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Abstract: The classical radial point interpolation method (RPIM) is a powerful meshfree numerical
technique for engineering computation. In the original RPIM, the moving support domain for the
quadrature point is usually employed for the field function approximation, but the local supports
of the nodal shape functions are always not in alignment with the integration cells constructed for
numerical integration. This misalignment can result in additional numerical integration error and
lead to a loss in computation accuracy. In this work, a modified RPIM (M-RPIM) is proposed to
address this issue. In the present M-RPIM, the misalignment between the constructed integration
cells and the nodal shape function supports is successfully overcome by using a fixed support domain
that can be easily constructed by the geometrical center of the integration cell. Several numerical
examples of free vibration analysis are conducted to evaluate the abilities of the present M-RPIM and
it is found that the computation accuracy of the original RPIM can be markedly improved by the
present M-RPIM.
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1. Introduction

The classical finite element method (FEM), which is based on the weighted residual
technique, is a versatile and well-developed numerical approach in the field of modern
computation mechanics [1]. Many mature commercial software packages (such as ANSYS,
ABAQUS and NASTRAN) based on the FE approach have been developed and used in
various engineering applications. Though the standard FEM has achieved great success in
practical engineering computation, the FEM still suffers from several inherent shortcomings
compared to other advanced numerical techniques [2–12]. Among them, one important
issue is that the FEM is essentially a mesh-based method and the involved problem domain
should be firstly discretized into a series of elements that are connected by nodes for
FE analysis. Therefore, the additional burdensome tasks for meshing operations cannot
always be circumvented. Additionally, the solution accuracy of the FEM is usually sensitive
to mesh qualities and the solutions from low-quality meshes are always not sufficiently
accurate. To obtain sufficiently fine solutions, more attention should be given to obtain
high-quality meshes. These issues will be greater when the standard FEM is employed
to manage problems related to dynamic cracks and large deformation of complicated
geometric shapes.

To alleviate the dependence of the conventional FE approach on predefined meshes,
a series of smoothed FEMs [13–17] and meshfree techniques [18–24] have been proposed,
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such as the element-free Galerkin method (EFGM) [25,26], the meshless local Petrov–
Galerkin method (MLPG) [27], the reproducing kernel particle method (RKPM) [28], the
radial point interpolation method (RPIM) [29,30], the general finite difference method
GFDM [31–35], and the boundary-based numerical methods [36–40], to name a few. Ac-
tually, the meshfree methods can be classified into different types according to different
formulation procedures [18]. Among them, several meshless methods are based on the
weak form of the governing equation [41–44], while some others are based on the strong
weak form [45–51]. In this work, we mainly focus on discussing the meshfree methods
based on the well-known Galerkin weighted residual technique (such as the EFEM and
RPIM), which are the typical weak-form-based numerical techniques. Compared to the
standard FEM, one outstanding advantage of these meshfree methods is that the required
nodal shape functions can be built entirely by using a set of scattered nodes, rather than as
elements in the conventional FEM. In consequence, the field function approximation also
can be constructed by the scattered nodes. This property enables the meshfree methods
to have distinct advantages over the conventional FEM in managing the dynamic crack
problem and larger deformation problem. In addition, adaptive analysis also can be imple-
mented much more easily in the meshfree framework than in the standard FEM framework.
More importantly, the meshfree methods usually possess other excellent features that the
standard FEM does not have. A very good comparison and overview on the meshfree
methods and the FEM can be found in a published monograph [18].

Although the meshfree methods have achieved considerable success both in theory
and practical engineering applications, they still cannot match the classical FEM in terms
of universality; further, there still exists several crucial issues that should be addressed
very carefully. For example, the radial point interpolation method (RPIM), which is a
typical meshfree numerical method, has been employed for solving many engineering
problems owing to several excellent features, such as relatively high computation accuracy,
good numerical stability and the possession of the Kronecker-delta function property.
However, the compatibility of the standard RPIM cannot be automatically ensured, which
may lead to numerical integration error. The main reason is that in the standard RPIM
the local support domains of nodal interpolation functions are not always in accord with
the constructed integration cells for numerical integration. The related issues have been
investigated in [52,53] and in the so-called bounding box technique that has been proposed
by proposed by Dolbow and Belytschko [52]. The related numerical results show that
this scheme is indeed quite effective in addressing the issues mentioned; however, the
implementation of this scheme is quite complicated and, hence, it is not very practical in
engineering computation.

