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Abstract: Global dynamics of a piezoelectric energy harvester with tristable potential is investigated.
The dynamical model of a cantilever beam energy harvester is considered; its static bifurcation is also
discussed. Multiple intra-well attractors and their basins of attraction are presented to discuss the
mechanism of multistability and its initial sensitivity. Moreover, the Melnikov method is applied
to present the conditions for global bifurcations and the induced complex dynamics. The results
show that the variation of coefficients of the polynomial may affect the number and shapes of
potential wells, while the increase of the excitation amplitude may trigger multistability around one
equilibrium, initial-sensitive jump, inter-well attractor and chaos. The results may provide some
theoretical reference for increasing the working performance of energy harvesters.
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1. Introduction

Piezoelectricity is an attractive physical conversion generated by converting mechani-
cal strain to electrical potential [1,2]. Most piezoelectric materials have fast piezoelectric
reactions, meaning that they can do mechanical–electrical energy conversion thus har-
vesting energy from dynamical structures conveniently [3,4]. Owing to this advantage,
the profile design of piezoelectric energy harvesters has been paid great attention during
these decades. Various structures have been designed for piezoelectric energy harvesters,
possessing monostable [5], bistable [6], tristable [7], qua-stable [8] or even quinstable [9]
characteristics. Zhou et al. [10] proposed a broadband piezoelectric-based vibration energy
harvester with a triple-well potential induced by a magnetic field and presented an experi-
mental investigation, showing that the tristable configuration easily attained higher energy
intra-well oscillations. Li et al. [11] considered a multistable piezoelectric energy harvester
with a nonlinear spring subjected to wake-galloping and observed that intra-well motion
and chaos occurred within a certain range of fluid velocity. Naseer et al. [12] constructed a
piezoelectric cantilever-cylinder structure for the sake of energy harvesting from vortex-
induced vibration (VIV) and found the energy harvester in the monostable configuration
displayed a hardening behavior with higher amplitudes thus a larger output voltage, while
in the bistable configuration, it had a wider synchronization region with period or non-
period responses but produced a lower output power. Yang et al. [13] designed a magnetic
levitation-based hybrid energy harvester and found via quantitative investigation that the
tristable system required less kinetic energy to excite a large displacement motion, com-
pared with monostable systems. Wang et al. [14] proposed an ultra-low-frequency energy
harvester to harness structural vibration energy and displayed the benefits of multistability
for energy harvesting.

It is evident that multistability and chaos show great potential in vibration energy
harvesting techniques. The idea is that these two initial-sensitive phenomena, i.e., chaos
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and jump among intra-well motions and inter-well ones, can easily make a big deforma-
tion of the piezoelectric structure, thus collecting much electrical potential. Hence, many
researchers have been devoted to investigating these complex phenomena of energy har-
vesters and their mechanisms. Rezaei et al. [15] exploited the Method of Multiple Scales to
provide an approximate-analytical solution for the vibrating system of a nonlinear piezo-
electric energy harvester under a hard harmonic excitation. Chen et al. [16] considered
an arch-linear-composed-beam piezoelectric energy harvester with magnetic coupling
and investigated numerically and experimentally the large-amplitude intra-well motion
and chaos. Ju et al. [17] presented numerical results and experiments for a multistable
piezoelectric vibration energy harvester with four potential wells, showing that the jump
from the inter-well motion to the intra-well motion can be easily triggered under a low
acceleration. Cao et al. [18] introduced the fractional model for magnetically coupling
broadband energy harvesters under low-frequency excitation and presented the chaotic
behavior clearly via numerical simulations and experiments. Lallart et al. [19] exposed the
analytical results and numerical ones to provide conditions for the occurrence of multista-
bility in the framework of energy harvesting. Tékam et al. [20] focused on a tristable energy
harvesting system having fractional order viscoelastic material and computed its periodic
responses by the Krylov–Bogoliubov averaging method. In the dynamical system of a
parametrically amplified Mathieu–Duffing nonlinear energy harvester, Karličić et al. [21]
obtained an approximation of the periodic response by using the incremental harmonic
balance method and exhibited the coexistence of bistable periodic attractors via numeri-
cal results. Considering a bistable piezo-magnetoelastic structure for energy harvesting,
Barbosa et al. [22] proposed a semi-continuous method to control chaos and presented
the control effect by numerical results. Chen et al. [23] proposed Melnikov function-based
necessary conditions of chaos in a bistable piezoelectric vibration energy harvesting system
and verified their validations numerically. For a novel electromagnetic bistable vibration
energy harvester with an elastic boundary, Zhang et al. [24] classified basins of attraction
of different attractors and found that multistability will increase the occurring probability
of the large-amplitude intra-well responses. Fu et al. [25] modeled a new sliding-mode
triboelectric energy harvester in the form of a cantilever beam with a tip mass loaded by
both magnetic and friction forces and found three types of multistability in its dynamical
system. Sufficient works have studied the complex dynamics of energy harvesting systems
in detail, but the mechanism behind multistability, jump and chaos is still not clear yet.

To this end, we consider a type of tristable piezoelectric energy harvester and study
the mechanism behind its complex dynamics. The remaining contents are organized as
follows: In the next section, the dynamical model is constructed, and its equilibria are
discussed. In Section 3, the coexistence of multiple attractors and their mechanisms are
discussed in detail. In Section 4, necessary conditions for global bifurcations are proposed
and verified by numerical results. Finally, conclusions are discussed in Section 5.

2. Dynamical Model and Its Static Bifurcation

The simplified diagram of the considered tristable piezoelectric energy harvester [10]
is shown in Figure 1 where X is the horizontal displacement of the end of the substrate
layer at moment t, L the length of the substrate layer. In Figure 1, the magnet at the end of
the substrate layer provides nonlinear forces via interacting with the other two magnets;
B and D are unstable positions of the vibrating system, A, C and E are stable ones. The
energy is stored by the energy harvesting circuits based on the piezoelectric effect of the
piezoelectric layers driven by the substrate layer. According to the Second Law of Newton
and Kirchhoff’s law, the vibrating system of the energy harvester can be expressed as

m
..
X(t) + c

.
X(t) + k(X)− kemV(t) = F cos(Ωt), cp

.
V(t) +

V(t)
rl

+ kem
.

