples according to different types of
separators;

• According to different delimiter types, we need to find the position where the delimiter
appears for the first time in the malicious sample data of command injection attacks;

• Truncating the data after the separator of the sample, and holding the first half of the
sample data left after the truncation, which we can consider a benign sample;

• The samples generated by batch programming are added to the benign samples in a
fixed proportion (10%, 20%, 30%, 40% respectively).

For example, we can divide the URL: /info_156.aspx?itemid=22425&&ls into two parts:
/info_156.aspx?itemid=22425 and &&ls according to the delimiter “&&”. We hold the first
half of the URL and use it as the generated sample data.

3.2. Model
3.2.1. Overview

In the existing related works [8,12,17,21,22,26], deep learning and general machine
learning have been used widely in the detection of Web injection attacks. Deep learning
models are usually built based on the training of a large number of datasets, which is
to effectively model and detect data with specific patterns or features. Although the
performance of deep learning models is not bad in most cases, there are still some shortages,
such as insufficient modeling of attack types for a small amount of sample data.

For example, we can divide SQL injection attacks into four types: union, Boolean,
error-based, and wide-byte injection. For common types of SQL injection, such as union
injection attacks, it is usually easy to collect data, and the detection results obtained by
the model will be sound. However, data collection for uncommon injection types such as
wide-byte injection is likely to be difficult. It lacks the training data of these subdivision
types, resulting in insufficient training of the deep model for this type of data, which
will eventually lead to a high rate of false negatives in the detection of this type. In this
situation, the usual practice is to repeatedly sample this small number of sample types
or use a sampling algorithm to expand samples. The new samples obtained in this way
often have problems such as sample overlap or poor sample quality. Sub-training often has
serious over-fitting issues, resulting in insufficient generalization ability.
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The features extracted by experts can make up for the above situation. Experts
have an in-depth understanding of the classification of SQL injection attacks and the
various categories. Experts can often propose better solutions based on their own domain
experience and knowledge. Representative features are applied to achieve coverage of
specific subdivision types. Discrete features are extracted by experts manually, which can
often achieve more complete detection rates and better detection results with high-level
features extracted by deep learning models.

The framework of the detection model is shown in Figure 1. The detection model
is composed of two parts. One part is sequence feature extraction. The GRU model
automatically extracts sequence features from the preprocessed Web attack sample data;
The other part is to extract discrete features manually. Experts define some features through
a priori knowledge, then extract discrete features from the input data and standardize the
features. The extracted sequence features and discrete features are then stitched together
and input into the fully connected neural network for classification. The classification
results are normalized at the Softmax activation function layer and output.
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Figure 1. The architecture of model.

3.2.2. Preprocessing

After collecting malicious sample data and benign traffic data, we need to perform
preprocessing operations on the dataset, including URL decoding, binary data stream
processing, removal of Chinese characters, and interception of fixed lengths.

• URL decoding: URL data are usually encoded to convert the data format. For example, the
URL http://[domain]/all.php?kd=%C8%CB%B9 is converted to http://[domain]/all.php?kd=com
after URL decoding. A short and clear URL can be obtained by URL decoding, which
is convenient for model learning and understanding;

• Binary stream data processing: Considering that there are some situations such as
image transmission, file upload and video stream in the traffic, the POST body in
HTTP requests will contain some meaningless binary stream data, and this part data is
not meaningful for training the model. Therefore, we first identify the starting position
of the binary stream data, and then replace it with a predefined short string. The rule
of string replacement is shown in Table 3;

• Remove Chinese characters: Chinese characters in the URL are useless to the classi-
fication of the detection model and may interfere to a certain extent, so the Chinese
characters in the web request traffic data are directly removed in the data preprocess-
ing stage. The specific method is to convert the training data to lowercase, and only
keep the data whose ASCII codes are in the range of 33 to 126;

• Keep a fixed length and map to a number interval: We set a fixed length L, truncate
the part whose length exceeds L, and add zero before the data whose length is less
than L. Next, we map the fixed-length traffic data to the corresponding ASCII code
values according to the character sequence, and get the vector data of the input model.
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Table 3. The rule of string replacement.