In this work, a simple and elegant scheme is developed to make the local support
domains of the nodal shape functions in RPIM entirely align with the constructed quadra-
ture cells for numerical integration; hence, the possible integration error can be markedly
decreased. The main idea of this scheme is to design a new node selection scheme for
the field function approximation. In this scheme, a fixed support domain (not a moving
support domain in the original RPIM), which is determined by the geometrical center
of the quadrature cell, is used for any quadrature point in the integration cell. For the
convenience of notation, the proposed scheme in this work is called the modified RPIM
(M-RPIM). We have further employed the present M-RPIM to analyze the free vibration
of two-dimensional solids. It can be found that the M-RPIM behaves much better than
the original RPIM for free vibration analysis, and many more numerical solutions can be
provided with the totally identical node distributions.

2. Formulation of the Original RPIM and the Present M-RPIM

Consider a problem domain Ω with boundary Γ, and a field function u(x) is defined on
it. A series of scattered field nodes are employed to totally discretize the problem domain
and its boundary. For a sampling point in the problem domain, the corresponding field
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function approximation uh(x) can be expressed in the following form by using the radial
basis function (RBF) and polynomial basis function (PBF) [18]:

uh(x) =
n

∑
i=1

Ri(x)ai +
m

∑
j=1

Pj(x)bj = RT(x)a + PT(x)b, (1)

in which Ri(x) stands for the RBF used and Pj(x) represents the PBF used; n denotes
the number of RBF used for interpolation, namely, there are n field nodes in the support
domain of the sampling point x, m denotes the number of PBF used for interpolation, and
the complete linear polynomial ([1 x y]) is used in this work, namely, m = 3; ai and bj are
the unknown interpolation coefficients.

There are many different types of RBF that can be used to formulate the RPIM, and
different RBFs have different features [18]. In this work, the well-known multiquadrics
(MQ) function is used to construct the required field function approximation owing to its
several excellent characteristics. The expression of the MQ function is as follows [18,21]:

Ri(x) =
[
r2

i + (αcdc)
2
]q

, (2)

in which ri denotes the distance from the field node to the sampling point, dc is the average
nodal interval of the field nodes used, and αc and q denote two undetermined parameters
that are closely related to the computation accuracy of the RPIM; q = 1.03 and αc = 1 are
used in this work because very good numerical results can always be obtained for solid
mechanics with these parameters.

With the aim to determine the coefficients ai and bj, Equation (1) should satisfy a series
of reasonable constraint conditions. Firstly, it is usually assumed that the constructed field
function approximation can exactly pass through the function values of all the nodes located
in the support domain of the sampling point x; these constraints can be expressed by:[

u1 u2 · · · un
]T

= R0a + P0b, (3)

R0 =


R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
...

...
...

R1(rn) R2(rn) · · · Rn(rn)

, (4)

PT
0 =


1 1 · · · 1
x1 x2 · · · xn
y1 y2 · · · yn
...

...
. . .

...
qm(x1) qm(x2) · · · qm(xn)

, (5)

in which R0 and P0 are the so-called moment matrices corresponding to the RBF and
PBF, respectively.

To uniquely determine the unknown interpolation coefficients ai and bj, the following
additional constraints should also be satisfied:

n

∑
i=1

Pj(xi)ai = PT
0 a = 0, j = 1, 2, · · · , m, (6)

The combination of all the constraining conditions shown in Equations (2) and (6) can
result in the following matrix equation:[

u
0

]
=

[
R0 P0
PT

0 0

]
︸ ︷︷ ︸

G

[
a
b

]
︸ ︷︷ ︸

a0

= Ga0, (7)
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Then, the undetermined interpolation coefficients can be calculated by[
a
b

]
= a0 = G−1

[
u
0

]
, (8)

Substituting the interpolation coefficients obtained into Equation (1) and following
the standard formulation of the conventional RPIM, the required nodal interpolation shape
function can be obtained by