X(t) = 0 (1)

where m, c, kem are the equivalent mass, the equivalent damping and equivalent elec-
tromechanical coupling coefficient, respectively; cp is the equivalent capacitance of the
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piezoelectric materials, rl the load resistance, V(t) the voltage across the electrical load, X(t)
is the tip displacement of the harvester in the transverse direction, k(X) the magnetic force
whose nonlinearity due to the effect of magnetic force, and F and Ω are the amplitude
and frequency of the external excitation, respectively. The polynomial form for nonlinear
magnetic force [15,17] is introduced in order to characterize the relationship between the
tip displacement of the cantilever and it below:

k(X) = a1X− a2X3 + a3X5 (2)

where a1, a2 and a3 are positive and the coefficients of the polynomial. By introducing the

dimensionless time T = ω0t where ω0 =
√

a1
m , and the variables x(T) = X(t)

L , v(T) = V(t)
V0

,
the dimensionless form of Equation (1) can be expressed by

x′′ (T)+ µx′(T)+ x(T)− k1x3(T)+ k2x5(T)− ηv(T) = f0 cos ωT, v′(T)+γv(T)+ βx′(T) = 0, (3)

where

ω =
Ω
ω0

, k1 =
a2
a1

L2, k2 =
a3
a1

L4, µ =
c

mω0
, η =

kemV0
La1

, f0 =
F

La1
, γ =

1
cprlω0

, β =
kemL
cpV0

. (4)

By denoting x(T) , x, v(T) , v, x′(T) ,
.
x, x′′ (T) ,

..
x, v′(T) ,

.
v in Equation (3), the

dimensionless state-space model of the piezoelectric vibration energy harvesting system can be
obtained as follows:

..
x + µ

.
x + x− k1x3 + k2x5 − ηv = f0 cos(ωT),

.
v + γv + β

.
x = 0. (5)

Note that all non-dimensional parameters in the above equation are positive. The nomenclatures
of the system parameters are presented in Table 1.
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Table 1. Parameters of systems (1) and (5).

Parameter Symbol

Equivalent mass of the proof mass (kg) m
Equivalent damping of the piezoelectric beam (N·s/m) c
Linear stiffness (N/m) a1
Cubic stiffness term (N/m3) a2
Penta power stiffness term (N/m5) a3
Electromechanical coupling coefficient (N/V) kem
Amplitude of the external excitation (N) F
Frequency of the external excitation (HZ) Ω
Equivalent capacitance of piezoelectric layers (F) cp
Load resistance (kΩ) rl
Length of substrate layer (mm) L
Initial voltage of energy harvesting circuits (V) V0
Time t
Tip displacement of the harvester at time t X(t)
Voltage at time t V(t)
Natural frequency of the dynamical system ω0
Dimensionless linear damping term µ
Dimensionless cubic stiffness term k1
Dimensionless penta power stiffness term k2
Dimensionless electromechanical coupling term η
Dimensionless excitation amplitude f0
Dimensionless excitation frequency ω
Dimensionless stiffness term of the coil current system γ
Dimensionless electromechanical damping coefficient term β
Dimensionless time T
Dimensionless displacement at time T x
Dimensionless voltage at time T v

Assuming µ = 0, η = 0, and f 0 = 0 in Equation (5) yields its unperturbed system

.
x = y,

.
y = −x + k1x3 − k2x5. (6)

which is a Hamilton system. Letting the right side of Equation (6) be zero, one obtains its equilibria
whose vertical coordinate y is zero and horizontal coordinates satisfy

x(1− k1x2 + k2x4) = 0. (7)

Their stability is determined by the roots of the following characteristic equation

λ2 + (1− 3k1x2 + 5k2x4) = 0. (8)

Obviously, the origin O(0, 0) is the equilibrium of the system (6) whose eigenvalue is λ = ±i,
implying that O(0, 0) is a center. The number of the nontrivial equilibria and the shapes of possible
potential wells of the unperturbed system (6) depend on the non-dimensional parameters k1 and
k2. For example, for k1

2 < 4k2, there is no nontrivial equilibria in Equation (7), because according
to Weda’s Theorem, apart from zero, there are no real roots of x2 in Equation (7). For k1

2 > 4k2, We
have the following theorem.

Theorem 1. If k1
2 > 4k2, there will be four nontrivial equilibria of Equation (7), i.e., two centers and

two saddles.

Proof of Theorem 1. If k1
2 > 4k2, according to Weda’s Theorem, there are two pairs of positive roots

of x2 in Equation (7) expressed by k1±
√

∆
2k2

where ∆ = k1
2 − 4k2 > 0; thus, there are four real solutions

of x in Equation (7), namely, ±
√

k1+
√

∆
2k2

and ±
√

k1−
√

∆
2k2

.

In the neighborhood of the two equilibria S±(±
√

k1−
√

∆
2k2

, 0), the two eigenvalues solved from
Equation (8) are a positive one and a negative one, expressed by
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λ = ±
√√

∆(k1−
√

∆)
k2

, respectively. It means that S±(±
√

k1−
√

∆
2k2

, 0) are saddles. In the neighbor-

hood of the other two nontrivial equilibria C±(±
√

k1+
√

∆
2k2

, 0), the characteristic equation becomes

λ2 +

√
∆(k1 +

√
∆)

k2
= 0. (9)

As
√

∆(k1+
√

∆)
k2

> 0, there are two pure imaginary roots in the above equation, illustrating that the

equilibria C±(±
√

k1+
√

∆
2k2

, 0) are centers. �

Accordingly, the critical condition for static bifurcation of the equilibria is k1
2 = 4k2. The

different types of orbits of the unperturbed system (6) are classified in k1-k2 plane, as shown in
Figure 2. It follows that for a given value of the dimensionless cubic stiffness term k1, the lower
the dimensionless penta power stiffness term k2 is, the higher the probability of a triple well the
system will have. Based on the relationship between the dimensionless parameters and the original
parameters shown in Equation (4), it indicates that the lower the penta power stiffness coefficient
of polynomial magnetic force a3 is, the higher possibility for the occurrence of a triple potential

well will be. For the case of multiple equilibria, two nontrivial equilibria C±(±
√

k1+
√

∆
2k2

, 0) are the
centers of two potential wells surrounded by homoclinic orbits, the origin is the center of a well

surrounded by heteroclinic orbits crossing the other two nontrivial saddles S±(±
√

k1−
√

∆
2k2

, 0). As
well known, multiple wells may induce multistability [25,26]. In the following sections, we consider
the case of three potential energy wells, and focus on how to make use of the external excitation and
initial conditions to induce complex dynamics such as jump phenomena among periodic attractors,
inter-well oscillation or even chaos, thus harvesting vibration energy effectively. All the values of
system parameters are dimensionless for analysis. Based on the physical properties of the energy
harvester in reference [10], some invariable parameters can be set as:

k1 = 8, k2 = 12, µ = 0.1, η = 0.1, γ = 0.1, β = 0.1. (10)