The Type of Strings The Replacement of Strings

Binary stream data Binary_Data
Encryption data Encryption_Data

MD5 MD5_Hash
SHA1 SHA1_Hash

3.2.3. Discrete Features Extraction and Standardization

In the discrete feature extraction section, we mainly extract the following features to
carry out related experiments to verify the feasibility of feature fusion methods.

• Keyword features: Keywords are very important for detecting Web injection attacks.
For example, although the ‘<script’ keyword rarely appears in URLs, it often arises
in XSS attack payloads; Similarly, ‘select’ and other SQL statement keywords which
appear in the URL are key features to check for SQL injection attacks;

• Length feature: Web attacks often need to construct some attack payloads, so the
length of malicious URLs is statistically different from that of benign URLs;

• Other features: The features of number proportion, special character proportion and
whether the parameter value contains IP are also key differences between benign
requests and malicious requests.

After extracting artificial discrete features, the next step is to standardize the extracted
discrete features. Because the quantitative scale of each feature is not necessarily the same,
when training the model, the features with a larger scale will play a decisive role and
features with a smaller scale will play a small role. In the feature standardization stage, we
control the discrete features of different scales under the same standard scale, eliminate
the influence of scale differences and feature units, and speed up the convergence speed of
model training. Therefore, the step of discrete feature standardization is very necessary.
Feature standardization maps the original discrete features to the distribution with the
mean value of 0 and standard deviation of 1. Specifically, assuming that the mean value
of the original discrete features is µ and the standard deviation is σ, the standardization
formula is defined as Equation (1):

z = (x − µ)/σ (1)

3.2.4. Classifier

We input the fusion features obtained by series sequence features and discrete features
into the classifier for classification. The classifier uses a fully connected neural network and
softmax activation function to realize classification and normalization. The structure of the
classifier is shown in the Figure 2.

Series Feature Input

Discrete Feature input

Input 

Shadow 

Output 

Softmax 

Normal

SQLi

XSS

Command

Figure 2. The architecture of classifier.

The fully connected neural network (FCN) is the most basic neural network, and its
network structure is a typical chain structure. In FCN, every node in the (n − 1)th layer is
connected to all the nodes in the (n)th layer, and the data is to read through the input layer.
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The hidden layer in the network is a vector type, and each element in the vector is similar
to the function of a neuron. The current layer receives the input from the previous layer of
neurons and calculates the activation value. The output layer gets the output of the last
hidden layer, and then it is used for classification.

There is more than one neuron in the output layer of the FCN, and it can have multiple
outputs. It can be flexibly used in practical application scenarios such as clustering and
multi-classification. Each neuron learns a linear relationship between input and output. If
considering x1, x2, x3, . . . , xn as the input data, each neuron randomly initializes the weight
parameter and a bias parameter. According to z = ∑n

i=1 ωxi + b, we get the calculation
result and use the neuron activation function Softmax to calculate the output. Finally, we
obtain the feature mapping result.

4. Evaluation

In this section, we evaluated the effectiveness of the sample generation method and
the detection model of injection attacks. We performed our experiments on a machine
with 16 GB of RAM with Intel Core i5-8265U CPU and NVIDIA GTX 1060 GPU. Further,
we conducted our work with Pytorch 1.5.0 (Soumith Chintala; New York, NY, USA) and
Python 3.8.5 (Yury Selivanov; San Francisco, CA, USA) in Ubuntu 16.04.

4.1. Sample Generation Method

We combine the cutting-edge deep learning technology with network security. Then
we use the characteristics and advantages of deep learning to detect the command injection
attack, which is very harmful in web attacks. It can cover the shortage of existing detection
methods and achieve a large number of real-time detection of command injection attacks.
We conduct in-depth analysis and research from the URL and post body of HTTP requests.
Then we propose a detection method for command injection attacks. On the one hand,
this method considers the characteristics and principles of command injection attacks. On
the other hand, it combines the cutting-edge technology of deep learning and provides
ideas for web attack detection in the next section. At the same time, we propose a sample
generation method to supplement the command injection training dataset. It alleviates
the over-fitting problem caused by unbalanced sample distribution in the model training
process. This method effectively improves the detection accuracy and reduces the false
positive rate.

