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Abstract: Global dynamics of a piezoelectric energy harvester with tristable potential is investi-

gated. The dynamical model of a cantilever beam energy harvester is considered; its static bifurca-

tion is also discussed. Multiple intra-well attractors and their basins of attraction are presented to 

discuss the mechanism of multistability and its initial sensitivity. Moreover, the Melnikov method 

is applied to present the conditions for global bifurcations and the induced complex dynamics. The 

results show that the variation of coefficients of the polynomial may affect the number and shapes 

of potential wells, while the increase of the excitation amplitude may trigger multistability around 

one equilibrium, initial-sensitive jump, inter-well attractor and chaos. The results may provide some 

theoretical reference for increasing the working performance of energy harvesters. 
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1. Introduction 

Piezoelectricity is an attractive physical conversion generated by converting mechan-

ical strain to electrical potential [1,2]. Most piezoelectric materials have fast piezoelectric 

reactions, meaning that they can do mechanical–electrical energy conversion thus har-

vesting energy from dynamical structures conveniently [3,4]. Owing to this advantage, 

the profile design of piezoelectric energy harvesters has been paid great attention during 

these decades. Various structures have been designed for piezoelectric energy harvesters, 

possessing monostable [5], bistable [6], tristable [7], qua-stable [8] or even quinstable [9] 

characteristics. Zhou et al. [10] proposed a broadband piezoelectric-based vibration en-

ergy harvester with a triple-well potential induced by a magnetic field and presented an 

experimental investigation, showing that the tristable configuration easily attained higher 

energy intra-well oscillations. Li et al. [11] considered a multistable piezoelectric energy 

harvester with a nonlinear spring subjected to wake-galloping and observed that intra-

well motion and chaos occurred within a certain range of fluid velocity. Naseer et al. [12] 

constructed a piezoelectric cantilever-cylinder structure for the sake of energy harvesting 

from vortex-induced vibration (VIV) and found the energy harvester in the monostable 

configuration displayed a hardening behavior with higher amplitudes thus a larger out-

put voltage, while in the bistable configuration, it had a wider synchronization region 

with period or non-period responses but produced a lower output power. Yang et al. [13] 

designed a magnetic levitation-based hybrid energy harvester and found via quantitative 

investigation that the tristable system required less kinetic energy to excite a large dis-

placement motion, compared with monostable systems. Wang et al. [14] proposed an ul-

tra-low-frequency energy harvester to harness structural vibration energy and displayed 

the benefits of multistability for energy harvesting. 
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It is evident that multistability and chaos show great potential in vibration energy 

harvesting techniques. The idea is that these two initial-sensitive phenomena, i.e., chaos 

and jump among intra-well motions and inter-well ones, can easily make a big defor-

mation of the piezoelectric structure, thus collecting much electrical potential. Hence, 

many researchers have been devoted to investigating these complex phenomena of energy 

harvesters and their mechanisms. Rezaei et al. [15] exploited the Method of Multiple 

Scales to provide an approximate-analytical solution for the vibrating system of a nonlin-

ear piezoelectric energy harvester under a hard harmonic excitation. Chen et al. [16] con-

sidered an arch-linear-composed-beam piezoelectric energy harvester with magnetic cou-

pling and investigated numerically and experimentally the large-amplitude intra-well 

motion and chaos. Ju et al. [17] presented numerical results and experiments for a multi-

stable piezoelectric vibration energy harvester with four potential wells, showing that the 

jump from the inter-well motion to the intra-well motion can be easily triggered under a 

low acceleration. Cao et al. [18] introduced the fractional model for magnetically coupling 

broadband energy harvesters under low-frequency excitation and presented the chaotic 

behavior clearly via numerical simulations and experiments. Lallart et al. [19] exposed the 

analytical results and numerical ones to provide conditions for the occurrence of multi-

stability in the framework of energy harvesting. Tékam et al. [20] focused on a tristable 

energy harvesting system having fractional order viscoelastic material and computed its 

periodic responses by the Krylov–Bogoliubov averaging method. In the dynamical system 

of a parametrically amplified Mathieu–Duffing nonlinear energy harvester, Karličić et al. 

[21] obtained an approximation of the periodic response by using the incremental har-

monic balance method and exhibited the coexistence of bistable periodic attractors via 

numerical results. Considering a bistable piezo-magnetoelastic structure for energy har-

vesting, Barbosa et al. [22] proposed a semi-continuous method to control chaos and pre-

sented the control effect by numerical results. Chen et al. [23] proposed Melnikov func-

tion-based necessary conditions of chaos in a bistable piezoelectric vibration energy har-

vesting system and verified their validations numerically. For a novel electromagnetic bi-

stable vibration energy harvester with an elastic boundary, Zhang et al. [24] classified ba-

sins of attraction of different attractors and found that multistability will increase the oc-

curring probability of the large-amplitude intra-well responses. Fu et al. [25] modeled a 

new sliding-mode triboelectric energy harvester in the form of a cantilever beam with a 

tip mass loaded by both magnetic and friction forces and found three types of multista-

bility in its dynamical system. Sufficient works have studied the complex dynamics of 

energy harvesting systems in detail, but the mechanism behind multistability, jump and 

chaos is still not clear yet. 

To this end, we consider a type of tristable piezoelectric energy harvester and study 

the mechanism behind its complex dynamics. The remaining contents are organized as 

follows: In the next section, the dynamical model is constructed, and its equilibria are dis-

cussed. In Section 3, the coexistence of multiple attractors and their mechanisms are dis-

cussed in detail. In Section 4, necessary conditions for global bifurcations are proposed 

and verified by numerical results. Finally, conclusions are discussed in Section 5. 

2. Dynamical Model and Its Static Bifurcation 

The simplified diagram of the considered tristable piezoelectric energy harvester [10] 

is shown in Figure 1 where X is the horizontal displacement of the end of the substrate 

layer at moment t, L the length of the substrate layer. In Figure 1, the magnet at the end of 

the substrate layer provides nonlinear forces via interacting with the other two magnets; 

B and D are unstable positions of the vibrating system, A, C and E are stable ones. The 

energy is stored by the energy harvesting circuits based on the piezoelectric effect of the 

piezoelectric layers driven by the substrate layer. According to the Second Law of Newton 

and Kirchhoff’s law, the vibrating system of the energy harvester can be expressed as 
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( ) ( ) ( ) ( ) cos( ), ( ) ( ) 0em p em

l

V t
mX t cX t k X k V t F t c V t k X t

r
+ + − =  + + =  (1) 

where m, c, kem are the equivalent mass, the equivalent damping and equivalent electro-

mechanical coupling coefficient, respectively; cp is the equivalent capacitance of the pie-

zoelectric materials, lr  the load resistance, V(t) the voltage across the electrical load, X(t) 

is the tip displacement of the harvester in the transverse direction, k(X) the magnetic force 

whose nonlinearity due to the effect of magnetic force, and F and Ω are the amplitude and 

frequency of the external excitation, respectively. The polynomial form for nonlinear mag-

netic force [15,17] is introduced in order to characterize the relationship between the tip 

displacement of the cantilever and it below: 
3 5

1 2 3( )k X a X a X a X= − +  (2) 

where 1a , 2a  and 3a  are positive and the coefficients of the polynomial. By introducing 

the dimensionless time 0T t=  where 1

0

a

m
 = , and the variables 

0

( ) ( )
( ) , ( )

