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Abstract: Nonlinear systems of equations are widely used in science and engineering and, therefore,
exploring efficient ways to solve them is paramount. In this paper, a new derivative-free approach
for solving a nonlinear system of equations with convex constraints is proposed. The search direction
of the proposed method is derived based on a modified conjugate gradient method, in such a way
that it is sufficiently descent. It is worth noting that, unlike many existing methods that require a
monotonicity assumption to prove the convergence result, our new method needs the underlying
function to be pseudomonotone, which is a weaker assumption. The performance of the proposed
algorithm is demonstrated on a set of some test problems and applications arising from compressive
sensing. The obtained results confirm that the proposed method is effective compared to some
existing algorithms in the literature.

Keywords: numerical algorithms; nonlinear problems; pseudomonotone function; projection method;
global convergence; compressive sensing

MSC: 52A20; 90C52; 90C56; 65K05

1. Introduction

Consider the following nonlinear system:

Ω(x) = 0, x ∈ E ⊂ Rn, (1)

where Ω : Rn → Rn is continuous. Nonlinear systems of equations of the form (1) are
widely used in science, engineering, social sciences, management sciences, and many other
fields, so there are different iterative algorithms for obtaining their solutions [1]. Many of
these methods fall into the categories of either Newtonian or quasi-Newtonian methods
(see [2–9]). Since these methods are required to solve a linear system using the Jacobian
matrix, or its approximation, in each iteration, they become typically unsuitable for solving
large-scale problems. This study is more concerned with the large-scale case for which the
Jacobian of Ω(x) is completely avoided, thereby requiring a low amount of storage.
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In the recent literature, many researchers have extended the gradient-based method
to solve large-scale systems of nonlinear equations. For example, the spectral gradient
method proposed in [10] for quadratic optimization problems was extended to solve
nonlinear equations in [11]. The spectral gradient parameter [10] was combined with
the projectile method [12] and applied to solve nonlinear monotone equations by [13,14].
Awwal et al. [15] proposed a hybrid spectral gradient method for nonlinear monotone
equations. The search direction of their method is a convex combination of two different
positive spectral coefficients multiplied with the function value. An extensive numerical
computation showed that it was efficient and very competitive compared to existing
spectral gradient methods for large-scale problems. Based on the ideas in [10,12], a novel
two-step derivative-free projection method for considering a system of monotone nonlinear
equations with convex constraints is proposed [16]. Numerical experiments presented
demonstrate the superior performance of the two-step method over an existing one-step
method with similar characteristics.

Conjugate gradient (CG) methods are among the efficient iterative methods for solving
unconstrained optimisation problems, particularly when the problems have large dimen-
sions [17,18]. The efficiency of the CG methods on large-scale problems can be attributed to
their low storage requirements and simplicity [19]. Some of the earlier versions of the CG
methods are HS [20], FR [21], and PRP [22], whose formulas are given as follows:

βHS
k =

gT
k (gk − gk−1)

dT
k−1(gk − gk−1)

, βFR
k =

‖gk‖2

‖gk−1‖2 , βPRP
k =

gT
k (gk − gk−1)

‖gk−1‖2 ,

where ‖.‖ denotes the Euclidean norm of vectors. The above CG methods motivated
researchers to produce different variants of the CG methods for unconstrained optimization
problems [23–27]. Subsequently, the projection technique proposed in [12] has stimulated
extensive interest in the study of derivative-free methods for large-scale nonlinear systems
of equations [28]. In addition, the line search proposed in [12] has also contributed to the
success of the derivative-free method for systems of nonlinear equations. This line search
has undergone some modifications (see [14,16,29,30]). These are part of the motivation for
this paper.

For instance, the authors in [31] applied the steepest descent algorithm to develop a
family of derivative-free CG methods for solving large-scale nonlinear systems of equations,
and [32] combined the CG−DESCENT method [33] with the projection method [12] to
formulate a new CG method for solving convex constrained monotone equations. The pre-
liminary results obtained from numerical experiments of these methods indicate that they
are competitive. Interestingly, the derivative–free projection in [32] was successfully ap-
plied to deal with problems arising from compressive sensing. The author of [34] extended
the PRP CG method [22] under non-monotone line search to construct a derivative–free
PRP method for solving large-scale nonlinear systems of equations. In [35], the RMIL CG
method [27] is combined with a new non-monotone line-search method to develop a new
derivative-free CG algorithm for solving large-scale nonlinear systems of equations. The
preliminary results presented show that these methods are competitive. We refer readers to
the following papers [32,34,36] for more references on derivative-free methods for nonlinear
systems of equations.