To solve the problem of over-fitting during model training, caused by the imbalanced
distribution of training samples, we propose a sample generation method that balances
the sample dataset. Firstly, according to the proportion of 10%, 20%, 30%, and 40%, we
make four copies of normal samples and add the generated sample data to each benign
sample. We use DSi(i = 1, 2, 3, 4, 5) to represent the ith dataset. The details of each dataset
are shown in Table 4. Here, the number of malicious samples of command injection attacks
is 89,911. With the sample generation method (SGM) proposed in this work, the generated
samples are added to the benign samples in different proportions, which form five different
datasets-DSi(i = 1, 2, 3, 4, 5).

Table 4. The statistics of Sample Data.

Normal Data

Dataset Malicious
Sample SGM/Total SGM Total

DS1 89,911 0 156,090 0%
DS2 89,911 15,600 171,690 10%
DS3 89,911 31,200 187,290 20%
DS4 89,911 46,800 202,890 30%
DS5 89,911 62,400 218,490 40%
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The five different datasets were divided into a training set, validation set, and test set
according to the ratio of 6:2:2. The model uses the training set to continuously adjust its
parameters to obtain better classification results. It uses the validation set to try different
model hyperparameters during the multiple training process of the model to select the opti-
mal parameter combination. Finally, the model uses the test set to evaluate the classification
model and its actual generalization ability. We use deep learning technology to detect
command injection attacks and to observe the impact of the sample generation method
on the model detection effect, which is essentially a binary classification problem. The set
of command injection samples is regarded as “positive”, benign samples are regarded as
“negative”, and the accuracy (ACC), precision (PRE), recall (Recall), and F1-value are used
as performance evaluation indicators of the model.

Before explaining how these evaluation indicators are calculated, we need to introduce
the meaning of several symbols:

• ‘TP’ indicates the number of positive samples predicted to be positive;
• ‘TN’ indicates the number of negative samples predicted as negative;
• ‘FP’ represents the number of negative samples predicted as positive, i.e., “False

Positives”;
• ‘FN’ represents the number of positive samples predicted as negative class, i.e., “False

Negatives”;

Combined with the application scenarios of the detection model in this work, the
actual calculations of these three evaluation indicators are as follows.

The accuracy rate represents the percentage of the data for which all predictions are
correct (both positive and negative) to the total number of samples:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2)

The precision rate is for the prediction results of the model, which means that the
samples correctly classified as positive classes account for the percentage of all samples
that are classified as positive classes by the classified model:

Precision =
TP

TP + FP
. (3)

The recall rate is for the original sample, which means that the samples correctly
classified as positive class account for the percentage of all positive class samples in all test
data:

Recall =
TP

TP + FN
. (4)

The F1-value is a comprehensive evaluation index that balances recall and precision,
and is expressed as the harmonic mean of the recall and precision indices:

F1-value =
2 × Precision × Recall

Precision + Recall
. (5)

In the model training stage, we obtain the optimal hyper-parameters’ configuration
through many tests shown in Table 5. We set the initial learning rate to 0.01 and the decline
rate of the learning rate to 0.5. The learning rate decreases dynamically every five epochs in
the training stage. We use the mini-batch gradient descent as the optimization method of
the training model. What is more, we set batch_size to 64 and the number of epochs to 20.

We use the five datasets to train the GRU neural network model. The five neural
network models use the same parameter configuration in Table 5 and record the best result
of each model. The experimental results are shown in Figure 3.



Mathematics 2022, 10, 2914 10 of 17

Table 5. Hyperparameters’ setting of the training model.

Parameters Values

The length of the input data 150
Word embedding dimensions 128
The size of GRU hidden layers 64

GRU layers 2
The size of the fully-connected hidden layers 64

Learning rate 0.01
Epochs 20

Figure 3. The experimental results of the indicators on different datasets.

As can be seen from Figure 3, with nearly 90,000 command injection samples and
156,000 benign samples, the accuracy, precision, and recall of the classification model are
generally low before the sample generation performed, 89%, 90%, and 88.7%, respectively.
After using the sample generation method described in Section 3.1, white samples are
generated, and various evaluation indicators improve as the proportion of white samples
increases. On the DS4 dataset, the accuracy, precision, and recall rates reach the highest,
at 98.6%, 97.9%, and 97.4%, respectively, and all three indicators exceeded 97%. After
increasing the ratio to 50%, the indicators no longer improve but decrease slightly. The
experimental results show that the sample generation method proposed can effectively
alleviate the problem of overfitting caused by the unbalanced distribution of samples. It
enables the classifier to achieve a better generalization ability and higher detection accuracy.