X t V t
x T v T

L V
= = , the dimensionless form of Equation (1) can be expressed by 

3 5

1 2 0( ) ( ) ( ) ( ) ( ) ( ) cos , ( ) ( ) ( ) 0,x T x T x T k x T k x T v T f T v T v T x T       + + − + − = + + =  (3) 

where 

2 43 02

1 2 0

0 1 1 0 1 1 0 0

1
, , , , , , , .em em

p l p

a k V k La c F
k L k L f

a a m La La c r c V
    

  


= = = = = = = =  (4) 

By denoting ( ) , ( ) , ( ) , ( ) , ( )x T x v T v x T x x T x v T v    in Equation (3), the di-

mensionless state-space model of the piezoelectric vibration energy harvesting system can 

be obtained as follows: 
3 5

1 2 0 cos( ), 0.x x x k x k x v f T v v x    + + − + − = + + =  (5) 

Note that all non-dimensional parameters in the above equation are positive. The 

nomenclatures of the system parameters are presented in Table 1. 

 

Figure 1. Simplified diagram of a tristable piezoelectric cantilever energy harvester. 
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Table 1. Parameters of systems (1) and (5). 

Parameter Symbol 

Equivalent mass of the proof mass (kg) m 

Equivalent damping of the piezoelectric beam (N·s/m) c 

Linear stiffness (N/m)  1a  

Cubic stiffness term (N/m3) 2a  

Penta power stiffness term (N/m5) 3a  

Electromechanical coupling coefficient (N/V) kem 

Amplitude of the external excitation (N) F 

Frequency of the external excitation (HZ) Ω 

Equivalent capacitance of piezoelectric layers (F) cp 

Load resistance (kΩ) lr  

Length of substrate layer (mm) L 

Initial voltage of energy harvesting circuits (V) 0V  

Time t 

Tip displacement of the harvester at time t ( )X t  

Voltage at time t ( )V t  

Natural frequency of the dynamical system 0  

Dimensionless linear damping term   

Dimensionless cubic stiffness term 1k  

Dimensionless penta power stiffness term 2k  

Dimensionless electromechanical coupling term   

Dimensionless excitation amplitude 0f  

Dimensionless excitation frequency   

Dimensionless stiffness term of the coil current system   

Dimensionless electromechanical damping coefficient term   

Dimensionless time T 

Dimensionless displacement at time T x 

Dimensionless voltage at time T v 

Assuming  = 0, η = 0, and f0 = 0 in Equation (5) yields its unperturbed system 

3 5

1 2, .x y y x k x k x= = − + −  (6) 

which is a Hamilton system. Letting the right side of Equation (6) be zero, one obtains its 

equilibria whose vertical coordinate y is zero and horizontal coordinates satisfy 
2 4

1 2(1 ) 0x k x k x− + = . (7) 

Their stability is determined by the roots of the following characteristic equation 
2 2 4

1 2(1 3 5 ) 0.k x k x + − + =  (8) 

Obviously, the origin O(0, 0) is the equilibrium of the system (6) whose eigenvalue is 

i =  , implying that O(0, 0) is a center. The number of the nontrivial equilibria and the 

shapes of possible potential wells of the unperturbed system (6) depend on the non-di-

mensional parameters k1 and k2. For example, for 2

1 24k k , there is no nontrivial equilibria 

in Equation (7), because according to Weda’s Theorem, apart from zero, there are no real 

roots of 2x  in Equation (7). For 2

1 24k k , We have the following theorem. 
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Theorem 1. If 2

1 24k k , there will be four nontrivial equilibria of Equation (7), i.e., two centers 

and two saddles. 

Proof of Theorem 1. If 2

1 24k k , according to Weda’s Theorem, there are two pairs of pos-

itive roots of 2x  in Equation (7) expressed by 1

22

k

k

 
 where 2

1 24 0k k = −  ; thus, 

there are four real solutions of x in Equation (7), namely, 1

22

k

k

+ 
  and 1

22

k

k

− 
 . 

In the neighborhood of the two equilibria 1

2

( ,0)
2

k
S

k


− 
 , the two eigenvalues 

solved from Equation (8) are a positive one and a negative one, expressed by 

1

2

( )k

k


 − 
=  , respectively. It means that 1

2

( ,0)
2

k
S

k


− 
  are saddles. In the 

neighborhood of the other two nontrivial equilibria 1

2

( ,0)
2

k
C

k


+ 
 , the characteristic 

equation becomes 

2 1

2

( )
0.

k

k


 + 
+ =  (9) 

As 1

2

( )
0

k

k

 + 
 , there are two pure imaginary roots in the above equation, illustrat-

ing that the equilibria 1

2

( ,0)
2

k
C

k


+ 
  are centers. □ 

Accordingly, the critical condition for static bifurcation of the equilibria is 2

1 2=4k k . 

The different types of orbits of the unperturbed system (6) are classified in k1-k2 plane, as 

shown in Figure 2. It follows that for a given value of the dimensionless cubic stiffness 

term k1, the lower the dimensionless penta power stiffness term k2 is, the higher the prob-

ability of a triple well the system will have. Based on the relationship between the dimen-

sionless parameters and the original parameters shown in Equation (4), it indicates that 

the lower the penta power stiffness coefficient of polynomial magnetic force 3a  is, the 

higher possibility for the occurrence of a triple potential well will be. For the case of mul-

tiple equilibria, two nontrivial equilibria 1

2

( ,0)
2

k
C

k


+ 
  are the centers of two poten-

tial wells surrounded by homoclinic orbits, the origin is the center of a well surrounded 

by heteroclinic orbits crossing the other two nontrivial saddles 1

2

( ,0)
2

k
S

k


− 
 . As well 

known, multiple wells may induce multistability [25,26]. In the following sections, we 

consider the case of three potential energy wells, and focus on how to make use of the 

external excitation and initial conditions to induce complex dynamics such as jump phe-

nomena among periodic attractors, inter-well oscillation or even chaos, thus harvesting 

vibration energy effectively. All the values of system parameters are dimensionless for 

analysis. Based on the physical properties of the energy harvester in reference [10], some 

invariable parameters can be set as: 

1 2 0.18, , 0.1, 0.1, 11 0. .2,k k    = = = == =  (10) 
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The parameters 0f  and   will be changed to study the influence mechanism of 

dynamical response characteristics. It can be calculated that the horizontal coordinates for 

the two nontrivial centers ( ,0)cC x   and saddles ( ,0)sS x   are 
2

2
cx =   and 

6

6
sx =  , respectively. 