The parameters f0 and ω will be changed to study the influence mechanism of dynamical
response characteristics. It can be calculated that the horizontal coordinates for the two nontrivial

centers C±(±xc, 0) and saddles S±(±xs, 0) are xc = ±
√

2
2 and xs = ±

√
6

6 , respectively.
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3. Periodic Responses
3.1. Periodic Solutions near the Origin (0, 0)

In this subsection, we consider the periodic solutions near the equilibrium (0, 0). First, by
introducing a small parameter ε satisfying 0 < ε�1 and rescaling the parameters µ, γ, η and f0 in
Equation (5) as

µ = εµ̃, γ = εγ̃, η = εη̃, f0 = ε2 f̃ , (11)

one can rewrite the system (5) as

..
x + x = −εµ̃

.
x + ε2 f̃ cos ωT + εη̃v + k1x3 − k2x5,

.
v + εγ̃v = −β

.
x. (12)

The Method of Multiple Scales (MMS) [15] is employed to obtain the approximate-analytical
solution of Equation (12). To this end, the displacement x and voltage response v are expanded as

x = εx1 + ε2x2 + ε3x3 + · · · , v = εv1 + ε2v2 + ε3v3 + · · · . (13)

The time derivatives can be rewritten as

Ti = εiT, Di =
∂

∂Ti
,

d
dT

=
n

∑
i=0

εiDi(i = 0, 1, · · · ). (14)

Considering harmonic resonance, it is assumed that

ω = 1 + εσ (15)

where the detuning parameter σ = O(1). Introducing Equations (13)–(15) into Equation (12) and
separating the coefficients of ε1, ε2 and ε3 leads to

ε1 : D0
2x1 + ω2x1 = 0, D0v1 = −βD0x1, (16)

ε2 : D0
2x2 + ω2x2 = −2D0D1x1 − µ̃D0x1 + f̃ cos ωT0 + η̃v1 + 2σωx1, D0v2 = −γ̃v1 − β(D1x1 + D0x2)− D1v1, (17)

and

ε3 : D0
2x3 + ω2x3 = −D1

2x1 − 2D2D0x1 − 2D1D0x2 − µ̃(D1x1 + D0x2) + η̃v2 + 2σωx2 − x1σ2 + k1x1
3. (18)

The solution of Equation (16) can be assumed as

x1 = A(T1, T2)eiωT0 + cc, v1 = −βAeiωT0 + cc (19)

where cc represents the complex conjugate of the preceding terms, and the complex slow-times
dependent amplitude A(T1, T2) is expressed as A = a(T1,T2)

2 eiθ . Here, the a(T1, T2) and θ are real,
representing the real amplitude and the phase difference of the periodic solution x1, respectively. By
substituting the solution (19) into Equation (17) and separating the secular terms, one has

D1 A = − µ̃A
2
− i f̃

4ω
+

η̃βAi
2ω

− iσA. (20)

Since A is the function of T1 and T2, it can be solved from Equation (17) that

x2 = 0, v2 = − βγ̃Ai
ω

+ cc. (21)

Submitting Equations (19) and (21) into Equation (13), one can approximately express the
periodic solution x as x = εa cos(ωT0 + θ). Substituting Equations (19)–(21) into Equation (18) and
separating its secular terms yields

D2 A =
f̃ βη̃i
16ω3 −

Aβ2η̃2i
8ω3 − Aβη̃γ̃

2ω2 +
f̃ µ̃

16ω2 −
f̃ σi

8ω2 +
Aβη̃σi

2ω2 −
3k1 A2 A

2ω
− Aµ̃2i

8ω
. (22)

Letting the amplitude of x be â = εa, considering
.
A ≈ D0 A + εD1 A + ε2D2 A, substituting

Equations (20) and (22) into it and returning its parameters to the original dimensionless parameters
of Equation (5), one obtains
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.
â = − µ

2 â− ηβγâ
2ω2 +

f0µ cos θ
8ω2 +

(βη−6ω2+2ω) f0 sin θ
8ω3 ,

â
.
θ = −(ω− 1)â− η2 β2 â

8ω3 +
ηβ(ω−1)â

2ω2 − 3k1 â3

8ω +
ηβâ
2ω −

µ2 â
8ω −

f0µ sin θ
8ω2 +

(βη−6ω2+2ω) f0 cos θ
8ω3

(23)

Letting the right side of Equation (23) be zero leads to

µ
2 â + ηβγâ

2ω2 =
f0µ cos θ

8ω2 +
(βη−6ω2+2ω) f0 sin θ

8ω3 ,

(ω− 1)â + η2 β2 â
8ω3 −

ηβ(ω−1)â
2ω2 + 3k1 â3

8ω −
ηβâ
2ω +

µ2 â
8ω = − f0µ sin θ

8ω2 +
(βη−6ω2+2ω) f0 cos θ

8ω3 .
(24)

Eliminating the triangulation function of Equation (24), one can get

f0
2µ2

64ω4 +
(βη − 6ω2 + 2ω)

2 f0
2

64ω6 = (
µ

2
+

ηβγ

2ω2 )
2
â2 + (ω− 1 +

η2β2

8ω3 −
ηβ(ω− 1)

2ω2 +
3k1 â2

8ω
− ηβ

2ω
+

µ2

8ω
)

2

â2. (25)

To determine the stability of the periodic solution, one can get its characteristic equation. Based
on Equations (23)–(25), the characteristic equation can be written as

λ2 + (µ +
ηβγ

ω2 )λ +
f0

2µ2

64ω4 +
(βη − 6ω2 + 2ω)

2 f0
2

64ω6 + ((ω− 1)â +
η2β2 â
8ω3 −

ηβ(ω− 1)â
2ω2 +

3k1 â3

8ω
− ηβâ

2ω
+

µ2 â
8ω

)
3k1 â
4ω

= 0 (26)

According to the equation above, the stability of the periodic solution in the neighborhood of
the origin will be changed when λ = 0, namely

f0
2µ2

64ω4 +
(βη − 6ω2 + 2ω)

2 f0
2

64ω6 + ((ω− 1)â +
η2β2 â
8ω3 −

ηβ(ω− 1)â
2ω2 +

3k1 â3

8ω
− ηβâ

2ω
+

µ2 â
8ω

)
3k1 â
4ω

= 0. (27)