Inspired by the low memory requirement of the derivative-free method, as well as
the strategy of the projection method discussed in the literature above, this study presents
a new derivative-free type algorithm for solving a system of nonlinear equations. The
knowledge of the Jacobian of Ω(x) is not needed in the proposed method and this makes
the method attractive. We summarise some of the contributions of the paper as follows:
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• The new proposed method is derivative-free as well as matrix-free.
• The search direction is sufficiently descending independent of any line search strategy.
• The proposed work relaxes, to some extent, the condition imposed on the user-

defined parameter µ ∈ R for the ZPRP search direction [37] to satisfy the sufficient
descent condition.

• The convergence result of the new method is proved under an assumption that is
weaker than monotonicity, that is, pseudomonotonicity.

• The new method is efficient and computationally inexpensive.
• Lastly, the new method is successfully applied to recover some disturbed signals

arising from compressive sensing.

The rest of the paper is structured as follows: The next section discusses relevant
literature and presents the proposed algorithm. In Section 3, we establish the global con-
vergence of the proposed method under appropriate conditions. We report the numerical
experiments in Section 4 to validate the efficiency of the proposed method. In Section 5, the
proposed algorithm is applied to solve a problem of signal restoration. Finally, we offer
some conclusions in Section 6.

2. Motivation and Proposed Method

In this section, we begin by considering the conjugate gradient (CG) method for
solving an unconstrained optimization problem as follows:

min ω(x), x ∈ Rn, (2)

where ω : Rn → R is a continuously differentiable function. The CG method is an iterative
method with the scheme

xk+1 := xk + αkdk, k = 0, 1, 2, . . . , (3)

where xk+1 and xk are the current and previous iterative points, respectively, dk is the search
direction and αk > 0 is the step length, which is calculated by certain suitable line search
procedures. Recently, Zheng and Shi [37] proposed a modification of the PRP conjugate
gradient method (ZPRP method) where the search direction, dk, is defined as follows:

dk := −gk + βZPRP
k dk−1 − βZPRP

k
gT

k dk−1

gT
k (gk − gk−1)

(gk − gk−1), (4)

βZPRP
k =

gT
k (gk − gk−1)

max{µ‖dk−1‖‖gk − gk−1‖, ‖gk−1‖2} , (5)

gk = ∇ω(xk) and µ ∈ R. A simple calculation showed that multiplying (4) by gT
k yields

gT
k dk ≤ −(1− 2

µ )‖gk‖2. This means that the ZPRP method satisfies the sufficient descent

condition, dT
k gk ≤ −c‖gk‖2, c > 0, only when the condition µ > 2 is imposed. Our work

relaxes this condition to some extent. This is part of the advantage of the proposed method.
In this article, we develop a modified ZPRP (MZPRP) method which is suitable for

solving nonlinear systems of equations with convex constraints of the form (1).
Before we provide the new formula for the proposed method, we start with the basic

concept of the projection operator. The projection operator is a map denoted as PE and
formulated by

PE(x) = arg min{‖x− y‖, y ∈ E}, ∀ x ∈ Rn, (6)

where E is a non-empty closed and convex set and PE : Rn → E. We know that the
projection operator PE is non-expansive; that is, for any x ∈ Rn, we have

‖PE(x)− y‖ ≤ ‖x− y‖, y ∈ E. (7)
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Motivated by the success of ZPRP recorded on an unconstrained optimization problem
and the approach in [28,32], we define a new spectral derivative-free method for solving a
system of nonlinear equations with convex constraints. Interestingly, the search direction
of the new method satisfies the sufficient descent condition without any difficulties and
independent of any line search procedure (see, Lemma 1). The formula for the new search
direction is defined as follows:

dk :=

{
−Ωk, k = 0,
−θkΩk + βMZPRP

k dk−1, k ≥ 1,
(8)

βMZPRP
k =

ΩT
k yk−1

max{µ‖dk−1‖‖yk−1‖, ‖Ωk−1‖2} , (9)

θk =
(ΩT

k yk−1)
2

µ‖Ωk‖2‖dk−1‖‖yk−1‖
+ 1, µ > 1. (10)

Next, we give the algorithm (Algorithm 1) of the MZPRP method for solving (1) with
convex constraints below.