ΦT(x) =
[
φ1(x) φ2(x) · · · φn(x)

]
=
{

RT(x) QT(x)
}

G−1|1∼n , (9)

In the standard RPIM, the field nodes participating in building the field function
approximation for the sampling point, which are usually quadrature points, are determined
by a support domain. The shape of the support domain can be a square or a circle. The
sampling point is usually the center of the defined support domain, while the background
cells for numerical integration are always constructed independently of the support domain.
As a result, the different sampling points (or quadrature points) in one integration cell may
have different support domains, namely, the required field nodes to construct the field
function approximation are different. In summary, since the moving support domain is
used in the traditional RPIM, the support domain of the nodal shape functions always do
not align with the background integration cells, which then leads to considerable numerical
integration error and degrades the quality of the numerical solutions obtained.

To effectively overcome the abovementioned misalignment between the nodal shape
function supports and the background integration cells, in this work a modified RPIM
(M-RPIM) is employed to analyze the free vibration of two-dimensional solids. In this
M-RPIM, a fixed support domain (as shown in Figure 1) rather than the moving support
domain in the standard RPIM is used to select the required field nodes for the construction
of the field function approximation. In other words, the identical field nodes are used
for interpolation for any quadrature points in one background integration cell. The fixed
support domain used can still be a square or a circle (the square support domain is used in
this work); however, this fixed support domain is always centered by the geometrical center
of the integration cell, not centered by the sampling points (which are usually the quadrature
points) as in the conventional RPIM. The difference between the original RPIM and the present
M-RPIM in constructing the field function approximation can be shown as follows:{

uh(x)RPIM = ∑ φiui, xi ∈ ΩQ

uh(x)M−RPIM = ∑ φiui, xi ∈ Ω∗
, (10)

in which ΩQ stands for the moving support domains, which are centered by the quadrature
points in one background cell, Ω∗ represents the fixed support domains that are directly
centered by the centroids of the background integration cells.
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3. Formulation of the Elastodynamics of Two-Dimensional Solids

Based on the small displacement assumption, the partial differential equation (PDE)
of the boundary-value problem for the elastodynamics of solids can be written by

∇σ+ b = ρ
..
u in Ω, (11)

in which Ω denotes the problem domain considered, b stands for the body force, σ repre-
sents the stress tensor, ρ is the mass density, u is the displacement vector and

..
u signifies

second derivatives of u.
As usual, the following two kinds of boundary conditions are always considered for

the two-dimensional elastodynamics of solids:u =
¯
u, on ΓE

σ · n =
¯
t , on ΓN

, (12)

in which ΓE and ΓN denote the essential boundary condition and the natural boundary

condition, respectively;
¯
u and

¯
t are the imposed displacement vector and traction vector

on the corresponding boundary conditions.
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Using the boundary conditions shown in Equation (12) and following the virtual
displacement principle, the weak form of Equation (11) for the elastodynamics of two-
dimensional solids can be obtained by∫

Ω
ρδu

..
udΩ +

∫
Ω

δεσd =
∫

ΓN

δu
¯
t dΓ +

∫
Ω

δubdΩ, (13)

in which δu and δε stand for the virtual displacement and strain, respectively.
Using the Galerkin weighted residual techniques and the field function approximation

shown in Equation (1), the matrix equation for the weak form shown in Equation (13) can
be obtained [1,18] by the following relationship:

M
..
u + C

.
u + Ku = F, (14)

in which M is the usual mass matrix, K is the usual stiffness matrix, F is the applied force
vector and C is the matrix containing the damping effects.

Without considering the damping effects and the external force, Equation (14) reduces to

M
..
u + Ku = 0, (15)

Equation (15) is the governing matrix equation obtained for the free vibration analysis
of two-dimensional solids.

Assuming that the displacement solution to Equation (15) is time harmonic, namely,

u = U exp(jωt), (16)

in which j =
√
−1, ω denotes the angular frequency, and U is the amplitude of the

displacement distribution.
Substituting Equation (16) into Equation (15), then Equation (15) can be rewritten as[

K−ω2M
]
U = 0, (17)

From Equation (17), we can observe that the typical eigenvalue problem should be
solved to perform the analysis of free vibration problems.