 

Figure 2. Orbits of the unperturbed system (6) under different values of k1 and k2. 

3. Periodic Responses 

3.1. Periodic Solutions near the Origin (0, 0) 

In this subsection, we consider the periodic solutions near the equilibrium (0, 0). First, 

by introducing a small parameter ε satisfying 0 < ε≪1 and rescaling the parameters , ,    

and 0f  in Equation (5) as 

2

0, , , f f      = = = = , (11) 

one can rewrite the system (5) as 

2 3 5

1 2cos , .x x x f T v k x k x v v x     + = − + + + − + = −  (12) 

The Method of Multiple Scales (MMS) [15] is employed to obtain the approximate-

analytical solution of Equation (12). To this end, the displacement x and voltage response 

v are expanded as 
2 3 2 3

1 2 3 1 2 3+ + , + .x x x x v v v v     = + = + +  (13) 

The time derivatives can be rewritten as 

0

, , ( 0,1, ).
n

i i i

i i

ii

d
T T D D i

T dT
 

=


= = = =


  (14) 

Considering harmonic resonance, it is assumed that 
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1 = +  (15) 

where the detuning parameter (1)O = . Introducing Equations (13)–(15) into Equation 

(12) and separating the coefficients of ε1, ε2 and ε3 leads to 

1 2 2

0 1 1 0 1 0 1: 0, ,D x x D v D x  + = = −  (16) 

2 2 2

0 2 2 0 1 1 0 1 0 1 1 0 2 1 1 1 0 2 1 1: 2 cos 2 , ( ) ,D x x D D x D x f T v x D v v D x D x D v       + = − − + + + = − − + −  (17) 

and 

3 2 2 2 2 3

0 3 3 1 1 2 0 1 1 0 2 1 1 0 2 2 2 1 1 1: 2 2 ( ) 2 .D x x D x D D x D D x D x D x v x x k x     + = − − − − + + + − +  (18) 

The solution of Equation (16) can be assumed as 

0 0

1 1 2 1( , ) ,
i T i T

x A T T e cc v Ae cc
 = + = − +  (19) 

where cc represents the complex conjugate of the preceding terms, and the complex slow-

times dependent amplitude 1 2( , )A T T  is expressed as 1 2( , )

2

ia T T
A e = . Here, the 1 2( , )a T T  

and   are real, representing the real amplitude and the phase difference of the periodic 

solution 1x , respectively. By substituting the solution (19) into Equation (17) and separat-

ing the secular terms, one has 

1 .
2 4 2

A if Ai
D A i A

 


 
= − − + −  (20) 

Since A  is the function of 1T  and 2T , it can be solved from Equation (17) that 

2 0x = , 2

Ai
v cc




= − + . (21) 

Submitting Equations (19) and (21) into Equation (13), one can approximately express 

the periodic solution x as 0cos( )x a T  = + . Substituting Equations (19)–(21) into Equa-

tion (18) and separating its secular terms yields 

22 2 2

1

2 3 3 2 2 2 2

3
.

2 816 8 2 16 8 2

k A Af i A i A f f i A i A i
D A

       

      
= − − + − + − −  (22) 

Letting the amplitude of x be â a= , considering 
2

0 1 2A D A D A D A  + + , substitut-

ing Equations (20) and (22) into it and returning its parameters to the original dimension-

less parameters of Equation (5), one obtains 

2

0 0

2 2 3

232 2 2

0 01

3 2 2 3

ˆ cos ( 6 2 ) sin
ˆ ˆ ,

2 2 8 8

ˆˆ ˆ ˆ ˆ sin ( 6 2 ) cos3( 1)
ˆ ˆ( 1)

8 2 88 2 8 8

f fa
a a

f fk aa a a a
a a

      

  

          
 

     

− +
= − − + +

− +−
= − − − + − + − − +

  (23) 

Letting the right side of Equation (23) be zero leads to 
2

0 0

2 2 3

232 2 2

0 01

3 2 2 3

ˆ cos ( 6 2 ) sin
ˆ ,

2 2 8 8

ˆˆ ˆ ˆ ˆ sin ( 6 2 ) cos3( 1)
ˆ( 1) .

8 2 88 2 8 8

f fa
a

f fk aa a a a
a

      

  

          


     

− +
+ = +

− +−
− + − + − + = − +

 (24) 

Eliminating the triangulation function of Equation (24), one can get 

2 2 2 2 2 22 2 2
2 2 2 20 0 1

4 6 2 3 2

ˆ( 6 2 ) 3( 1)
ˆ ˆ( ) ( 1 ) .

2 8 2 864 64 2 8 2

f f k a
a a

           


      

− + −
+ = + + − + − + − +  (25) 
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To determine the stability of the periodic solution, one can get its characteristic equa-

tion. Based on Equations (23)–(25), the characteristic equation can be written as 

2 2 2 2 2 32 2 2
2 0 0 1 1

2 4 6 3 2

ˆ ˆˆ ˆ ˆ ˆ( 6 2 ) 3 3( 1)
ˆ( ) (( 1) ) 0

8 2 8 464 64 8 2

f f k a k aa a a a
a

         
   

       

− + −
+ + + + + − + − + − + =  (26) 

According to the equation above, the stability of the periodic solution in the neigh-

borhood of the origin will be changed when λ = 0, namely 

2 2 2 2 2 32 2 2

0 0 1 1

4 6 3 2

ˆ ˆˆ ˆ ˆ ˆ( 6 2 ) 3 3( 1)
ˆ(( 1) ) 0

8 2 8 464 64 8 2

f f k a k aa a a a
a

         


      

− + −
+ + − + − + − + =

. 

(27) 

The frequency response curves in the neighborhood of the origin are plotted in Fig-

ure 3. In Figure 3, the branches of analytical amplitude â  for f0 = 0.002, 0.01 and 0.05 are 

obtained from Equation (25). The solid curves and the dashing ones represent the stable 

and unstable periodic solutions, respectively. Their stability is determined by the positive-

negative sign of the real parts of eigenvalues solved from Equation (26). Based on Equa-

tion (27), one gets the saddle-node point separating the solid curve and dashing curve. 