The frequency response curves in the neighborhood of the origin are plotted in Figure 3. In
Figure 3, the branches of analytical amplitude â for f 0 = 0.002, 0.01 and 0.05 are obtained from Equation
(25). The solid curves and the dashing ones represent the stable and unstable periodic solutions,
respectively. Their stability is determined by the positive-negative sign of the real parts of eigenvalues
solved from Equation (26). Based on Equation (27), one gets the saddle-node point separating the
solid curve and dashing curve. The numerical results for the amplitudes of periodic responses are
presented by applying the 4th Runge-Kutta approach to simulate the numerical solutions of the
dimensionless system (5) via MATLAB. Definitely, the numerical approach will only produce stable
solutions. As illustrated in Figure 3, there is a good agreement between the theoretical and numerical
response results, implying the approximate-analytical solutions are valid. Furthermore, it follows
from Figure 3 that for f 0 = 0.05 and ω in the range (0.50, 0.76), the frequency response curves bend to
the left and yield multivalued solutions. It means that the saddle-node bifurcation of the periodic
solution around the origin O(0, 0), hence the coexistence of two intra-well attractors, can be triggered
by the increase of f 0 and the variation of ω in a low-frequency range.
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When two intra-well attractors around the well center O(0, 0) or C±(±xc, 0) is induced in the
vicinity of the saddle-node bifurcation point, the initial conditions will determine the branch to which
the response attracts. For the purpose of energy harvesting, the initial conditions should be chosen to
follow the high-amplitude one in order to output high voltage consequently. That is why we present
the sequences of the attractors and their basins of attraction for the variation of the dimensionless
external excitation. Basin of attraction means the union of initial conditions leading to the same
attractor [20,21]. If the boundary of the basin of attraction of one attractor is fractal and intermingled
with another, a jump among multiple attractors may easily occur. In this study, the 4th Runge–Kutta
approach and the point-mapping method [26] are employed to describe the basin of attraction. The
basins of attraction are drawn in the initial-condition plane −1.0 ≤ x(0) ≤ 1.0, −1.0 ≤ y(0) ≤ 1.0 by
generating a 600 × 600 array of starting conditions, for each of the initial points. The time step is
taken as 0.01. For each figure of sequences of attractors and their basins of attraction, there are pairs
of pictures on each line of which the left one is the phase map of the attractors, while the right one
shows their basins of attraction. For each attractor, its basin of attraction is marked in the same color
as its phase map.

Given f0 = 0.05, the sequences of attractors and their basins of attraction with the variation
of the dimensionless excitation frequency ω are depicted in Figure 4. For ω = 0.3 (see Figure 4(a1)),
there coexist three intra-well attractors around three different well centers O(0, 0) and C±(±xc, 0),
respectively. Even though their basins of attraction in some areas entangle each other (see Figure 4(a2)),
the vicinity of three potential-well centers is single-colored with clear basin boundaries, meaning that
near the potential-well centers, the phenomenon jump will not occur. Only if the initial condition of
the structure changes dramatically from the neighborhood of one center to another, there will be a
jump between two intra-well attractors. It is worth mentioning that the attractors are around different
potential-well centers, thus jump is an inter-well jump. The amplitudes of the three attractors are
very low, contributing little to harvest energy. Comparatively, the inter-well jump caused by the
change of initial conditions contributes more to energy harvesting. As ω increases to 0.55, there are
four intra-well attractors coexisting (see Figure 4(b1)). Apart from the three intra-well attractors, a
new intra-well attractor around O(0, 0) with a much higher amplitude appears. However, as can
be observed in Figure 4(b2), its basin of attraction is fractal and hard to be detected. Hence, it is a
so-called rare attractor [27] whose occurring probability is very low. Compared with the basin map in
Figure 4(a2), a better point is that outside of the vicinity of the three well centers, the fractality extent
of the basins of attraction becomes more severe, meaning that jump can be triggered more easily in
this region. When ω grows to 0.75, the occurrence probability of the higher-amplitude intra-well
attractor around O(0, 0) is much higher, because its basin of attraction grows larger, especially in
the neighborhood of O(0, 0) (see Figure 4(c2)). Note that the phenomenon of jump between the
two intra-well attractors around O(0, 0), namely the intra-well jump, more easily occurs than the
inter-well jump, which will be beneficial for energy harvesting. As ω increases to 1.0, the lower-
amplitude intra-well attractor around O(0, 0) disappears; still there coexist three attractors, as shown
in Figure 4(d1). Based on their basins of attraction in Figure 4(d2), it is obvious that a better energy
harvesting performance can be given by the higher-amplitude intra-well oscillation around O(0, 0) or
the inter-well jump led by the dramatic change of initial conditions.
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3.2. Periodic Solutions near the Nontrivial Equilibria (±xc, 0)
Around the nontrivial equilibria (±xc, 0), the periodic vibration of the cantilever beam structure

can be induced by the perturbation of the two nontrivial centers of the unperturbed system (6) (see
C− and C+ in Figure 2). To begin with, supposing x = ±xc + x̂, and rescaling the system parameters
by Equation (11) yields

..
x̂ + ω̂2 x̂ = −εµ̃

.
x̂ + ε2 f̃ cos ωT + εη̃v∓Q1 x̂2 −Q2 x̂3 − k2(±5xc x̂4 + x̂5),

.
v + εγ̃v = −β

.
x̂. (28)

where
ω̂2 = 1− 3k1xc

2 + 5k2xc
4, Q1 = 10k2xc

3 − 3k1xc, Q2 = 10k2xc
2 − k1. (29)

It can be calculated that ω̂ = 2, Q1 = 25.46 and Q2 = 52, all positive. To apply the Method of
Multiple Scales, assuming harmonic resonance in the system (28) that

ω = ω̂ + εσ̂, (30)
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where σ̂ is the detuning parameter, rescaling x̂ and voltage response v in Equation (28) as

x̂ = εx̂1 + ε2 x̂2 ++ε3 x̂3 · · · , v = εv̂1 + ε2v̂2 + ε3v̂3 · · · , (31)

and comparing the coefficients of ε1, ε2 and ε3 in the system (28), respectively, one has

ε1 : D0
2 x̂1 + ω2 x̂1 = 0, D0v̂1 = −βD0 x̂1, (32)

ε2 : D0
2 x̂2 + ω2 x̂2 = −2D0D1 x̂1 − µ̃D0 x̂1 + f̃ cos ωT0 + η̃v̂1 + 2σωx̂1 ∓Q1 x̂1