4. Numerical Example

In this section, several typical numerical examples are considered to assess the capa-
bility of the proposed M-RPIM in free vibration analysis of the two-dimensional solids.
For the convenience of discussion, the natural frequency values from the present M-RPIM
are compared to those from the original RPIM and the standard finite element approach
with bilinear quadrilateral elements (FEM-Q4). In all the numerical examples considered,
identical node arrangements are employed for these three different numerical methods (M-
RPIM, RPIM and FEM-Q4). For simplification, the quadrilateral meshes used are directly
employed as the background cells to perform the numerical integration for the RPIM and
M-RPIM, unless otherwise noted. To effectively examine and compare the accuracy and
convergence of numerical solutions from the different numerical methods, the following
relative error indicator is employed in this work:

Re =

∣∣∣∣∣ fnum − fre f

fre f

∣∣∣∣∣× 100%, (18)

in which fnum denotes the natural frequency results from the numerical methods (M-RPIM,
RPIM and FEM-Q4) and fre f represents the reference natural frequency results, which
are usually obtained from the commercial finite element software packages with a very
refined mesh.
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4.1. Free Vibration Analysis of the Cantilever Beam

Firstly, the free vibration of a cantilever beam is considered here. As shown in Figure 2,
the geometric configuration of the cantilever beam has length L = 100 mm and height
D = 10 mm. A unit thickness (t = 1 mm) is considered for this beam and, hence, this
numerical example can be simplified as a plane stress problem. The material constants
of this beam are taken as Young’s modulus E = 2.1 × 1011 Pa, Poisson’s ratio v = 0.3 and
mass density ρ = 8 × 103 kg/m3. The regular node arrangements are used to discretize
the problem domain of this cantilever beam for the three different numerical methods. For
a detailed analysis and discussion, a series of different node arrangement patterns with
different nodal intervals are used here (see Figure 3).
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4.1.1. Computation Accuracy Study

Utilizing a series of different node arrangement patterns, the first twelve natural
frequency solutions from the three numerical methods are listed in Tables 1–4. Among them,
the corresponding RPIM and M-RPIM solutions are obtained when the size of the nodal support
domain is taken as αs = 2.5h (h denotes average nodal interval of the meshes used). The reference
solutions from eight-node quadrilateral element (FEM-Q8) with a very refined mesh pattern
(average nodal interval h = 0.1 mm) are also provided in the tables for comparison.
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Table 1. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 2 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 830.567 1.003 815.423 0.839 825.213 0.351 822.322
2 4989.034 1.132 4909.931 0.471 4952.383 0.389 4933.177
3 12,826.933 0.022 12,826.322 0.017 12,825.428 0.010 12,824.145
4 13,167.852 1.336 13,035.277 0.316 13,025.003 0.237 12,994.215
5 23,992.489 1.604 23,772.722 0.673 23,725.015 0.471 23,613.775
6 36,701.000 1.910 36,492.012 1.329 36,197.042 0.510 36,013.226
7 38,467.305 0.059 38,461.345 0.044 38,450.819 0.016 38,444.488
8 50,697.394 2.248 50,570.105 1.991 49,854.144 0.547 49,582.799
9 64,062.116 0.225 64,045.638 0.199 63,984.254 0.103 63,918.563
10 65,590.504 2.524 65,609.724 2.554 64,290.994 0.493 63,975.503
11 81,118.869 3.012 81,334.286 3.286 79,233.413 0.618 78,746.943
12 89,562.090 0.252 89,514.438 0.199 89,345.277 0.010 89,336.686