The numerical results for the amplitudes of periodic responses are presented by applying 

the 4th Runge-Kutta approach to simulate the numerical solutions of the dimensionless 

system (5) via MATLAB. Definitely, the numerical approach will only produce stable so-

lutions. As illustrated in Figure 3, there is a good agreement between the theoretical and 

numerical response results, implying the approximate-analytical solutions are valid. Fur-

thermore, it follows from Figure 3 that for f0 = 0.05 and ω in the range (0.50, 0.76), the 

frequency response curves bend to the left and yield multivalued solutions. It means that 

the saddle-node bifurcation of the periodic solution around the origin O(0, 0), hence the 

coexistence of two intra-well attractors, can be triggered by the increase of f0 and the var-

iation of ω in a low-frequency range. 

 

Figure 3. Variation of the amplitude of periodic solutions near (0, 0) with the change of ω. 

When two intra-well attractors around the well center O(0, 0) or ( ,0)cC x   is in-

duced in the vicinity of the saddle-node bifurcation point, the initial conditions will de-

termine the branch to which the response attracts. For the purpose of energy harvesting, 

the initial conditions should be chosen to follow the high-amplitude one in order to output 

high voltage consequently. That is why we present the sequences of the attractors and 

their basins of attraction for the variation of the dimensionless external excitation. Basin 

of attraction means the union of initial conditions leading to the same attractor [20,21]. If 

the boundary of the basin of attraction of one attractor is fractal and intermingled with 
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another, a jump among multiple attractors may easily occur. In this study, the 4th Runge–

Kutta approach and the point-mapping method [26] are employed to describe the basin 

of attraction. The basins of attraction are drawn in the initial-condition plane −1.0 ≤ x(0) ≤ 

1.0, −1.0 ≤ y(0) ≤ 1.0 by generating a 600 × 600 array of starting conditions, for each of the 

initial points. The time step is taken as 0.01. For each figure of sequences of attractors and 

their basins of attraction, there are pairs of pictures on each line of which the left one is 

the phase map of the attractors, while the right one shows their basins of attraction. For 

each attractor, its basin of attraction is marked in the same color as its phase map. 

Given 0 =0.05f , the sequences of attractors and their basins of attraction with the 

variation of the dimensionless excitation frequency ω are depicted in Figure 4. For ω = 0.3 

(see Figure 4(a1)), there coexist three intra-well attractors around three different well cen-

ters O(0, 0) and ( ,0)cC x  , respectively. Even though their basins of attraction in some 

areas entangle each other (see Figure 4(a2)), the vicinity of three potential-well centers is 

single-colored with clear basin boundaries, meaning that near the potential-well centers, 

the phenomenon jump will not occur. Only if the initial condition of the structure changes 

dramatically from the neighborhood of one center to another, there will be a jump be-

tween two intra-well attractors. It is worth mentioning that the attractors are around dif-

ferent potential-well centers, thus jump is an inter-well jump. The amplitudes of the three 

attractors are very low, contributing little to harvest energy. Comparatively, the inter-well 

jump caused by the change of initial conditions contributes more to energy harvesting. As 

ω increases to 0.55, there are four intra-well attractors coexisting (see Figure 4(b1)). Apart 

from the three intra-well attractors, a new intra-well attractor around O(0, 0) with a much 

higher amplitude appears. However, as can be observed in Figure 4(b2), its basin of at-

traction is fractal and hard to be detected. Hence, it is a so-called rare attractor [27] whose 

occurring probability is very low. Compared with the basin map in Figure 4(a2), a better 

point is that outside of the vicinity of the three well centers, the fractality extent of the 

basins of attraction becomes more severe, meaning that jump can be triggered more easily 

in this region. When ω grows to 0.75, the occurrence probability of the higher-amplitude 

intra-well attractor around O(0, 0) is much higher, because its basin of attraction grows 

larger, especially in the neighborhood of O(0, 0) (see Figure 4(c2)). Note that the phenom-

enon of jump between the two intra-well attractors around O(0, 0), namely the intra-well 

jump, more easily occurs than the inter-well jump, which will be beneficial for energy 

harvesting. As ω increases to 1.0, the lower-amplitude intra-well attractor around O(0, 0) 

disappears; still there coexist three attractors, as shown in Figure 4(d1). Based on their 

basins of attraction in Figure 4(d2), it is obvious that a better energy harvesting perfor-

mance can be given by the higher-amplitude intra-well oscillation around O(0, 0) or the 

inter-well jump led by the dramatic change of initial conditions. 

  

(a1) Attractors when ω = 0.3 (a2) Basins of attraction when ω = 0.3 
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(b1) Attractors when ω = 0.55 (b2) Basins of attraction when ω = 0.55 

  

(c1) Attractors when ω = 0.75 (c2) Basins of attraction when ω = 0.75 

  

(d1) Attractors when ω = 1.0 (d2) Basins of attraction when ω = 1.0 

Figure 4. Evolution of attractors and their basins of attraction with the increase of ω for f0 = 0.05. 

3.2. Periodic Solutions near the Nontrivial Equilibria ( cx , 0) 

Around the nontrivial equilibria ( cx , 0), the periodic vibration of the cantilever 

beam structure can be induced by the perturbation of the two nontrivial centers of the 

unperturbed system (6) (see C− and C+ in Figure 2). To begin with, supposing ˆ+cx x x=  , 

and rescaling the system parameters by Equation (11) yields 

2 2 2 3 4 5

1 2 2
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos ( 5 + ), .cx x x f T v Q x Q x k x x x v v x      + = − + + − −  + = −   (28) 

where 
2 2 4 3 2

1 2 1 2 1 2 2 1
ˆ 1 3 5 , 10 3 , 10 .c c c c ck x k x Q k x k x Q k x k = − + = − = −  (29) 

It can be calculated that ˆ 2 = , 1=25.46Q  and 2 52Q = , all positive. To apply the 

Method of Multiple Scales, assuming harmonic resonance in the system (28) that 

ˆ ˆ  = + , (30) 
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where ̂  is the detuning parameter, rescaling x̂  and voltage response v  in Equation 

(28) as 

2 3 2 3

1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,x x x x v v v v     = + + + = + +  (31) 

and comparing the coefficients of ε1, ε2 and ε3 in the system (28), respectively, one has 

1 2 2

0 1 1 0 1 0 1
ˆ ˆ ˆ ˆ: 0, ,D x x D v D x  + = = −  (32) 

2 2 2 2

0 2 2 0 1 1 0 1 0 1 1 1 1

0 2 1 1 1 0 2 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ: 2 cos 2 ,

ˆ ˆ ˆ ˆ ˆ( ) ,

D x x D D x D x f T v x Q x

D v v D x D x D v

     

 

+ = − − + + +

= − − + −
 (33) 

and 

3 2 2 2 2 3

0 3 3 1 1 2 0 1 1 0 2 1 1 0 2 2 2 1 1 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ: 2 2 ( ) 2 2 .D x x D x D D x D D x D x D x v x x Q x x Q x     + = − − − − + + + − −  (34) 

The solution of Equation (32) can be written as 

0

1 1 2
ˆ ( , )

i T
x B T T e cc


= + ， 0

1̂ ,
i T

v Be cc
= − +  (35) 

where the complex slow-times dependent amplitude 1 2( , )B T T  is given by 

1 2( , )1 2( , )
.