In this part, aiming at the over-fitting problem caused by the unbalanced distribution
of positive and negative samples, we propose a sample generation method and use a GRU
neural network model for comparative experiments. The experimental results show that it
can effectively improve the detection accuracy of command injection and reduce the false
positive rate. Next, we conduct experiments to observe the effectiveness of the injection
attack detection model, which is a multi-classification model that can detect the three web
injection attacks simultaneously.

4.2. The Detection of Injection Attacks

Based on the experimental method in Section 4.1, we propose a detection method of
web injection attacks based on feature fusion, which can realize multi-classification detec-
tion of SQL injection, XSS and command injection in Web attacks. It is similar to command
injection attacks that SQL injection and XSS can also be achieved through constructing the
parameters of web requests. Therefore, we consider the URL and request body in the web



Mathematics 2022, 10, 2914 11 of 17

request based on HTTP protocol to detect these three types of injection attacks. Our feature
fusion-based detection method combines the temporal features extracted by GRU neural
network with the discrete features manually extracted by experts. Then, we input the fused
features into a fully connected neural network for classification.

4.2.1. Dataset

We mainly detect SQL injection, XSS, and command injection attacks in web injection
attacks. Our samples mostly come from the websites’ communication traffic extracted from
the campus network monitoring system. One part of the training dataset for XSS attacks
is from a well-known network security company, and the other part is from the public
dataset–HTTP DATASET CSIC2010 [27].

After cleaning and deduplication of the collected data, the dataset required for the
experiments is finally obtained, including 202,889 benign samples and more than 170,000
malicious data. We divide the training sample into training set, validation set and test set
according to the ratio of 3:1:1. It should be pointed out that the total number of benign
samples here is the number including the samples generated by the sample generation
method in Section 3.1. The specific distribution of the training set is shown in Table 6.

Table 6. The specific distribution of training set.

The Type of Data Amount

Normal 202,890
Command Injection 89,911

SQLi 45,078
XSS 40,327
Total 378,206

4.2.2. Results

Our model detects Web injection attacks based on feature fusion. The results of various
evaluation indicators on the test set are shown in Table 7. Our purpose is not to classify
web request traffic data into benign and malicious, but to detect SQL injection, XSS and
command injection attacks in web traffic through a multi-classification model. Therefore,
the calculation method of the evaluation index of the multi-class model is different from
the two-class problem. We first get the accuracy, precision, recall and F1-value results for
each kind of attack. Then we calculate the arithmetic mean of each evaluation metric and
use it as the result of the detection model.

Table 7. The result of the model on evaluation indicators of validation set (%).

Accuracy Precision Recall F1-Value

99.39 99.51 99.37 99.43

As we can see from Table 7, the detection model of web injection attacks based on
feature fusion has achieved a rate of accuracy of more than 99.3% on the test set of more
than 75,000 data. The evaluation indicators of recall, precision, and F1-value rates also have
high results. The above results show that the detection model based on feature fusion has
strong generalization and can accurately detect web injection attacks in communication
traffic.

Figures 4 and 5 show the changes in the accuracy and loss function of the validation
set and the training set during ten rounds of training for the feature fusion detection model.
We can see from the figures that the convergence of the model parameters is normal.



Mathematics 2022, 10, 2914 12 of 17

2 4 6 8 10
epoch

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

lo
ss

validation set
training set

Figure 4. The loss curve of the feature fusion detection model on the validation set and training set.
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Figure 5. Accuracy curve of feature fusion detection model on validation set and training set.

4.2.3. Comparison

In order to verify the effectiveness of the feature fusion method proposed in this work,
we performed relevant comparative experiments.

First, the length of the input affects the detection speed, the training time, and the
accuracy of the model detection. Accordingly, it is necessary to find a reasonable value for
the input data’s length. After the preprocessing steps, the box plot of the length distribution
of all training data, including web injection attacks samples and benign traffic data, is
shown in Figure 6. The “len” indicates the total length of the URL and the content of the
POST body.