Algorithm 1: MZPRP.
Input: Given any point x0 ∈ E ⊂ Rn, 0 < ` < 2, ε, σ > 0, 0 < ρ < 1, µ > 1, and
set k = 0.

Step 1: Calculate the Ωk. If ‖Ωk‖ ≤ ε, then stop.
Step 2: Calculate the search direction dk by (8)–(10).
Step 3: Calculate the trial point zk := xk + αkdk with αk = max {ζρi : i = 0, 1, . . .}
such that the following condition

−Ω(xk + ζρidk)
Tdk ≥ σζρi‖Ω(xk + ζρidk)‖‖dk‖2, (11)

is satisfied.
Step 4: If ‖Ω(zk)‖ = 0, then stop. Else, calculate the next iteration by

xk+1 := PE

(
xk − `

Ω(zk)
T(xk − zk)

‖Ω(zk)‖2 Ω(zk)

)
. (12)

Step 5: Set k = k + 1 and go to Step 1.

3. Convergence Analysis

The following assumption is needed to establish the convergence of Algorithm 1.

Assumption 1. (A1) The function Ω is pseudomonotone. That is,

if Ω(x)T(x− y) ≥ 0, =⇒ Ω(y)T(x− y) ≥ 0, ∀x, y ∈ Rn. (13)

(A2) The function Ω is Lipschitz continuous, that is, there exists a positive constant L > 0
such that

‖Ω(x)−Ω(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn. (14)

(A3) The solution set of the problem (1) is non-empty.

The following lemmas show that the proposed MZPRP derivative-free method satisfies
the sufficient descent property which is essential in the proof of convergence.

Lemma 1. Suppose that dk is the search direction defined by (8)–(10), then dk satisfies the sufficient
descent condition, that is

ΩT
k dk ≤ −µ̂‖Ωk‖2, µ̂ > 0. (15)
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Proof of Lemma 1. For k = 0, then from (8), we get ΩT
0 d0 = −‖Ω0‖2. For k ≥ 1, by using

(8) and (9), we have

ΩT
k dk = −θk‖Ωk‖2 + βMZPRP

k ΩT
k dk−1

= −
(

(ΩT
k yk−1)

2

µ‖Ωk‖2‖dk−1‖‖yk−1‖
+ 1

)
‖Ωk‖2 +

ΩT
k yk−1

max{µ‖dk−1‖‖yk−1‖, ‖Ωk−1‖2}ΩT
k dk−1

= −
(ΩT

k yk−1)
2

µ‖dk−1‖‖yk−1‖
− ‖Ωk‖2 +

(ΩT
k yk−1)(ΩT

k dk−1)

max{µ‖dk−1‖‖yk−1‖, ‖Ωk−1‖2}

≤ −‖Ωk‖2 +
(ΩT

k yk−1)(ΩT
k dk−1)

µ‖dk−1‖‖yk−1‖

≤ −‖Ωk‖2 +
‖Ωk‖‖yk−1‖‖Ωk‖‖dk−1‖

µ‖dk−1‖‖yk−1‖

= −‖Ωk‖2 +
‖Ωk‖2

µ

= −
(

1− 1
µ

)
‖Ωk‖2.

The first inequality holds by dropping the first term and the fact that 1/ max{a, b} ≤ 1/a.
The second inequality follows by applying the Cauchy–Schwarz inequality. Hence, since
µ > 1, then taking µ̂ =

(
1− 1

µ

)
the desired result holds.

The next lemma shows that the sequence of the search direction {dk} is bounded.

Lemma 2. Suppose that Assumption 1 (A2) holds. Let the sequences {xk} and {dk} be generated
by the Algorithm 1 with the MZPRP direction. Then we have

‖dk‖ ≤ ̂̂µ‖Ωk‖, ̂̂µ > 0. (16)

Proof of Lemma 2. From the projection in Step 5 of Algorithm 1, definition of zk and (7),
we have

‖xk − xk−1‖ =
∥∥∥∥PE

(
xk−1 − `

Ω(zk−1)
T(xk−1 − zk−1)

‖Ω(zk−1)‖2 Ω(zk−1)

)
− xk−1

∥∥∥∥
≤
∥∥∥∥xk−1 − `

Ω(zk−1)
T(xk−1 − zk−1)