2

i T Tb T T
B e


=  (36) 

In Equation (36), 1 2( , )b T T  and 1 2( , )T T  are real, representing the real amplitude 

and the phase difference of the periodic solution 1̂x , respectively. Substituting Equation 

(35) into Equation (33) and separating its secular terms leads to 

1 ,
2 4 2

B if Bi
D B i B

 


 

−
= − + −  (37) 

and 

0 0

2 2
2 21 1 1

2 2 2 2

2
ˆ ( ),

3 3

i T i TQ BB Q B Q B
x e e

 

  

−
=  − + +  0 0

2
21

2 2
ˆ ,

3

i T i TQ B Bi
v e e cc

  


= − +  (38) 

substituting Equations (35), (37) and (38) into Equation (34) and separating the secular 

terms there yields 

2 2 22 2 2

2 1

2 3 3 2 2 2 2 3

3 5
.

2 816 8 2 16 8 2 3

Q B Bi Q B Bif i B i B f f i B i B i
D B

       

       
= − − + − + + − −  (39) 

Considering 2

0 1 2B D B D B D B  + +  and b̂ b= , substituting Equations (36), (37) 

and (39) into it and expressing it by the original dimensionless parameters of Equation (5), 

one has: 

2

0 0

2 2 3

23 2 32 2 2

0 02 1

3 2 3 2 3

ˆ ˆcos ( 6 2 ) sinˆ ˆ ,
2 2 8 8

ˆ ˆˆ ˆ ˆ ˆ ˆˆ sin ( 6 2 ) cos3 5( )ˆ ˆˆ( )
8 2 88 2 12 8 8

f fb
b b

f fQ b Q bb b b b
b b

      

  

           
  

      

− +
= − − + +

− +−
= − − − + + − + − − +

 (40) 

For the periodic solution around C- or C+, the right side of Equation (40) is zero, i.e., 

2

0 0

2 2 3

23 2 32 2 2

0 02 1

3 2 3 2 3

ˆ ˆcos ( 6 2 ) sinˆ ,
2 2 8 8

ˆ ˆˆ ˆ ˆ ˆ ˆˆ sin ( 6 2 ) cos3 5( )ˆˆ( ) .
8 2 88 2 12 8 8

f fb
b

f fQ b Q bb b b b
b

      

  

           
 

      

− +
+ = +

− +−
− + − − + − + = − +

 (41) 

Eliminating the triangulation function of Equation (41), one obtains 
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2 2 2 2 2 2 2 22 2 2
2 2 2 20 0 2 1

4 6 2 3 2 3

ˆ ˆˆ ˆ( 6 2 ) 3 5( )ˆ ˆˆ( ) ( ) .
2 8 2 864 64 2 8 2 12

f f Q b Q b
b b

            
 

       

− + −
+ = + + − + − − + − +  (42) 

The periodic solution near the nontrivial equilibria ( cx , 0) can be expressed as 

2 2

21 1

2 2

ˆ ˆ2 ˆcos( ) cos ( )).
3 3

c

Q b Q b
x x b T T   

 
=  + +  +  (43) 

As in Section 3.1, the stability of the periodic solutions can be determined by the fol-

lowing characteristic equation 

2 2 2 2 2

2 0 0

2 4 6

3 2 3 22 2 2

2 1 1 2

3 2 3 3

ˆ( 6 2 )
( )

64 64

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ 3 5 5 3( )ˆˆ(( ) )( ) 0.
8 2 8 48 2 12 6

f f

Q b Q b Q b Q bb b b b
b

   
  

  

      
 

      

− +
+ + + +

−
+ − + − − + − + − =

 (44) 

Hence, saddle-node bifurcation will occur when 

2 2 2 2 2 3 2 3 22 2 2

0 0 2 1 1 2

4 6 3 2 3 3

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ( 6 2 ) 3 5 5 3( )ˆˆ(( ) )( ) 0
8 2 8 464 64 8 2 12 6

f f Q b Q b Q b Q bb b b b
b

          
 

        

− + −
+ + − + − − + − + − =  (45) 

According to Equations (42)–(45), the frequency response curves in the neighborhood 

of the nontrivial equilibria are presented in Figure 5 where the branches of analytical am-

plitude b̂  for f0 = 0.002, 0.01 and 0.05 are obtained from Equation (42). The solid curves 

and the dashed ones show the stable and unstable periodic solutions, respectively. Their 

stability is determined by the positive-negative sign of the real parts of eigenvalues solved 

from Equation (44). The saddle-node point separating the solid curve and dashing curve 

is determined by Equation (45). By applying 4th Runge–Kutta approach to simulate the 

numerical solutions of the dimensionless system (5), the numerical results are presented. 

As shown in Figure 5, theoretical results totally agree with the numerical ones. Similar to 

Figure 3, it also can be observed in Figure 5 that for f0 = 0.05, the frequency response curves 

bend to the left and yield bistability, indicating that due to saddle-node bifurcation of the 

periodic solution, in the vicinity of the saddle-node bifurcation point, there are two intra-

well periodic attractors around each nontrivial equilibrium. 

 

Figure 5. Variation of the amplitude of periodic solution near ( cx , 0) with the change of ω. 

Based on the analysis of the periodic responses near the origin and the nontrivial 

equilibria, the evolution of the periodic solutions of system (5) with the amplitude of f0 for 

ω = 1.5 is illustrated in Figure 6. Obviously, when f0 increases from 0, the nontrivial equi-

libria and the origin lose their stability; instead, three periodic attractors coexist, attributed 

to the disturbance of the tristable equilibria. When f0 varies from 0 to 0.02, the numerical 



Mathematics 2022, 10, 2894 13 of 24 
 

 

simulation is in great agreement with the theoretical solution. However, when f0 continues 

to increase, the theoretical prediction of the periodic responses does not match the numer-

ical results well, which may be due to the limitation of the Method of Multiple Scale, 

namely the value of the excitation frequency ω should be closed to the inherent frequency 

of the perturbed systems (12) and (28) near the origin and the nontrivial equilibria ( cx , 

0). Actually, the given value of the excitation frequency is ω = 1.5, while the inherent fre-

quencies of the systems (12) and (28) are 1 and 2, respectively. It means that the derivations 

of ω from the two inherent frequencies are not that small. Although the prediction is not 

that quantitatively accurate, the theoretical results and numerical simulation both show 

that the increase of the excitation amplitude triggers bistability around each nontrivial 

well center ( cx , 0). According to the theoretical analysis, it can be ascribed to the saddle-

node bifurcation of the periodic solutions. For instance, for f0 = 0.05, there coexist five intra-

well periodic attractors, i.e., two around each nontrivial potential-well center and one 

around O(0, 0). 