According to Figure 6, the median length of the training data is around 100, and the
3/4 quantile is about 150. It indicates that about 75% of the training sample data is less than
150. Therefore, the input lengths of 100, 150, and 200 are used for experimental comparison
here to verify the influence on the accuracy and speed of the model with different data
lengths. Other settings of the experiment here are the same.
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Figure 6. The box-plot of the length distribution.

The results of model detection with different input lengths are in Figure 7. The time
required for training models to detect more than 75,000 web request traffic data in the test
set based on three different input lengths is in Table 8. We can see that when the input
length is 100, the model detection speed is the fastest, but the results of the detection model
are generally low, especially since the recall is only about 93%. When the input length is
100, it is not enough for the detection model to capture the features of the input data. When
the input length is 150, the values of accuracy (ACC), precision (PRE), and recall (RECALL)
have increased. It is about 4% higher than the average result when the input length is 100,
and the three evaluation indicators have exceeded 98%. When the input model length is
200, the values of accuracy and recall are slightly improved based on the input length of
150. However, the model detection speed is significantly reduced compared with the input
length of 150. Table 8 shows that when the input model data length is 200, the detection
time is increased by 235 s compared with the input length of 150, and the detection speed
is reduced by about 44%. We choose 150 as the final input length of the model in this work
under the consideration of speed and accuracy.

ACC PRE RECALL
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

100 150 200
Figure 7. The results of model detection effects with different input lengths.

Table 8. The time required for the model with different lengths of the input.

Length 100 150 200

Time 439.67 s 529.31 s 764.55 s
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Then, we compare the model effects of general machine learning methods (such as
Logistic Regression, Naive Bayes, and SVM). We train all models with the datasets shown
in Table 6. The comparison results are shown in Table 9. It can be seen from the table
that in the detection of web injection attacks, although Logistic regression and the Naive
Bayes algorithm have relatively reasonable precision values, the results of precision and
recall are different from the precision values, which indicates that there is a high rate
of false negative in the detection results. It represents that many malicious requests are
identified as benign requests, which shows that the two algorithms have not really learned
the characteristics that can identify benign and malicious traffic. Compared with the two
algorithms, the experimental results of the SVM algorithm are much better. The accuracy
rate, precision rate and recall rate all exceed 90% and even the precision rate reaches 95.03%,
which shows that the SVM has identified the difference between benign and malicious
traffic in a certain extent. The detection model proposed in this paper is superior to the
above three general machine learning methods in three performance indicators. The results
of the three performance indicators all exceed 99%, which also shows that the deep learning
model has certain advantages in detection performance compared with machine learning.

Table 9. The comparison of our model with machine learning methods (%).

Models Accuracy Precision Recall

Logistic 79.81 97.6 69.37
Naive Bayes 85.13 93.27 57.16

SVM 92.79 95.03 93.47
Our method 99.39 99.51 99.37

Then, we compare the multi-class detection method of injection attack based on feature
fusion with other neural network classification models. We choose the single model and
fusion model as control models. We used the C-LSTM model [28], which is a combination of
long short-term memory network and convolutional neural network, in the mixed control
model, and the model eXpose [29], which performs convolution and splices based on four
different windows, is used as the second mixed control model. The single-model control
experiments used two models: Char-GRU and Char-CNN [30].

Char-GRU comes from the char-RNN model [31]. We use GRU [25] to replace the
RNN model, which solves the problem of gradient disappearance or gradient explosion
of the basic RNN model in long series [32], and the effect of Gru and LSTM is similar
but simpler than LSTM [33]. Char-GRU performs character embedding on the sample
data, and extracts time series features with the GRU deep learning model, finally uses a
fully connected layer for classification. Char-CNN uses a convolutional neural network
to automatically extract text features after character embedding on the input sample data,
and finally uses a fully connected layer to classify the sample data. Table 10 shows the
comparison of the classification effects of the web injection attack of the detection model
based on feature fusion and the control model on the test set.

Table 10. The comparison of our model based on feature fusion and other classification models (%).