‖Ω(zk−1)‖2 Ω(zk−1)− xk−1

∥∥∥∥
≤ `‖xk−1 − zk−1‖
= `αk−1‖dk−1‖. (17)

Therefore, by the Lipschitz continuity, it holds that

‖yk−1‖ = ‖Ω(xk)−Ω(xk−1)‖ ≤ L‖xk − xk−1‖ = L`αk−1‖dk−1‖. (18)

By using (8)–(10), we have

‖dk‖ =
∥∥∥−θkΩk + βMZPRP

k dk−1

∥∥∥
≤ |θk|‖Ωk‖+

∣∣∣βMZPRP
k

∣∣∣‖dk−1‖

=

∣∣∣∣∣
(

(ΩT
k yk−1)

2

µ‖Ωk‖2‖dk−1‖‖yk−1‖
+ 1

)∣∣∣∣∣‖Ωk‖+
∣∣∣∣∣ ΩT

k yk−1

max{µ‖dk−1‖‖yk−1‖, ‖Ωk−1‖2}

∣∣∣∣∣‖dk−1‖
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≤ ‖Ωk‖2‖yk−1‖2‖Ωk‖
µ‖Ωk‖2‖dk−1‖‖yk−1‖

+ ‖Ωk‖+
‖Ωk‖‖yk−1‖

µ‖dk−1‖‖yk−1‖
‖dk−1‖

=
‖yk−1‖‖Ωk‖

µ‖dk−1‖
+ ‖Ωk‖+

‖Ωk‖
µ

≤ L`αk−1‖dk−1‖‖Ωk‖
µ‖dk−1‖

+ ‖Ωk‖+
‖Ωk‖

µ

≤ L`
µ
‖Ωk‖+ ‖Ωk‖+

1
µ
‖Ωk‖

=

(
L`
µ

+ 1 +
1
µ

)
‖Ωk‖,

where the forth inequality follows by the fact that αk−1 ≤ 1. By setting ̂̂µ =
(

L`
µ + 1 + 1

µ

)
,

the conclusion holds.

Lemma 3. Suppose that the function Ω is pseudomonotone, then, if the sequence {xk} is generated
by Algorithm 1, we have the following conclusions

lim
k→∞
‖xk − x∗‖, exists, and

lim
k→∞

αk‖dk‖ = 0. (19)

Proof of Lemma 3. If x∗ ∈ E is a solution of problem (1) then Ω(x∗)T(zk − x∗) ≥ 0. Since
Ω is pseudomonotone, then it holds that Ω(zk)

T(zk − x∗) ≥ 0. This further yields

Ω(zk)
T(xk − x∗) = Ω(zk)

T(xk − zk + zk − x∗)

= Ω(zk)
T(xk − zk) + Ω(zk)

T(zk − x∗)

≥ Ω(zk)
T(xk − zk). (20)

Now, applying the projection property (7) on (12), we have∥∥∥∥PE

(
xk − `

Ω(zk)
T(xk − zk)

‖Ω(zk)‖2 Ω(zk)

)
− x∗

∥∥∥∥ ≤ ∥∥∥∥xk − `
Ω(zk)

T(xk − zk)

‖Ω(zk)‖2 Ω(zk)− x∗
∥∥∥∥.

Since 0 < ` < 2, it means

‖xk+1 − x∗‖2 ≤
∥∥∥∥(xk − x∗)− `

Ω(zk)
T(xk − zk)

‖Ω(zk)‖2 Ω(zk)

∥∥∥∥2

= ‖xk − x∗‖2 − 2`
Ω(zk)

T(xk − zk)

‖Ω(zk)‖2 Ω(zk)
T(xk − x∗) + `2 [Ω(zk)

T(xk − zk)]
2

‖Ω(zk)‖2

≤ ‖xk − x∗‖2 − 2`
Ω(zk)

T(xk − zk)

‖Ω(zk)‖2 Ω(zk)
T(xk − zk) + `2 [Ω(zk)

T(xk − zk)]
2

‖Ω(zk)‖2

= ‖xk − x∗‖2 − `(2− `)
[Ω(zk)

T(xk − zk)]
2

‖Ω(zk)‖2 (21)

≤ ‖xk − x∗‖2. (22)

This means that the sequence {‖xk − x∗‖} is decreasing and, hence, is the proof of the
first conclusion. It further implies that {xk} is bounded and, since Ω is Lipschitz continuous,
we have

‖Ω(xk)‖ ≤ M1, ∀ k ≥ 0. (23)
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Combining this with Lemma 2 gives