 

Figure 6. Variation of the periodic solutions with the amplitude of f0 when ω = 1.5. 

Fixing ω = 1.5, the evolution of periodic responses and their basins of attraction with 

the increase of the dimensionless excitation amplitude f0 is shown in Figure 7. For f0 = 0, 

the coexisting triple attractors are the three well centers whose basin boundaries are 

smooth, as shown in Figure 7(a1,a2). For f0 = 0.045, the three point attractors are perturbed 

and replaced by three intra-well periodic attractors around them (see Figure 7(b1)). Alt-

hough the single-colored neighborhood of each well center in Figure 7(b2) implies that 

the initial conditions chosen there must attract to the intra-well attractor around it, the 

inter-well jump may be triggered when the initial conditions are disturbed dramatically. 

As f0 increases a bit to reach 0.046, two new intra-well periodic attractors with higher am-

plitudes suddenly appear in the neighborhood of the nontrivial well centers. As predicted 

in Figure 6, this can be attributed to the saddle-node bifurcation. Now, there are five intra-

well attractors in Figure 7(c1). However, as shown in Figure 4(c2), the basins of attraction 

of the new attractors are fractal and scattered. Thus, the occurring probability for these 

two high-amplitude intra-well responses is very low. As f0 continues to increase, the ba-

sins of attraction of the two new periodic attractors are enlarged (see Figure 7(d2)). It 

means that the occurrence probability of the higher-amplitude intra-well attractors 

around the well centers C− and C+ is much higher. Moreover, the jump between the two 

intra-well attractors around each nontrivial well center, namely the intra-well jump, is of 
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higher probability to occur. Therefore, not only the intra-well jump due to saddle-node 

bifurcation of the periodic solution around the nontrivial well centers and a small pertur-

bation of the initial condition but also the inter-well jump among attractors around differ-

ent wells that is led by dramatic disturbance of the initial condition can make the structure 

harvest vibration energy more conveniently. 

  

(a1) Attractors when f0 = 0 (a2) Basins of attraction when f0 = 0 

  

(b1) Attractors when f0 = 0.045 (b2) Basins of attraction when f0 = 0.045 

   

(c1) Attractors when f0 = 0.046 (c2) Basins of attraction when f0 = 0.046 

  

(d1) Attractors when f0 = 0.067 (d2) Basins of attraction when f0 = 0.067 

Figure 7. Evolution of attractors and their basins of attraction with the increase of f0 for ω = 1.5. 
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4. Global Bifurcation 

In this section, we discuss the necessary conditions for heteroclinic and homoclinic 

bifurcation and the complex dynamics that these global bifurcations induce. To begin 

with, the heteroclinic orbits and homoclinic orbits are written as [20]: 

1 3

2 2

2 sinh( ) 2 (1 )cosh( )
2 2, .

( cosh( )) 2( cosh( ))

s s

hetero hetero

T T
x x

x y

T T

 
 

   

+

=  = 

+ +

 (46) 

and 

1 3

2 2

2 cosh( ) 2 ( 1)sinh( )
2 2, .

( cosh( )) 2( cosh( ))

s s

homo homo

T T
x x

x y

T T

 
 

   

+

=  =

− + − +

 (47) 

where 

2 2 2

2

2 2 2 2

3 5
2 ( 1), 0.

3

c c s

s

s c s

x x x
x k

x x x
 

−
= − = 

−
 (48) 

The expression of the component heterov  and homov  of the heteroclinic orbits and ho-

moclinic ones obtained by solving Equation (5) is presented as follows 

0 0
( ) ( ) , ( ) ( ) .

T T
T T T T

hetero hetero homo homov T e e y T dT v T e e y T dT    − −= − = −   (49) 

The dimensionless Equation (5) is approximated to 

3 5

1 2

,

ˆ( cos ),

.

x y

y x k x k x y f T v

v v y

   

 

=

= − + − + − + +

= − −

 (50) 

Since the system (50) is a time-periodic perturbation of a Hamiltonian system, the 

Melnikov method can be used to describe how the heteroclinic/homoclinic orbits break 

up in the presence of the perturbation [28]. According to the Melnikov method, the Melni-

kov function is a signed measure of the distance between the stable and unstable mani-

folds for the perturbed system [29,30]. If it has simple zeros, there will be intersection of 

heteroclinic orbits or homoclinic orbits, corresponding to heteroclinic bifurcation or ho-

moclinic bifurcation, respectively. Submitting Equations (46)–(49) to its Melnikov func-

tions under the two types of orbits yield 

0 0

2 2 2 2

1 2 0 0
2

ˆ( ) ( )( ( ) cos( ( )) ( ))

(1 ) 2
csch cos( )

24(1 ) 1

hetero hetero hetero hetero

s s

hetero hetero s

M T y T y T f T T v T dT

x x
I I f x T

   

      


  

+


−
= − + − +

+
= − − +

− −


   (51) 

and 

0 0

2 2 2 2

1 2 0 0
2

ˆ( ) ( )( ( ) cos( ( )) ( ))

(1 ) 2
2 sin( )sin( )

24(1 ) 1

homo homo homo homo

s s

homo homo s

M T y T y T f T T v T dT

x x
I I f x T

   

     


 

+


−
= − + − +

+
= − − −

− −


 (52) 

where 
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2

1 2 3 302
2 2

2

1 2 32
2

cosh( ) cosh( )
1 2 2(2 ) 1 (2 4 )arctan , ( ) ,
1 ( cosh( )) ( cosh( ))

sinh( ) sinh(
1 2(2 ) 1 (2 4 )arctan , (

1 ( cosh( ))

T

T

hetero hetero

T

T

homo homo

T

T T
e

I I dT dT

e T T

T
e

I I

e T









 


  
    




  
  

−

−

−
= − − + − =

− + +

+
= − − − − =

− − +

 

30
2

)
2 ) .

( cosh( ))

T

T

dT dT

T



 

−

−

− +
 

 (53) 

In the above equation, the integrals 2heteroI  and 2homoI  can be evaluated numerically 

[20]; 1heteroI , 1homoI , 2heteroI  and 2homoI  are all positive. 