2,

D0v̂2 = −γ̃v̂1 − β(D1 x̂1 + D0 x̂2)− D1v̂1,
(33)

and

ε3 : D0
2 x̂3 + ω2 x̂3 = −D1

2 x̂1 − 2D2D0 x̂1 − 2D1D0 x̂2 − µ̃(D1 x̂1 + D0 x̂2) + η̃v̂2 + 2σωx̂2 − x̂1σ2 ∓ 2Q1 x̂1 x̂2 −Q2 x̂1
3. (34)

The solution of Equation (32) can be written as

x̂1 = B(T1, T2)eiωT0 + cc, v̂1 = −βBeiωT0 + cc, (35)

where the complex slow-times dependent amplitude B(T1, T2) is given by

B =
b(T1, T2)

2
eiϕ(T1,T2). (36)

In Equation (36), b(T1, T2) and ϕ(T1, T2) are real, representing the real amplitude and the phase
difference of the periodic solution x̂1, respectively. Substituting Equation (35) into Equation (33) and
separating its secular terms leads to

D1B =
−µ̃B

2
− i f̃

4ω
+

η̃βBi
2ω
− iσB, (37)

and

x̂2 = ±(−2Q1BB
ω2 +

Q1B2

3ω2 e2iωT0 +
Q1B2

3ω2 e−2iωT0 ),v̂2 = ∓ βQ1B2

3ω2 e2iωT0 − γ̃βBi
ω

eiωT0 + cc, (38)

substituting Equations (35), (37) and (38) into Equation (34) and separating the secular terms there
yields

D2B =
f̃ βη̃i
16ω3 −

Bβ2η̃2i
8ω3 − Bβη̃γ̃

2ω2 +
f̃ µ̃

16ω2 −
f̃ σi

8ω2 +
Bβη̃σi
2ω2 +

3Q2B2Bi
2ω

− 5Q1
2B2Bi

3ω3 − Bµ̃2i
8ω

. (39)

Considering
.
B ≈ D0B + εD1B + ε2D2B and b̂ = εb, substituting Equations (36), (37) and (39)

into it and expressing it by the original dimensionless parameters of Equation (5), one has:

.
b̂ = − µ

2 b̂− ηβγb̂
2ω2 +

f0µ cos ϕ
8ω2 +

(βη−6ω2+2ωω̂) f0 sin ϕ
8ω3 ,

b̂
.
ϕ = −(ω− ω̂)b̂− η2 β2 b̂

8ω3 +
ηβ(ω−ω̂)b̂

2ω2 + 3Q2 b̂3

8ω − 5Q1
2 b̂3

12ω3 +
ηβb̂
2ω −

µ2 b̂
8ω −

f0µ sin ϕ
8ω2 +

(βη−6ω2+2ωω̂) f0 cos ϕ
8ω3

(40)

For the periodic solution around C− or C+, the right side of Equation (40) is zero, i.e.,

µ
2 b̂ + ηβγb̂

2ω2 =
f0µ cos θ

8ω2 +
(βη−6ω2+2ωω̂) f0 sin θ

8ω3 ,

(ω− ω̂)b̂ + η2 β2 b̂
8ω3 −

ηβ(ω−ω̂)b̂
2ω2 − 3Q2 b̂3

8ω + 5Q1
2 b̂3

12ω3 −
ηβb̂
2ω +

µ2 b̂
8ω = − f0µ sin θ

8ω2 +
(βη−6ω2+2ωω̂) f0 cos θ

8ω3 .
(41)

Eliminating the triangulation function of Equation (41), one obtains

f0
2µ2

64ω4 +
(βη − 6ω2 + 2ωω̂)

2 f0
2

64ω6 = (
µ

2
+

ηβγ

2ω2 )
2
b̂2 + (ω− ω̂ +

η2β2

8ω3 −
ηβ(ω− ω̂)

2ω2 − 3Q2b̂2

8ω
+

5Q1
2b̂2

12ω3 −
ηβ

2ω
+

µ2

8ω
)

2

b̂2. (42)
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The periodic solution near the nontrivial equilibria (±xc, 0) can be expressed as

x = ±xc ∓
2Q1b̂2

3ω2 + b̂ cos(ωT + ϕ)± Q1b̂2

3ω2 cos2(ωT + ϕ)). (43)

As in Section 3.1, the stability of the periodic solutions can be determined by the following
characteristic equation

λ2 + (µ +
ηβγ
ω2 )λ +

f0
2µ2

64ω4 +
(βη−6ω2+2ωω̂)

2 f0
2

64ω6

+((ω− ω̂)b̂ + η2 β2 b̂
8ω3 −

ηβ(ω−ω̂)b̂
2ω2 − 3Q2 b̂3

8ω + 5Q1
2 b̂3

12ω3 −
ηβb̂
2ω +

µ2 b̂
8ω )( 5Q1

2 b̂
6ω3 − 3Q2 b̂

4ω ) = 0.
(44)

Hence, saddle-node bifurcation will occur when

f0
2µ2

64ω4 +
(βη − 6ω2 + 2ωω̂)

2 f0
2

64ω6 + ((ω− ω̂)b̂ +
η2β2b̂
8ω3 −

ηβ(ω− ω̂)b̂
2ω2 − 3Q2b̂3

8ω
+

5Q1
2b̂3

12ω3 −
ηβb̂
2ω

+
µ2b̂
8ω

)(
5Q1

2b̂
6ω3 −

3Q2b̂
4ω

) = 0 (45)