‖dk‖ ≤ M, (24)

with M = ̂̂µM1. Merging this with the boundedness of {xk} means the zk defined in Step 4
of Algorithm 1 is equally bounded. Again, by the Lipschitz continuity of Ω, there exists
some constant, say M2, such that

‖Ω(zk)‖ ≤ M2, ∀ k ≥ 0. (25)

Now, combining the inequalities (11) and (21) and using (25) gives

σ2α4
k‖dk‖4 ≤ 1

`(2− `)

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

By using the fact that the lim
k→∞
‖xk − x∗‖ exists and the fact that σ > 0 and 0 < ` < 2,

it gives
lim
k→∞

α4
k‖dk‖4 = 0, (26)

and the second conclusion holds.

Remark 1. It is worth noting that the above Lemma 3 is proved using the pseudomonotone
assumption on the underlining function Ω which is weaker than the monotonicity assumption used
in many existing methods.

Lemma 4. Suppose that Assumption 1 (A2) is satisfied. Let the sequence {xk} be generated by
Algorithm 1. Then

αk ≥ min

{
1,

µ̂‖Ωk‖2[
Lρ−1 + σρ−1M

]
M2

}
. (27)

Proof of Lemma 4. If αk 6= ζ, then, by using line search (11), we have α
′
k = αkρ−1 does not

satisfy (11), that is,

−Ω(xk + αkρ−1dk)
Tdk < σαkρ−1‖Ω(xk + αkρ−1dk)‖‖dk‖2. (28)

Let x∗ ∈ E such that Ω(x∗) = 0, since {xk} is bounded then ‖xk − x∗‖ ≤ M3,
M3 > 0, and

‖Ω(xk + αkρ−1dk)‖ = ‖Ω(xk + αkρ−1dk)−Ω(x∗)‖
≤ L‖xk + αkρ−1dk − x∗‖
≤ L‖xk − x∗‖+ Lαkρ−1‖dk‖
≤ LM3 + Lρ−1M

= M, (29)

where M = LM3 + Lρ−1M. By using (14), (15), (28), (29) and the Cauchy–Schwarz inequal-
ity, we obtain

µ̂‖Ωk‖2 ≤ −ΩT
k dk

≤ −ΩT
k dk + Ω(xk + αkρ−1dk)

Tdk + σαkρ−1‖Ω(xk + αkρ−1dk)‖‖dk‖2

= (Ω(xk + αkρ−1dk)−Ωk)
Tdk + σαkρ−1‖Ω(xk + αkρ−1dk)‖‖dk‖2

≤ Lαkρ−1‖dk‖2 + σαkρ−1M‖dk‖2

= αk
[
Lρ−1 + σρ−1M

]
M2.
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Hence, we have

αk ≥ min

{
1,

µ̂‖Ωk‖2[
Lρ−1 + σρ−1M

]
M2

}
.

In the following lemma, we will give the global convergence theorem for our proposed
MZPRP method.

Theorem 1. Suppose that Assumption 1 holds. Let the sequence {xk} be generated by Algorithm 1.
Then we have,

lim
k→∞

inf ‖Ωk‖ = 0. (30)

Proof of Theorem 1. We prove this result by contradiction. Assuming that (30) does not
hold, then there is υ > 0 such that

‖Ωk‖ ≥ υ, for all k ≥ 0. (31)

By applying the Cauchy–Schwarz inequality on (15), we obtain

‖Ωk‖‖dk‖ ≥ µ̂‖Ωk‖2. (32)

This together with (31) gives

‖dk‖ ≥ µ̂‖Ωk‖ ≥ µ̂υ. (33)

By using (19) together with (33), we have

lim
k→∞

αk = 0. (34)

This means (34) contradicts Lemma 4 and, hence, the conclusion of this theorem
must hold.

4. Numerical Experiments

In this section, we present numerical experiments to assess the numerical performance
of the proposed MZPRP in comparison with the following two existing methods, namely:

(i) “A conjugate gradient projection method for solving equations with convex con-
straints” proposed by Zheng et al. [38]. For convenience, we denote this method
as ACGPM.

(ii) “Partially symmetrical derivative-free Liu–Storey projection method for convex con-
strained equations” developed by Liu et al. [39]. For simplicity, this method shall be
denoted by DFsLS.