For 

2 3 2

0 0 1 2
2

sinh( ) (1 ) sinh( )

48 (1 ) 1

s s

hetero

hetero hetero

x x

f f I I

 
    

 

  

+

 = +
− −

, (54) 

there will be a real number of 0T  satisfying 0( ) 0heteroM T =  and 
0( ) 0heteroM T   , meaning 

that the equilibria of Equation 0( ) 0heteroM T =  are simple, enabling the existence of the 

transverse heteroclinic orbits. Accordingly, 0

heterof  is the amplitude threshold of hetero-

clinic bifurcation. Similarly, it follows from the Melnikov function (52) that if 
2 2

0 0 1 2
2

(1 )2 2
csc( ) csc( )

48(1 ) 1

homo s s

homo homo

x x
f f I I

     

  

+
 = +

− −
, (55) 

the equation 0( ) 0homoM T =  will have simple equilibria, corresponding to an intersection 

of the stable and unstable manifolds and the occurrence of homoclinic bifurcation. Given 

ω = 1.5, critical values can be calculated that 0 0.089homof   and 0 0.27heterof  . 

A question is then aroused: what dynamical behaviors will be induced by the global 

bifurcations? To get the answer, we continue to depict the evolution of attractors and their 

basins of attraction with the excitation amplitude 0f  for ω = 1.5 (see Figure 8). For 0f  = 

0.089 (see Figure 8(a1)), the same as the case of 0f  = 0.067 (see Figure 7(d1)), there are still 

five periodic attractors. To be different, the two higher-amplitude intra-well attractors, 

i.e., the periodic attractors in yellow and blue, are expanded so that their phases nearly 

touch the homoclinic obits (see the light grey dashing curves in Figure 8(a1)); meanwhile, 

it is hard to observe their basins of attraction in Figure 8(a2), as they are eroded seriously. 

It indicates that for 0f  = 0.089, i.e., the theoretical threshold for homoclinic bifurcation, 

the two higher-amplitude intra-well attractors around two nontrivial well centers become 

rare attractors. When 0f  increase a bit to 0.090, it can be observed in Figure 8(b1) that 

these two attractors disappear; three lower-amplitude intra-well attractors are left; the in-

tra-well attractor around the origin becomes dominant, as the most area is its basin of 

attraction (see the green region in Figure 8(b2)). It follows from the comparison of Figure 

8(a1,b1) that the homoclinic bifurcation leads to the disappearance of two higher-ampli-

tude intra-well attractors around nontrivial well centers. 
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(a1) Attractors when f0 = 0.089 (a2) Basins of attraction when f0 = 0.089 

  

(b1) Attractors when f0 = 0.090 (b2) Basins of attraction when f0 = 0.090 

  

(c1) Attractors when f0 = 0.10 (c2) Basins of attraction when f0 = 0.10 

  

(d1) Attractors when f0 = 0.11 (d2) Basins of attraction when f0 = 0.11 
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(e1) Attractors when f0 = 0.27 (e2) Basins of attraction when f0 = 0.27 

  

(f1) Attractors when f0 = 0.30 (f2) Basins of attraction when f0 = 0.30 

  

(g1) Attractors when f0 = 0.31 (g2) Basins of attraction when f0 = 0.31 

Figure 8. Sequences of attractors and their basins of attraction for f0 ranging from 0.089 to 0.31. 

When 0f  continues to increase, the intra-well attractor around O(0, 0) will be en-

larged, and its basin of attraction will erode the basins of attraction of the other two at-

tractors seriously (see Figure 8(c2)). For 0f = 0.11, two intra-well attractors around the 

nontrivial equilibria disappear (see Figure 8(d1)), and the whole initial-condition plane of 

Figure 8(d2) is green, showing the global stability of the intra-well attractor around O(0, 

0). There is no jump now, unfavorable for energy harvesting. As 0f  continues to increase, 

the situation still maintains. For 0f  = 0.27, i.e., the theoretical threshold for heteroclinic 

bifurcation, the phase orbit of the only attractor is enlarged and nearly touches the heter-

oclinic obits (see the light grey dashing curves in Figure 8(e1)); still the intra-well attractor 

is globally attractive, as shown in the green map in Figure 8(e2). Then, for 0f  increasing 

a bit to 0.30, a new periodic attractor suddenly appears (see Figure 8(f1)). It is an inter-

well periodic attractor whose amplitude is much higher than the intra-well one. It can be 

concluded that the heteroclinic bifurcation triggers the occurrence of inter-well response. 

Due to the large amplitude of the inter-well attractor in Figure 8(f1), we have to expand 

the phase map plane to display it. Note that we still keep the initial plane −1.0 ≤ x(0) ≤ 1.0, 
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−1.0 ≤ y(0) ≤ 1.0 which is totally green, meaning that initial conditions in this region cannot 

lead to this attractor (see Figure 8(f2)). As 0f  grows to 0.31, one can observe its basin of 

attraction in the initial plane (see Figure 8(g2)). Of course, the occurrence of inter-well 

oscillation is advantageous for energy harvesting. 

Based on Equations (54) and (55), i.e., the theoretical threshold of the dimensionless 

amplitude 0f  for homoclinic bifurcation and heteroclinic bifurcation, we present Figure 

9 to show the variation of 0f  with the increase of excitation frequency ω. The blue curve 

and the red one represent the thresholds for homoclinic bifurcation and heteroclinic one, 

respectively. The numerical values of 
0

homof  and 0

heterof  are obtained at the points for the 

disappearance of two higher-amplitude intra-well attractors around nontrivial well cen-

ters and the occurrence of the inter-well attractor, respectively. For the purpose of energy 

harvesting, the former is unwanted for reducing jump, while the latter is desirable for 

inducing high-amplitude inter-well oscillation. Each numerical critical value of 0

homof  

and 0

heterof  is kept to two decimal places. We make sure that if 0f  is less than the numer-

ical results 0

homof  or 0

heterof , the mentioned intra-well attractors will not disappear, or the 

inter-well periodic attractor will not appear, respectively. In Figure 9, the numerical re-

sults for the critical values of 0f  are in agreement with analytical ones, verifying the va-

lidity of the analysis. Figure 9 also demonstrates that the thresholds of the amplitude 0f  

for homoclinic bifurcation and heteroclinic bifurcation will increase monotonically with 

ω. Comparatively, 0

heterof  increases more rapidly than 0

homof . In addition, Figure 9 shows 

that the lower the excitation frequency is, the lower threshold of the excitation amplitude 

to trigger inter-well oscillation will be, which will be helpful to harvest vibration energy. 

 

Figure 9. 0

homof  and 0

heterof  of system (5) versus the excitation frequency ω. 

As 0f  continues to increase, the variation of the dynamical behaviors and their ba-

sins of attraction can be observed in Figure 10. For 0f  = 0.37, the basins of attraction of 

the inter-well attractor are enlarged and intermingled with the intra-well one, as can be 

observed from the grey region and grey dots scattered in the green region of Figure 10(a2). 