According to Equations (42)–(45), the frequency response curves in the neighborhood of the
nontrivial equilibria are presented in Figure 5 where the branches of analytical amplitude b̂ for
f 0 = 0.002, 0.01 and 0.05 are obtained from Equation (42). The solid curves and the dashed ones
show the stable and unstable periodic solutions, respectively. Their stability is determined by the
positive-negative sign of the real parts of eigenvalues solved from Equation (44). The saddle-node
point separating the solid curve and dashing curve is determined by Equation (45). By applying
4th Runge–Kutta approach to simulate the numerical solutions of the dimensionless system (5), the
numerical results are presented. As shown in Figure 5, theoretical results totally agree with the
numerical ones. Similar to Figure 3, it also can be observed in Figure 5 that for f 0 = 0.05, the frequency
response curves bend to the left and yield bistability, indicating that due to saddle-node bifurcation
of the periodic solution, in the vicinity of the saddle-node bifurcation point, there are two intra-well
periodic attractors around each nontrivial equilibrium.
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Based on the analysis of the periodic responses near the origin and the nontrivial equilibria, the
evolution of the periodic solutions of system (5) with the amplitude of f 0 for ω = 1.5 is illustrated
in Figure 6. Obviously, when f 0 increases from 0, the nontrivial equilibria and the origin lose their
stability; instead, three periodic attractors coexist, attributed to the disturbance of the tristable
equilibria. When f 0 varies from 0 to 0.02, the numerical simulation is in great agreement with the
theoretical solution. However, when f 0 continues to increase, the theoretical prediction of the periodic
responses does not match the numerical results well, which may be due to the limitation of the
Method of Multiple Scale, namely the value of the excitation frequency ω should be closed to the
inherent frequency of the perturbed systems (12) and (28) near the origin and the nontrivial equilibria
(±xc, 0). Actually, the given value of the excitation frequency is ω = 1.5, while the inherent frequencies
of the systems (12) and (28) are 1 and 2, respectively. It means that the derivations of ω from the two
inherent frequencies are not that small. Although the prediction is not that quantitatively accurate, the
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theoretical results and numerical simulation both show that the increase of the excitation amplitude
triggers bistability around each nontrivial well center (±xc, 0). According to the theoretical analysis,
it can be ascribed to the saddle-node bifurcation of the periodic solutions. For instance, for f 0 = 0.05,
there coexist five intra-well periodic attractors, i.e., two around each nontrivial potential-well center
and one around O(0, 0).
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Fixing ω = 1.5, the evolution of periodic responses and their basins of attraction with the increase
of the dimensionless excitation amplitude f 0 is shown in Figure 7. For f 0 = 0, the coexisting triple
attractors are the three well centers whose basin boundaries are smooth, as shown in Figure 7(a1,a2).
For f 0 = 0.045, the three point attractors are perturbed and replaced by three intra-well periodic
attractors around them (see Figure 7(b1)). Although the single-colored neighborhood of each well
center in Figure 7(b2) implies that the initial conditions chosen there must attract to the intra-well
attractor around it, the inter-well jump may be triggered when the initial conditions are disturbed
dramatically. As f 0 increases a bit to reach 0.046, two new intra-well periodic attractors with higher
amplitudes suddenly appear in the neighborhood of the nontrivial well centers. As predicted in
Figure 6, this can be attributed to the saddle-node bifurcation. Now, there are five intra-well attractors
in Figure 7(c1). However, as shown in Figure 4(c2), the basins of attraction of the new attractors
are fractal and scattered. Thus, the occurring probability for these two high-amplitude intra-well
responses is very low. As f 0 continues to increase, the basins of attraction of the two new periodic
attractors are enlarged (see Figure 7(d2)). It means that the occurrence probability of the higher-
amplitude intra-well attractors around the well centers C− and C+ is much higher. Moreover, the
jump between the two intra-well attractors around each nontrivial well center, namely the intra-well
jump, is of higher probability to occur. Therefore, not only the intra-well jump due to saddle-node
bifurcation of the periodic solution around the nontrivial well centers and a small perturbation of the
initial condition but also the inter-well jump among attractors around different wells that is led by
dramatic disturbance of the initial condition can make the structure harvest vibration energy more
conveniently.



Mathematics 2022, 10, 2894 13 of 22

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 24 
 

 

higher probability to occur. Therefore, not only the intra-well jump due to saddle-node 
bifurcation of the periodic solution around the nontrivial well centers and a small pertur-
bation of the initial condition but also the inter-well jump among attractors around differ-
ent wells that is led by dramatic disturbance of the initial condition can make the structure 
harvest vibration energy more conveniently. 

  

(a1) Attractors when f0 = 0 (a2) Basins of attraction when f0 = 0 

  

(b1) Attractors when f0 = 0.045 (b2) Basins of attraction when f0 = 0.045 

   

(c1) Attractors when f0 = 0.046 (c2) Basins of attraction when f0 = 0.046 

  
(d1) Attractors when f0 = 0.067 (d2) Basins of attraction when f0 = 0.067 

Figure 7. Evolution of attractors and their basins of attraction with the increase of f0 for ω = 1.5. Figure 7. Evolution of attractors and their basins of attraction with the increase of f 0 for ω = 1.5.

4. Global Bifurcation
In this section, we discuss the necessary conditions for heteroclinic and homoclinic bifurcation

and the complex dynamics that these global bifurcations induce. To begin with, the heteroclinic orbits
and homoclinic orbits are written as [20]:

xhetero = ±
√

2xssinh( χT
2 )

(κ + cosh(χT))
1
2

, yhetero = ±
√

2xsχ(1 + κ) cosh( χT
2 )

2(κ + cosh(χT))
3
2

. (46)



Mathematics 2022, 10, 2894 14 of 22

and

xhomo = ±
√

2xs cosh( χT
2 )

(−κ + cosh(χT))
1
2

, yhomo = ∓
√

2xsχ(κ + 1)sinh( χT
2 )

2(−κ + cosh(χT))
3
2

. (47)

where

χ = xs
2

√
2k2(

xc2

xs2 − 1), κ =
3xc

2 − 5xs
2

3xc2 − xs2 > 0. (48)

The expression of the component vhetero and vhomo of the heteroclinic orbits and homoclinic ones
obtained by solving Equation (5) is presented as follows

vhetero(T) = −βe−γT
∫ T

0
eγT̃yhetero(T̃)dT̃, vhomo(T) = −βe−γT

∫ T

0
eγT̃yhomo(T̃)dT̃. (49)

The dimensionless Equation (5) is approximated to

.
x = y,
.
y = −x + k1x3 − k2x5 + ε(−µ̃y + f̂ cos ωT + η̃v),
.
v = −γv− βy.

(50)

Since the system (50) is a time-periodic perturbation of a Hamiltonian system, the Melnikov
method can be used to describe how the heteroclinic/homoclinic orbits break up in the presence of
the perturbation [28]. According to the Melnikov method, the Melnikov function is a signed measure
of the distance between the stable and unstable manifolds for the perturbed system [29,30]. If it has
simple zeros, there will be intersection of heteroclinic orbits or homoclinic orbits, corresponding to
heteroclinic bifurcation or homoclinic bifurcation, respectively. Submitting Equations (46)–(49) to its
Melnikov functions under the two types of orbits yield

M±hetero(T0) = ε
∫ +∞
−∞ yhetero(T)(−µ̃yhetero(T) + f̂ cos(ω(T − T0)) + η̃vhetero(T))dT

= − µxs
2χ

4(1−κ)
√

1−κ2 I1hetero −
ηβxs

2χ2(1+κ)2

2 I2hetero +
2πω

χ f0xscsch πω
χ cos(ωT0)