In this experiment, we consider thirteen (13) test problems (see, Appendix A)
where each problem is solved using six starting points (SP) by varying the dimen-
sions as 1000, 5000, 10,000, 50,000, 100,000. The SPs used for each problem are
given as follows: x1 = ( 1

10 , 1
10 , 1

10 , . . . , 1
10 )

T , x2 = ( 1
2 , 1

22 , 1
23 , . . . , 1

2n )T , x3 = (2, 2, 2, . . . , 2)T ,
x4 = (1, 1

2 , 1
3 , . . . , 1

n )
T , x5 = (1− 1

n , 1− 2
n , 1− 3

n , . . . , 0)T and x6 = rand(0, 1). This means
that the number of problems solved by each method in the course of this experiment
is three hundred and ninety (390). The three methods, that is MZPRP, ACGPM and
DFsLS were coded in MATLAB R2019b which was on a PC with the following specifi-
cations: Intel Core(TM) i5-8250u processor with 4 GB of RAM and CPU 1.60 GHZ. In
the course of execution, we used the following parameters for MZPRP h = 5, ρ = 0.5,
α = 0.1, c = 0.01, σ = 0.01, κ = 1, and ` = 1.99. The parameters used for ACGPM
and DFsLS are as presented in [38,39]. During the iteration process, a method is
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declared to have achieved an approximate solution whenever ‖Ω(xk)‖ ≤ 10−6. On
the other hand, if the number of iterations surpasses 1000 iterations and the stop-
ping criterion mentioned above has not been satisfied, then a failure is declared.
To visualise the performance of each algorithm, we employ the following metrics:
ITER (number of iterations), FVAL (number of function evaluations) and TIME (CPU
time). Moreover, as the iteration process terminates, we report ‖Ω(x∗)‖ (denoted by
NORM) to ascertain whether a method successfully obtained a solution of a particular
problem or not. The detailed report of the numerical results of the proposed MZPRP
method, the ACGPM method [38] and the DFsLS method [39] are tabulated and
can be found in the link https://github.com/aliyumagsu/MZPRP_Exp_Tables (ac-
cessed on 24 July 2022). The numerical data are summarised using a data profile (see
Figures 1–3) which shows the required ITER, FVAL, as well as the TIME budget
for each of the three methods to successfully solve the test problems considered in
this experiment. The data profile plots %NP (percentage of the number of problem)
versus ITER in Figure 1, %NP versus FVAL in Figure 2 and %NP versus TIME in
Figure 3. In essence, Figure 1 gives the required ITER budget for a method to solve
a certain percentage of the 390 test problems considered for this experiment. This
means, considering Figure 1 (top-left, top-right and bottom left), we see that with a
budget of 30 ITER, the new method (MZPRP) successfully solves more than 95% of
the problems, while ACGPM and DFsLS will only solve 65% and 70% of the problems,
respectively. Similarly, if we consider Figure 3 (top-left, top-right and bottom left),
we see that, with a budget of 1.5 s, the MZPRP will solve 95% of the test problems, as
against ACGPM and DFsLS, that will solve about 80% of the same test problems. This
suggests that the new MZPRP is computationally cheaper compared to the existing
ACGPM and DFsLS.

In addition, we use the performance profile proposed by Dolan and Moré in [40] to
obtain Figures 4–6, which is a standard tool for comparing iterative methods. Figure 4
shows the number of iterations for the performance profile of the MZPRP, the ACPGM,
and the DFsLS methods. Figure 5 presents the performance profile based on the number
of function evaluations; the CPU time performance profile is reported in Figure 6. From
Figures 4–6, we can see that the proposed MZPRP method produces better results than
ACPGM and DFsLS with a higher percentage in ITER, FVAL and TIME.
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Figure 1. Data Profile: %NP versus ITER.
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5. Application in Compressive Sensing