Table 2. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 1 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 824.304 0.241 819.913 0.293 822.800 0.058 822.322
2 4946.701 0.274 4924.719 0.171 4936.588 0.069 4933.177
3 12,824.618 0.004 12,824.955 0.006 12,824.496 0.003 12,824.145
4 13,036.557 0.326 13,008.259 0.108 13,004.647 0.080 12,994.215
5 23,706.655 0.393 23,657.845 0.187 23,635.380 0.091 23,613.775
6 36,182.573 0.470 36,152.539 0.387 36,049.829 0.102 36,013.226
7 38,449.523 0.013 38,447.183 0.007 38,445.401 0.002 38,444.488
8 49,857.999 0.555 49,874.211 0.588 49,637.697 0.111 49,582.799
9 63,996.004 0.121 63,990.287 0.112 63,976.475 0.091 63,918.563
10 64,332.241 0.558 64,422.173 0.698 63,994.651 0.030 63,975.503
11 79,334.621 0.746 79,524.455 0.987 78,846.611 0.127 78,746.943
12 89,391.481 0.061 89,377.038 0.045 89,336.977 0.000 89,336.686

Table 3. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 0.67 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 823.104 0.095 821.051 0.155 822.413 0.011 822.322
2 4938.559 0.109 4928.453 0.096 4933.920 0.015 4933.177
3 12,824.010 0.001 12,823.612 0.004 12,823.953 0.001 12,824.145
4 13,011.299 0.131 12,992.024 0.017 12,996.698 0.019 12,994.215
5 23,651.752 0.161 23,631.689 0.076 23,619.234 0.023 23,613.775
6 36,083.214 0.194 36,074.813 0.171 36,022.821 0.027 36,013.226
7 38,445.687 0.003 38,444.328 0.000 38,443.843 0.002 38,444.488
8 49,697.499 0.231 49,714.721 0.266 49,597.527 0.030 49,582.799
9 63,982.840 0.101 63,979.749 0.096 63,939.314 0.032 63,918.563
10 64,092.160 0.182 64,149.033 0.271 63,974.133 0.002 63,975.503
11 78,994.780 0.315 79,104.908 0.455 78,774.275 0.035 78,746.943
12 89,358.561 0.024 89,351.356 0.016 89,334.272 0.003 89,336.686
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Table 4. The first twelve natural frequency solutions from the three numerical methods using the
node arrangement pattern with average nodal space h = 0.5 mm.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 822.674 0.043 821.486 0.102 822.279 0.005 822.322
2 4935.637 0.050 4929.842 0.068 4932.985 0.004 4933.177
3 12,823.747 0.003 12,823.464 0.005 12,823.711 0.003 12,824.145
4 13,002.246 0.062 12,991.382 0.022 12,993.901 0.002 12,994.215
5 23,632.124 0.078 23,621.334 0.032 23,613.557 0.001 23,613.775
6 36,047.788 0.096 36,044.602 0.087 36,013.347 0.000 36,013.226
7 38,444.192 0.001 38,443.250 0.003 38,443.144 0.003 38,444.488
8 49,640.417 0.116 49,653.240 0.142 49,583.475 0.001 49,582.799
9 63,977.974 0.093 63,975.937 0.090 63,920.007 0.002 63,918.563
10 64,006.958 0.049 64,044.242 0.107 63,973.057 0.004 63,975.503
11 78,874.387 0.162 78,944.368 0.251 78,749.088 0.003 78,746.943
12 89,346.670 0.011 89,342.201 0.006 89,332.973 0.004 89,336.686

From the results listed in the tables, we can observe that the original RPIM cannot al-
ways provide more accurate solutions than the standard FEM-Q4 in calculating the natural
frequency values of this cantilever beam, although the higher order interpolation (not the
bilinear interpolation in the FEM-Q4) is employed in the RPIM when the nodal support
domain αs = 2.5h. This is mainly caused by the misalignment between the constructed
integration cells and the local support domains of the nodal interpolation functions. Owing
to this misalignment, the integrands obtained in the original RPIM are not always continu-
ously differentiable, then considerable numerical integration error is generated and leads
to an additional loss in computation accuracy. However, from the tables we can observe
that very good agreement between the M-RPIM solutions and the reference solutions can
be achieved, and the M-RPIM solutions are much more accurate than the RPIM solutions.
The main reason for this is that in the M-RPIM a fixed nodal support domain (not a moving
support domain), which is built by the centroids of the integration cells, is directly used to
perform the required numerical integration; then, the abovementioned misalignment be-
tween the integration cells and the local nodal support domains can be easily removed. As a
result, the integrands obtained are completely continuously differentiable in the integration
cells, so the numerical integration error can be markedly reduced and the computation
accuracy can be significantly improved by the present M-RPIM for free vibration analysis.
In addition, the vibration modes of the cantilever beam corresponding to the first twelve
natural frequency values from the present M-RPIM are plotted in Figure 4; we can observe
that the vibration modes obtained are quite stable and the physical mode shapes can be
accurately achieved.