That means that the occurrence probability of inter-well oscillation and inter-well jump 

between the two attractors increases, which is surely good for energy harvesting. When 

0f  increases to 0.45, the fractality of basins of attraction becomes more obvious, and the 

basins of attraction of the intra-well attractor are seriously eroded by the basin of the inter-

well attractor (see the intermingled green and brown regions in Figure 10(b2)). For 0f  = 

0.52, there is very little basin of attraction of the intra-well attractor left, showing that the 

intra-well attractor becomes a rare attractor. As 0f  reaches 0.60, the whole initial-
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condition plane is brown, illustrating that the inter-well response becomes globally attrac-

tive, and favorable for the structure to harvest energy. 

  

(a1) Attractors when f0 = 0.37 (a2) Basins of attraction when f0 = 0.37 

  

(b1) Attractors when f0 = 0.45 (b2) Basins of attraction when f0 = 0.45 

  

(c1) Attractors when f0 = 0.52 (c2) Basins of attraction when f0 = 0.52 

  

(d1) Attractors when f0 = 0.60 (d2) Basins of attraction when f0 = 0.60 

Figure 10. Sequences of attractors and their basins of attraction for f0 ranging from 0.37 to 0.60. 

It is known that the Poincaré map is one of the most useful methods of investigating 

continuous-time nonlinear systems that involves a discretization technique [30]. For f0 

continuing to increase, we present the bifurcation of the system (5) in the Poincaré map in 

Figure 11. Here, the points on the Poincaré map are collected from a cross-section at y = 0 
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and x > 0 in a sufficiently large time interval 5000 8000T   to ensure that the response 

is stable. As can be observed, when 0f  is more than 3.0, the system (5) evolves large-

range inter-well chaotic motion through the routine of the period-doubling bifurcation. 

The chaotic vibration for 0f  = 4.2 is displayed via its phase map, Poincaré map and spec-

trum diagram in Figure 12. Note that points of the Poincaré map in Figure 12b are ob-

tained from the cross-section at 2T n=  satisfying 5000 8000T  ; here n represents in-

tegers. It follows from Figures 11 and 12 that global bifurcations finally lead to this large-

range inter-well chaotic motion, which is unquestionably useful for energy harvesting. 

 

Figure 11. Bifurcation diagram under different values of f0. 

   

(a) Phase map (b) Poincaré map (c) Spectrum diagram 

Figure 12. Chaos of the system (5) for f0 = 4.2. 

5. Conclusions 

It is well known that energy harvesters favor the appearance of complex dynamics. 

In this paper, bifurcations and complex dynamics of the electromechanical system of a 

piezoelectric energy harvester comprising a cantilever piezoelectric beam with an at-

tached tip mass exposed to a harmonic tip force are investigated analytically and numer-

ically. 

First, the dimensionless ordinary differential equations governing the electrome-

chanical system are obtained. The equilibrium bifurcation and stability have been inves-

tigated for the unperturbed system. The bifurcation sets of the equilibrium in parameter 

space have been constructed to demonstrate that the number and shapes of potential well 

depend on the coefficients of the polynomial form of the magnetic force: the smaller the 

penta power stiffness coefficient of nonlinear magnetic force is, the higher possibility for 

the occurrence of a triple potential well will be. 

Then, fixing the physical parameters of the structure and varying the excitation am-

plitude and frequency, the case of a triple potential well is discussed. The Method of Mul-

tiple Scales is applied to provide analytical intra-well solutions. The oscillator is found to 

exhibit saddle-node bifurcation leading to bistable intra-well attractors around the same 
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well center. Thus, the system may undergo four intra-well attractors or five intra-well at-

tractors. The numerical integration method was then utilized to verify the solutions. 

Consequently, we perform a detailed investigation of basins of attraction of multiple 

attractors that had still relatively little consideration in the literature. The basins of attrac-

tion are obtained by the point-mapping method. The numerical results further confirm 

the coexistence of these attractors, in good agreement with the theoretical ones, showing 

the validity of the analysis. It is found that in the regions with evidence of multistability 

basins of attraction with fractal structures occur quite frequently. We have also found ex-

tremely intermingled basins and rare attractors. It also reveals that for the excitation am-

plitude and frequency varying in the vicinity of saddle-node bifurcation points, the intra-

well jump between the two intra-well attractors around the same well center is much eas-

ier to trigger than the inter-well jump among intra-well attractors around different well 

centers. The latter can be induced by a dramatic change of initial position or velocity. Both 

the two jumps are beneficial for energy harvesting. 

Furthermore, analytical expressions for homoclinic orbits and heteroclinic orbits of 

the unperturbed system are derived. The Melnikov method is successfully employed to 

detect the analytical criteria for homoclinic bifurcation and heteroclinic bifurcation suc-

cessively. These results obtained are verified by the numerical simulations in the form of 

phase maps, basins of attraction, bifurcation diagrams and Poincaré maps where fine 

agreement is achieved. It is found that the increase of the excitation amplitude can induce 

homoclinic bifurcation and heteroclinic bifurcation successively; the thresholds of the ex-

citation amplitude for homoclinic bifurcation and heteroclinic bifurcation both increase 

monopoly with the increase of the excitation frequency. Homoclinic bifurcation induces 

the disappearance of the intra-well attractors around the nontrivial equilibria. An increase 

in the excitation amplitude can break the basins into discrete pieces or points. In contrast, 

heteroclinic bifurcation leads to the occurrence of a large-range jump between inter-well 

attractor and intra-well one, the globally attractive large-amplitude inter-well attractor, 

and eventually inter-well chaos through the routine of the period-doubling bifurcation. It 

implies that for the purpose of energy harvesting, homoclinic bifurcation is undesirable, 

while heteroclinic bifurcation is favorable. 

In this paper, the effect of the excitation amplitude, the excitation frequency as well 

as initial conditions on the nonlinear behavior of this triple-well piezoelectric energy har-

vester has been studied. Based on these investigations, the next steps will consist of de-

signing an actual energy harvesting system featuring the calculated position of the equi-

libria, assessing the performance and optimizing the device. Hence, nonlinear magnetic 

interactions through the use of two magnets on a base interacting with a magnet at the 

free end of a cantilever beam can be considered. From an applicative point of view, a com-

parative analysis with moveable magnets on the base can be considered (see the structure 

in Figure 13). 

 

Figure 13. Possible experimental implementation. 
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It should be pointed out that the results in this paper are limited to the fixed physical 

properties of the structure. We have not considered the effect of physical properties on 

inducing the large-scale complex responses which can be beneficial for further optimiza-

tion of triple-well energy harvesters. Jump phenomena, inter-well oscillation and large-

range chaos that we have discussed in detail can make the structure under frequent strain. 

Considering the material characteristics of the piezoelectric generators, there may be brit-

tles in piezo layers, leading to a challenge for the working lifespan of the devices. For 

better energy harvesting performance and reliability, these should be taken into account 

in theoretical study as well as experiments in practical application, which will be included 

in our future work. 
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