(51)

and
M±homo(T0) = ε

∫ +∞
−∞ yhomo(T)(−µ̃yhomo(T) + f̂ cos(ω(T − T0)) + η̃vhomo(T))dT

= − µxs
2χ

4(1−κ)
√

1−κ2 I1homo −
ηβxs

2χ2(1+κ)2

2 I2homo − 2 f0xs sin( 2ω
χ ) sin(ωT0)

(52)

where

I1hetero = (2− κ)
√

1− κ2 + (2− 4κ)arctan 1−κ√
1−κ2 , I2hetero =

∫ −∞
−∞

cos h( χT
2 )

eγT(κ+cos h(χT))
3
2
(
∫ T

0
eγT̃ cos h( χT̃

2 )

(κ+cos h(χT̃))
3
2

dT̃)dT,

I1homo = (2− κ)
√

1− κ2 − (2− 4κ)arctan κ+1√
1−κ2 , I2homo =

∫ −∞
−∞

sin h( χT
2 )

eγT(−κ+cos h(χT))
3
2
(
∫ T

0
eγT̃ sin h( χT̃

2 )

(−κ+cos h(χT̃))
3
2

dT̃)dT.
(53)

In the above equation, the integrals I2hetero and I2homo can be evaluated numerically [20]; I1hetero,
I1homo, I2hetero and I2homo are all positive.

For

f0 > f hetero
0 =

µxsχ2sinh(πω
χ )

8πω(1− κ)
√

1− κ2
I1hetero +

ηβxsχ3(1 + κ)2sinh(πω
χ )

4πω
I2hetero, (54)

there will be a real number of T0 satisfying M±hetero(T0) = 0 and M±hetero
′(T0) 6= 0, meaning that the

equilibria of Equation M±hetero(T0) = 0 are simple, enabling the existence of the transverse heteroclinic
orbits. Accordingly, f hetero

0 is the amplitude threshold of heteroclinic bifurcation. Similarly, it follows
from the Melnikov function (52) that if

f0 > f homo
0 =

µxsχ

8(1− κ)
√

1− κ2
csc(

2ω

χ
)I1homo +

ηβxsχ2(1 + κ)2

4
csc(

2ω

χ
)I2homo, (55)

the equation M±homo(T0) = 0 will have simple equilibria, corresponding to an intersection of the stable
and unstable manifolds and the occurrence of homoclinic bifurcation. Given ω = 1.5, critical values
can be calculated that f homo

0 ≈ 0.089 and f hetero
0 ≈ 0.27.
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A question is then aroused: what dynamical behaviors will be induced by the global bifur-
cations? To get the answer, we continue to depict the evolution of attractors and their basins of
attraction with the excitation amplitude f0 for ω = 1.5 (see Figure 8). For f0 = 0.089 (see Figure 8(a1)),
the same as the case of f0 = 0.067 (see Figure 7(d1)), there are still five periodic attractors. To be
different, the two higher-amplitude intra-well attractors, i.e., the periodic attractors in yellow and
blue, are expanded so that their phases nearly touch the homoclinic obits (see the light grey dashing
curves in Figure 8(a1)); meanwhile, it is hard to observe their basins of attraction in Figure 8(a2), as
they are eroded seriously. It indicates that for f0 = 0.089, i.e., the theoretical threshold for homoclinic
bifurcation, the two higher-amplitude intra-well attractors around two nontrivial well centers become
rare attractors. When f0 increase a bit to 0.090, it can be observed in Figure 8(b1) that these two
attractors disappear; three lower-amplitude intra-well attractors are left; the intra-well attractor
around the origin becomes dominant, as the most area is its basin of attraction (see the green region in
Figure 8(b2)). It follows from the comparison of Figure 8(a1,b1) that the homoclinic bifurcation leads
to the disappearance of two higher-amplitude intra-well attractors around nontrivial well centers.
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When f0 continues to increase, the intra-well attractor around O(0, 0) will be enlarged, and
its basin of attraction will erode the basins of attraction of the other two attractors seriously (see
Figure 8(c2)). For f0= 0.11, two intra-well attractors around the nontrivial equilibria disappear (see
Figure 8(d1)), and the whole initial-condition plane of Figure 8(d2) is green, showing the global
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stability of the intra-well attractor around O(0, 0). There is no jump now, unfavorable for energy
harvesting. As f0 continues to increase, the situation still maintains. For f0 = 0.27, i.e., the theoretical
threshold for heteroclinic bifurcation, the phase orbit of the only attractor is enlarged and nearly
touches the heteroclinic obits (see the light grey dashing curves in Figure 8(e1)); still the intra-well
attractor is globally attractive, as shown in the green map in Figure 8(e2). Then, for f0 increasing a
bit to 0.30, a new periodic attractor suddenly appears (see Figure 8(f1)). It is an inter-well periodic
attractor whose amplitude is much higher than the intra-well one. It can be concluded that the
heteroclinic bifurcation triggers the occurrence of inter-well response. Due to the large amplitude of
the inter-well attractor in Figure 8(f1), we have to expand the phase map plane to display it. Note that
we still keep the initial plane −1.0 ≤ x(0) ≤ 1.0, −1.0 ≤ y(0) ≤ 1.0 which is totally green, meaning
that initial conditions in this region cannot lead to this attractor (see Figure 8(f2)). As f0 grows to 0.31,
one can observe its basin of attraction in the initial plane (see Figure 8(g2)). Of course, the occurrence
of inter-well oscillation is advantageous for energy harvesting.

Based on Equations (54) and (55), i.e., the theoretical threshold of the dimensionless amplitude
f0 for homoclinic bifurcation and heteroclinic bifurcation, we present Figure 9 to show the variation of
f0 with the increase of excitation frequency ω. The blue curve and the red one represent the thresholds
for homoclinic bifurcation and heteroclinic one, respectively. The numerical values of f homo

0 and
f hetero
0 are obtained at the points for the disappearance of two higher-amplitude intra-well attractors

around nontrivial well centers and the occurrence of the inter-well attractor, respectively. For the
purpose of energy harvesting, the former is unwanted for reducing jump, while the latter is desirable
for inducing high-amplitude inter-well oscillation. Each numerical critical value of f homo

0 and f hetero
0

is kept to two decimal places. We make sure that if f0 is less than the numerical results f homo
0 or

f hetero
0 , the mentioned intra-well attractors will not disappear, or the inter-well periodic attractor

will not appear, respectively. In Figure 9, the numerical results for the critical values of f0 are in
agreement with analytical ones, verifying the validity of the analysis. Figure 9 also demonstrates that
the thresholds of the amplitude f0 for homoclinic bifurcation and heteroclinic bifurcation will increase
monotonically with ω. Comparatively, f hetero

0 increases more rapidly than f homo
0 . In addition, Figure 9

shows that the lower the excitation frequency is, the lower threshold of the excitation amplitude to
trigger inter-well oscillation will be, which will be helpful to harvest vibration energy.
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Figure 9. f homo
0 and f hetero

0 of system (5) versus the excitation frequency ω.