Models Accuracy Precision Recall F1-Value

Char-GRU 98.67 98.31 98.06 98.18
Char-CNN 97.38 98.49 96.41 97.43

C-LSTM 99.23 99.36 99.18 99.26
eXpose 98.07 99.13 97.85 98.48

Our model 99.39 99.51 99.37 99.43

To fully represent the detection effect of each control model, we set the dropout
parameter of each model to 0.5, and stop when the performance index of the neural
network model does not change after five consecutive cycles on the validation set training
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to prevent overfitting. The initial learning rate of the model is set to 0.01, and the learning
rate decays exponentially every five epochs.

According to Table 10, the overall performance of the deep learning model is pretty
good. The performance of the single model is inferior to the fusion control model, mainly
because the deep fusion model fully extracts multi-level sample features. The accuracy of
the Char-CNN model is higher than that of the Char-GRU, indicating that the false positive
rate of the CNN model is lower. However, the accuracy and recall rate of the GRU model
are higher than those of the CNN model, indicating that the performance of the GRU model
is better than the CNN model in terms of feature mining and learning.

Our proposed feature fusion model outperforms the eXpose model on every metric.
Our model guarantees low false negative and false positive rates while maintaining high
accuracy. Compared with the eXpose model, the discrete features extracted by us are
more complementary to the temporal features automatically extracted by the GRU neural
network model. At the same time, it shows that our model can learn the performance
characteristics of Web injection attacks well.

The C-LSTM model shows the best performance among all the comparative models,
with each index exceeding 99%, and the F1-value reaching 99.26%. The reason C-LSTM can
achieve this effect is that it integrates the advantages of Convolutional Neural Networks
and Recurrent Neural Networks. The C-LSTM uses the convolutional neural network
to obtain the local abstract features, extracts the sequence features with the recurrent
neural network, and puts them together to the classifier for classification. However, the
C-LSTM model has higher structural complexity compared with our model, so our model
outperforms it in training time and memory consumption. In addition, the performance of
our model is also better than that of the C-LSTM, because our proposed multi-classification
model based on feature fusion adds discrete features derived from expert knowledge based
on time series features. To a certain extent, our model reduces the parameter quantity and
structural complexity, and ensures the adequacy and complementarity of feature extraction
at the same time.

5. Discussion

Through experiments, we effectively improve the detection accuracy of injection
attacks and reduce the false positive rate through the sample generation method. Our
approach focuses on testing the effect of this method on detection accuracy. In terms
of performance and accuracy, we choose to ensure the effectiveness of this method in
improving the accuracy of model detection first. Experiments show that different inputs
of data length do affect the training efficiency and accuracy. Therefore, we choose the
appropriate fixed length input through experiments to ensure that our model can finally
obtain better detection accuracy and runtime performance.

Our method conducts the detection of web injection attacks based on feature fusion.
We choose the GRU to extract temporal features automatically. Additionally, we integrate
discrete features extracted by experts to improve the overall detection accuracy of the model.
It solves the problem of false positives caused by insufficient and specific classification data.
The C-LSM is more complex than our model with ensuring accuracy, because it combines
a convolutional neural network and a recursive neural network. We use the GRU neural
network to automatically extract temporal features and combine discrete features defined
by experts, which reduces the number of model parameters and structural complexity. It
also ensures the sufficiency and complementarity of feature extraction. Compared with
other models (char-GRU, char-CNN and eXpose), we obtain a relatively higher detection
accuracy.

6. Conclusions

In this paper, we propose a detection method of web injection attacks, which have a
stronger feature expression ability and better detection performance. The method makes up
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for the shortcomings of traditional attack detection technology and provides a foundation
for the wide application of deep learning technology in network security.

We combine artificial intelligence technology with network security. From the perspec-
tive of attack behavior, we use the advantages of deep learning to detect injection attacks
that are very harmful in web attacks, making up for the shortcomings of previous detection
tools.

First, we propose a sample generation method to solve the problem of over-fitting
caused by unbalanced samples in the training process of the neural network model, and
experiments show that this method can effectively alleviate the over-fitting problem in the
training process. The fitting problem improves the accuracy of the detection model. Then,
we propose a feature fusion based method to detect SQL injection, XSS and command
injection attacks. This method fuses the time series features extracted by the neural network
model with the discrete features defined by experts, and uses the fused features to train
the classifier. The experimental comparison with other classification models proves the
advantages of our proposed detection model in terms of accuracy and generalization ability.
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