4.1.2. Convergence Study

In this subsection, the convergence performance of the numerical solutions from
different numerical approaches is investigated in great detail. As shown in Figure 5, the
comparison of the relative error (Re) results of the computed natural frequency values
from different numerical methods versus the nodal interval (1/h) are given; the sign R
in the legend of Figure 5 denotes the convergence rate of different numerical techniques.
For simplicity, only the first two natural frequency values (Mode 1 and Mode 2) are
considered here. From Figure 5, it can be observed that the convergence rate of the
original RPIM is unexpectedly lower than the standard FEM-Q4 when the size of the nodal
interpolation function support domain is taken as αs = 2.5h. This observation indicates that
the misalignment between the integration cells and the local support domain of the nodal
shape function in the original RPIM indeed can result in considerable numerical integration
error; thus, the convergence rate can be markedly reduced.
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However, from Figure 5 we also can see that the present M-RPIM is able to achieve a
higher convergence rate than the original RPIM and standard FEM-Q4. These findings again
demonstrate that the proposed program in this paper overcomes the misalignment between
the constructed integration cells, and that the nodal shape function indeed effectively
supports suppression of possible numerical integration error. For free vibration analysis
of solids, therefore, the present M-RPIM has a higher convergence rate than the original
RPIM and standard FEM-Q4.
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4.1.3. Computation Efficiency Study

From the analysis and discussion above, it can be observed that the present M-RPIM
behaves better than the original RPIM and standard FEM-Q4 in terms of computation
accuracy and convergence properties. However, the computation efficiency of the proposed
M-RPIM is not yet studied. Note that computation efficiency is also a crucial index to
assess the capabilities of numerical methods in engineering computation; comparison of
the computation efficiency for the three different numerical methods is performed here. To
analyze the computation efficiency, a series of different node arrangement schemes shown
in Figure 3 are again employed.

Figure 6 gives the comparison of the relative error results (Re) of the natural frequency
values versus the computation cost for the three numerical methods. For simplicity, we
still only consider the first two modes. From Figure 6, we can observe that the required
computational cost for the standard FEM-Q4 is much less than for the original RPIM and the
present M-RPIM when the identical node arrangement scheme is employed. This is because
many more quadrature points are used to perform the numerical integration in RPIM and
M-RPIM compared to standard FEM-Q4. Nevertheless, the computation accuracy of the
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standard FEM-Q4 cannot surpass the M-RPIM because a higher local approximation is
used in this meshless numerical technique.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 20 
 

 

Nevertheless, the computation accuracy of the standard FEM-Q4 cannot surpass the 
M-RPIM because a higher local approximation is used in this meshless numerical 
technique. 

 
(a) 

 
(b) 

Figure 6. Comparison of the relative error results (Re) of the natural frequency values versus the 
computation cost for the three different numerical methods: (a) Mode 1; (b) Mode 2. 

From Figure 6, we also can observe that the original RPIM is actually numerically 
more expensive than the M-RPIM for the identical node arrangement scheme. This is 
because a moving support domain is used for different quadrature points in the original 
RPIM. In other words, for each quadrature point, the related operation in determining 
the support domain (namely the node selection for interpolation) should be performed 
once, while in the present M-RPIM, a fixed support domain is employed for any 
quadrature points within one integration cell; hence, the required operation in 
determining the support domain only should be performed once for each integration 
cell. Thus, in the M-RPIM, less computational cost is required in the node selection 
compared to the RPIM. Note that the present M-RPIM also has higher computation 
accuracy than the original RPIM; hence, the present M-RPIM also possesses higher 
computation efficiency than the original RPIM in engineering computation. This point 
can be clearly seen in Figure 6. 