Applications of derivative-free algorithms in compressive sensing have recently received
more attention. As described in [41], signal processing involves solving the following problem

min
x

ω(x), ω(x) =
1
2
‖y−Qx‖2

2 + η‖x‖1, (35)
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containing a quadratic error term and a sparse `1-regularization term where η > 0 is a
regularization parameter, x ∈ Rn, y ∈ Rk is an observation, and Q ∈ Rk×n (k << n) is
a linear operator. It is clear that (35) is a non-smooth problem. To smooth it, Figueiredo
et al. [41] split the vector x into two as x = a− b with ai = (xi)+ and bi = (−xi)+ where
(·)+ = max{0, ·} and i = 1, 2, . . . , n. This resulted in the following smooth problem

min
q≥0

1
2

qTZq + rTq, (36)

where q = [a b]T , r = ηe2n +
[
−QTy QTy

]T and Z =

[
QTQ −QTQ
−QTQ QTQ

]
. It is also clear

that (36) is a convex quadratic problem, since the square matrix Z is a positive semi-definite.
Inspired by the transformation of Figueiredo et al. [41], Xiao et al. [42] decided to

further reformulate (36) into the following system of nonlinear equations

Ω(q) = min{q, Zq + r} = 0, (37)

where the “min” is interpreted as a component-wise minimum. The major advantage of the
reformulation (37) is that it can be solved without the necessary knowledge of the gradient
of ω(x) in (35). This means a derivative-free algorithm, such as Algorithm 1 (MZPRP), can
be employed to solve it successfully.

However, two major assumptions, namely pseudomonotonicity and Lipschitz continu-
ity, were used in establishing the convergence result of Algorithm 1 (MZPRP). Interestingly,
Pang [43] has shown that the mapping Ω in (37) is Lipschitz continuous and, on the other
hand, Xiao et al. [42] proved that it is also monotone. Since every monotone function is
pseudomonotone, our convergence results still stand.

In what follows, we give the description of the signal recovery experiment. We
consider the reconstruction of a sparse signal of size n = 211 from k = 29 observations. The
original signal contains 27 randomly non-zero elements with the measurement vector v
being distributed with some noise, v = Qx̃ + $̄, where Q is a randomly generated Gaussian
matrix and $̄ is the Gaussian noise distributed normally with mean 0 and variance 10−4.
The signal recovery experiment was performed using MATLAB R2019b installed on a PC
with an Intel Core(TM) i5-8250u processor with 4 GB of RAM and CPU 1.60 GHZ.

For this experiment, we compare the new Algorithm 1 (MZPRP) with the existing
algorithm (MSCG) developed in [44] based on: (i) the number of iterations; (ii) CPU time
taken to successfully recover the disturb signal; and (iii) the means of square error (MSE)
used to measure the quality of the reconstruction of the disturbed signal with respect to
the original signal x̃; that is, MSE = 1

n‖x̃ − x∗‖2, where x∗ is the recovered signal. We
successfully implemented the MZPRP using the same parameters given in the preceding
section, while the parameters used for MSCG are as presented in [44]. We run the two
algorithms from the same initial point x0 = QTy and the same continuation technique on
the parameter η. We set the termination criteria as∣∣∣∣ω(xk)−ω(xk−1)

ω(xk−1)

∣∣∣∣ < 10−5,

throughout the experiment.
The numerical performance of each algorithm is assessed by Iter (number of iterations)

and Time (CPU time) required to successfully recover the disturbed signal. In addition, the
quality of the reconstruction of the disturbed signal is assessed by MSE (mean of squared
error) to the original signal x̃. The formula for the MSE is given as MSE = 1

n‖x̃ − x∗‖2,
where x∗ is the recovered signal.

We report the numerical results in Figures 7 and 8 where Figure 7 reveals that both
the MZPRP and MSCG algorithms recovered the disturbed signal successfully. Though it
is difficult to visualize the algorithm with a better quality, the MSE recorded by the two
algorithms suggests that the quality of recovery by MZPRP is better than that of MSCG.
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Based on the CPU time recorded by both algorithms, it can be seen that MZPRP recovers
the disturbed signal faster that MSCG. These observations, coupled with the number of
iterations, show that the MZPRP is more efficient than MSCG and hence underscores the
applicability of the new method.
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Figure 7. From top to bottom: The original signal, the measurement, the recovered signal by the
MZPRP and MSCG methods, respectively.
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Figure 8. Comparison result of the MZPRP and MSCG methods. The x-axis represents the number of
iterations (top left and bottom left), and the CPU time in seconds (top right and bottom right). The
y-axis represents the MSE (top left and top right) and the objective function values (bottom left and
bottom right).



Mathematics 2022, 10, 2884 14 of 17

6. Conclusions

In this paper, we proposed a derivative-free method for large-scale nonlinear systems
of equations where the underlying function is assumed to be pseudomonotone. It is worth
noting that pseudomonotonicity is a weaker assumption than monotonicity. The global
convergence of the proposed method has been discussed based on the assumption that the
problem under consideration satisfies Lipschitz continuity. Numerical comparison with
that of ACGPM [38] and DFsLS [39] derivative-free methods demonstrated the efficiency
of the new method, as well as its superior numerical performance. As an application, the
new method has been successfully implemented to solve a signal recovery problem arising
from compressive sensing. Future work will concentrate on applying the new method to
solve 2D robotic motion control.