As f0 continues to increase, the variation of the dynamical behaviors and their basins of
attraction can be observed in Figure 10. For f0 = 0.37, the basins of attraction of the inter-well attractor
are enlarged and intermingled with the intra-well one, as can be observed from the grey region and
grey dots scattered in the green region of Figure 10(a2). That means that the occurrence probability
of inter-well oscillation and inter-well jump between the two attractors increases, which is surely
good for energy harvesting. When f0 increases to 0.45, the fractality of basins of attraction becomes
more obvious, and the basins of attraction of the intra-well attractor are seriously eroded by the
basin of the inter-well attractor (see the intermingled green and brown regions in Figure 10(b2)).
For f0 = 0.52, there is very little basin of attraction of the intra-well attractor left, showing that the
intra-well attractor becomes a rare attractor. As f0 reaches 0.60, the whole initial-condition plane is
brown, illustrating that the inter-well response becomes globally attractive, and favorable for the
structure to harvest energy.
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It is known that the Poincaré map is one of the most useful methods of investigating continuous-
time nonlinear systems that involves a discretization technique [30]. For f 0 continuing to increase,
we present the bifurcation of the system (5) in the Poincaré map in Figure 11. Here, the points on
the Poincaré map are collected from a cross-section at y = 0 and x > 0 in a sufficiently large time
interval 5000 ≤ T ≤ 8000 to ensure that the response is stable. As can be observed, when f0 is
more than 3.0, the system (5) evolves large-range inter-well chaotic motion through the routine of
the period-doubling bifurcation. The chaotic vibration for f0 = 4.2 is displayed via its phase map,
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Poincaré map and spectrum diagram in Figure 12. Note that points of the Poincaré map in Figure 12b
are obtained from the cross-section at T = 2nπ satisfying 5000 ≤ T ≤ 8000; here n represents integers.
It follows from Figures 11 and 12 that global bifurcations finally lead to this large-range inter-well
chaotic motion, which is unquestionably useful for energy harvesting.
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5. Conclusions
It is well known that energy harvesters favor the appearance of complex dynamics. In this

paper, bifurcations and complex dynamics of the electromechanical system of a piezoelectric energy
harvester comprising a cantilever piezoelectric beam with an attached tip mass exposed to a harmonic
tip force are investigated analytically and numerically.

First, the dimensionless ordinary differential equations governing the electromechanical system
are obtained. The equilibrium bifurcation and stability have been investigated for the unperturbed
system. The bifurcation sets of the equilibrium in parameter space have been constructed to demon-
strate that the number and shapes of potential well depend on the coefficients of the polynomial form
of the magnetic force: the smaller the penta power stiffness coefficient of nonlinear magnetic force is,
the higher possibility for the occurrence of a triple potential well will be.

Then, fixing the physical parameters of the structure and varying the excitation amplitude and
frequency, the case of a triple potential well is discussed. The Method of Multiple Scales is applied
to provide analytical intra-well solutions. The oscillator is found to exhibit saddle-node bifurcation
leading to bistable intra-well attractors around the same well center. Thus, the system may undergo
four intra-well attractors or five intra-well attractors. The numerical integration method was then
utilized to verify the solutions.

Consequently, we perform a detailed investigation of basins of attraction of multiple attractors
that had still relatively little consideration in the literature. The basins of attraction are obtained by
the point-mapping method. The numerical results further confirm the coexistence of these attractors,
in good agreement with the theoretical ones, showing the validity of the analysis. It is found that
in the regions with evidence of multistability basins of attraction with fractal structures occur quite
frequently. We have also found extremely intermingled basins and rare attractors. It also reveals that
for the excitation amplitude and frequency varying in the vicinity of saddle-node bifurcation points,
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the intra-well jump between the two intra-well attractors around the same well center is much easier
to trigger than the inter-well jump among intra-well attractors around different well centers. The
latter can be induced by a dramatic change of initial position or velocity. Both the two jumps are
beneficial for energy harvesting.

Furthermore, analytical expressions for homoclinic orbits and heteroclinic orbits of the unper-
turbed system are derived. The Melnikov method is successfully employed to detect the analytical
criteria for homoclinic bifurcation and heteroclinic bifurcation successively. These results obtained
are verified by the numerical simulations in the form of phase maps, basins of attraction, bifurcation
diagrams and Poincaré maps where fine agreement is achieved. It is found that the increase of the
excitation amplitude can induce homoclinic bifurcation and heteroclinic bifurcation successively; the
thresholds of the excitation amplitude for homoclinic bifurcation and heteroclinic bifurcation both
increase monopoly with the increase of the excitation frequency. Homoclinic bifurcation induces
the disappearance of the intra-well attractors around the nontrivial equilibria. An increase in the
excitation amplitude can break the basins into discrete pieces or points. In contrast, heteroclinic
bifurcation leads to the occurrence of a large-range jump between inter-well attractor and intra-well
one, the globally attractive large-amplitude inter-well attractor, and eventually inter-well chaos
through the routine of the period-doubling bifurcation. It implies that for the purpose of energy
harvesting, homoclinic bifurcation is undesirable, while heteroclinic bifurcation is favorable.

In this paper, the effect of the excitation amplitude, the excitation frequency as well as initial
conditions on the nonlinear behavior of this triple-well piezoelectric energy harvester has been
studied. Based on these investigations, the next steps will consist of designing an actual energy
harvesting system featuring the calculated position of the equilibria, assessing the performance and
optimizing the device. Hence, nonlinear magnetic interactions through the use of two magnets
on a base interacting with a magnet at the free end of a cantilever beam can be considered. From
an applicative point of view, a comparative analysis with moveable magnets on the base can be
considered (see the structure in Figure 13).
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It should be pointed out that the results in this paper are limited to the fixed physical properties
of the structure. We have not considered the effect of physical properties on inducing the large-scale
complex responses which can be beneficial for further optimization of triple-well energy harvesters.
Jump phenomena, inter-well oscillation and large-range chaos that we have discussed in detail can
make the structure under frequent strain. Considering the material characteristics of the piezoelectric
generators, there may be brittles in piezo layers, leading to a challenge for the working lifespan of the
devices. For better energy harvesting performance and reliability, these should be taken into account
in theoretical study as well as experiments in practical application, which will be included in our
future work.
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