Figure 6. Comparison of the relative error results (Re) of the natural frequency values versus the
computation cost for the three different numerical methods: (a) Mode 1; (b) Mode 2.

From Figure 6, we also can observe that the original RPIM is actually numerically
more expensive than the M-RPIM for the identical node arrangement scheme. This is
because a moving support domain is used for different quadrature points in the original
RPIM. In other words, for each quadrature point, the related operation in determining the
support domain (namely the node selection for interpolation) should be performed once,
while in the present M-RPIM, a fixed support domain is employed for any quadrature
points within one integration cell; hence, the required operation in determining the support
domain only should be performed once for each integration cell. Thus, in the M-RPIM, less
computational cost is required in the node selection compared to the RPIM. Note that the
present M-RPIM also has higher computation accuracy than the original RPIM; hence, the
present M-RPIM also possesses higher computation efficiency than the original RPIM in
engineering computation. This point can be clearly seen in Figure 6.



Mathematics 2022, 10, 2889 13 of 20

4.2. Free Vibration Analysis of the Cantilever Beam with Variable Cross-Section

The second numerical example considered here is a cantilever beam with variable cross-
section. The geometric configuration of the variable cross-section beam is shown in Figure 7
and the related material constants are taken as Young’s modulus E = 3 × 107 Pa, Poisson’s
ratio v = 0.3 and mass density ρ = 1 kg/m3. The regular node arrangement scheme is used
to discretize this variable cross-section beam and the corresponding node distributions for
the standard FEM-Q4 and the two meshless methods (RPIM and M-RPIM) are given in
Figure 8. The first twelve natural frequency values computed using different numerical
methods are listed in Table 5. Similar to the first numerical example, the corresponding
natural frequency results from the eight-node quadrilateral element (FEM-Q8) with a very
refined mesh pattern (5151 nodes and 5000 elements) are also provided as the reference
solutions. It is clearly seen that the accuracy of FEM-Q4 results is worse than the original
RPIM and the present M-RPIM results. However, the RPIM results are not more accurate
than the M-RPIM ones, and the most accurate natural frequency solutions of this variable
cross-section cantilever beam can be provided by the present M-RPIM. In addition, the
first twelve mode shapes of this variable cross-section cantilever beam obtained from the
proposed M-RPIM are depicted in Figure 9. It is easy to find that the eigenmode of this
variable cross-section cantilever beam can be accurately predicted by the present M-RPIM.
This numerical example demonstrates that the abilities of the original RPIM in engineering
computation can be markedly improved by the present M-RPIM.
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Table 5. The first twelve natural frequency values for the variable cross-section cantilever beam
computed using different numerical methods.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 41.771 0.333 41.536 0.233 41.678 0.109 41.633
2 147.202 0.781 146.826 0.523 146.335 0.187 146.062
3 151.597 0.058 151.511 0.002 151.532 0.015 151.508
4 298.805 1.349 298.048 1.092 295.483 0.222 294.829
5 412.666 0.326 412.032 0.172 411.396 0.017 411.327
6 442.931 1.685 441.428 1.340 436.366 0.178 435.592
7 528.614 1.053 526.132 0.578 523.667 0.107 523.108
8 601.857 2.143 598.737 1.614 590.187 0.163 589.229
9 619.528 1.005 613.227 0.023 613.441 0.012 613.365
10 671.507 1.529 662.514 0.170 662.167 0.117 661.392
11 710.007 2.389 705.817 1.785 695.000 0.225 693.441
12 713.997 0.802 710.025 0.241 708.647 0.046 708.320
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Figure 8. The different node arrangement patterns that are employed to discretize the variable
cross-section cantilever beam for different numerical methods: (a) mesh pattern used to discretize the
variable cross-section cantilever beam for the standard FEM-Q4; (b) node arrangement patterns used
to discretize the variable cross-section cantilever beam for the RPIM and M-RPIM.

4.3. Free Vibration Analysis of the Cantilever Beam with Holes

The last numerical example is also a cantilever beam in plane stress condition. Unlike
the previous numerical examples, the cantilever beam considered here has three identical
holes (see Figure 10). The geometric parameters of this beam are given in Figure 10 and
the material constants are taken as Young’s modulus E = 2.1 × 1011 Pa, Poisson’s ratio
v = 0.3 and mass density ρ = 8× 103 kg/m3. The node arrangement scheme for the different
numerical methods are plotted in Figure 11, and the average nodal interval h = 0.002 m.
Similar to the previous two numerical examples, the first twelve natural frequency values
from the different numerical methods are listed in Table 6, and the corresponding mode
shapes from the present M-RPIM are given in Figure 12. In Table 6, the reference solutions
are also computed from the eight-node quadrilateral element (FEM-Q8) with a very refined
mesh pattern (average node interval h = 0.0001 m). Similarly, Table 6 and Figure 12 show
that we obtain results similar to those in the previous two numerical examples, namely, the
present M-RPIM can generate much more accurate numerical solutions than the original
RPIM and FEM-Q4 for free vibration analysis; the present method has great potential for
more complicated engineering computation.
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(d) Mode 4; (e) Mode 5; (f) Mode 6; (g) Mode 7; (h) Mode 8; (i) Mode 9; (j) Mode 10; (k) Mode 11;
(l) Mode 12.
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Figure 11. The node arrangement patterns employed to discretize the cantilever beam with three
identical holes for the different numerical methods: (a) mesh pattern used to discretize the cantilever
beam with three identical holes for the standard FEM-Q4; (b) node arrangement pattern used to
discretize the cantilever beam with three identical holes for the RPIM and M-RPIM.

Table 6. The first twelve natural frequency values computed using different numerical methods for
the cantilever beam with three identical holes.

Mode FEM-Q4 Error (%) RPIM Error (%) M-RPIM Error (%) Ref.

1 1626.190 0.617 1612.353 0.239 1618.711 0.154 1616.218
2 8272.300 0.174 8246.759 0.135 8268.312 0.126 8257.923
3 11,373.419 0.791 11,239.656 0.395 11,302.342 0.161 11,284.188
4 19,395.928 1.595 19,004.812 0.454 19,101.194 0.051 19,091.435
5 33,523.877 1.273 33,233.174 0.395 33,231.319 0.390 33,102.326
6 33,972.380 1.786 33,568.275 0.575 33,472.489 0.288 33,376.214
7 37,191.685 2.943 36,443.890 0.873 36,333.778 0.568 36,128.559
8 52,155.832 2.894 51,179.337 0.968 51,042.893 0.699 50,688.744
9 52,582.353 3.420 51,249.812 0.799 51,117.100 0.538 50,843.699
10 55,474.223 2.473 54,470.879 0.620 54,276.585 0.261 54,135.295
11 67,782.825 2.359 66,555.530 0.505 66,471.730 0.379 66,220.863
12 75,775.407 1.343 75,309.818 0.721 74,789.424 0.025 74,771.060
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Figure 12. The free vibration modes of the cantilever beam with three identical holes corresponding
to the first twelve natural frequency values from the present M-RPIM: (a) Mode 1; (b) Mode 2;
(c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6; (g) Mode 7; (h) Mode 8; (i) Mode 9; (j) Mode 10;
(k) Mode 11; (l) Mode 12.

5. Conclusions

In this work, a modified radial point interpolation method (M-RPIM) is proposed to en-
hance the capacities of the original RPIM for the free vibration analysis of two-dimensional
solids. In the present M-RPIM, the numerical approximation established in integration cells
is continuously differentiable while the corresponding numerical approximation in the
original RPIM is always not continuously differentiable. Therefore, the possible numerical
integration error in the original RPIM can be markedly reduced by the present M-RPIM.
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Several supporting numerical examples are employed to investigate fully and in
detail the performance of the proposed M-RPIM in solving free vibration problems. It is
demonstrated that the proposed M-RPIM not only is able to surpass the original RPIM and
the standard FEM-Q4 in terms of computation accuracy and convergence properties when
the identical node arrangement scheme is employed, but the proposed method also has
higher computation efficiency. This is because the fixed support domain is employed for
any quadrature points in the integration cells; hence, the additional operations to determine
the support domain for each quadrature point are not required. Owing to these excellent
features, the present M-RPIM has great potential for solving more complex problems in
practical engineering application.
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