Author Contributions: Conceptualization, I.M.S. and A.M.A.; methodology, I.M.S., A.M.A., M.M.,
N.P. and B.P.; software, I.M.S., A.M.A. and M.M.; validation, I.M.S., A.M.A., M.M., N.P. and B.P.;
formal analysis, I.M.S., A.M.A., M.M., N.P. and B.P.; investigation, I.M.S., A.M.A., M.M., N.P. and B.P.;
resources, N.P.; data curation, I.M.S., A.M.A. and B.P.; writing—original draft preparation, I.M.S.,
A.M.A. and M.M.; writing—review and editing, I.M.S., A.M.A., M.M., N.P. and B.P.; visualization, N.P.
and B.P.; supervision, I.M.S. and A.M.A.; project administration, I.M.S., A.M.A. and M.M.; funding
acquisition, N.P. and B.P. All authors have read and agreed to the published version of the manuscript.

Funding: The fourth author was partially funded by Phetchabun Rajabhat University. The fifth
author was supported by Chiang Mai University and the NSRF via the Program Management
Unit for Human Resources and Institutional Development, Research and Innovation (grant number
B05F640183).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous referees and editor for reading
this paper carefully, providing valuable suggestions and comments, and pointing out minor errors in
the original version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Test Problems

We use the following nonlinear equation for the second experiments where
Ω(x) = (ω1(x), ω2(x), . . . , ωn(x))T , and x = (x1, x2, . . . , xn)T .

Problem A1. The Exponential Function [45]

ω1(x) = ex1 − 1

ωi(x) = exi + xi−1 − 1, i = 1, 2, . . . , n− 1.
where E = Rn

+,

Problem A2. Modified Logarithmic Function [45]

ωi(xi) = log(xi + 1)− xi
n

, i = 1, 2, · · · , n,

where E = {x ∈ Rn :
n
∑

i=1
xi ≤ n, xi > −1, i = 1, 2, · · · , n}.

Problem A3. Non-smooth Function I [45]

ωi(x) = 2xi − sin |xi|, i = 1, 2, . . . , n, where E = Rn
+.
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Problem A4. Strictly Convex Function I [13]

ωi(x) = exi − 1, i = 1, 2, . . . , n, where E = Rn
+.

Problem A5. Tridiagonal Exponential Function [1]

ω1(x) = x1 − exp
(

cos
(

x1 + x2

n + 1

))
ωi(x) = xi − exp

(
cos
(

xi−1 + xi + xi+1

n + 1

))
, 2 ≤ i ≤ n− 1,

ωn(x) = xn − exp
(

cos
(

xn−1 + xn

n + 1

))
.

where E = Rn
+.

Problem A6. Non-smooth Function II [13]

ωi(x) = xi − sin(|xi − 1|), i = 1, 2, . . . , n− 1,

where E = {x ∈ Rn :
n
∑

i=1
xi ≤ n, xi ≥ −1, i = 1, 2, · · · , n}.

Problem A7 ([46]).

ωi(x) = ex2
i +

3
2

sin(2xi)− 1, i = 1, 2, . . . , n, where E = Rn
+.

Problem A8 ([39]).

ω1(x) = 2x1 − x2 + ex1 − 1,

ωi(x) = −xi−1 + 2xi − xi+1 + exi − 1, i =, 2, . . . , n− 1,

ωn(x) = −xn−1 + 2xn + exn − 1.

where E = Rn
+,

Problem A9 ([46]).

ω1(x) =
5
2

x1 + x2 − 1,

ωi(x) = xi−1 +
5
2

xi + xi+1 − 1, i =, 2, . . . , n− 1,

ωn(x) = xn−1 +
5
2

xn − 1.

where E = Rn
+,

Problem A10 ([14]).

ω1(x) = 2x1 + sin(x1)− 1

ωi(x) = −2xi−1 + 2xi + sin(xi)− 1, i = 2, . . . , n− 1,

ωn(x) = 2xn + sin(xn)− 1.

where E = Rn
+,

Problem A11.

ωi(x) = 2c(xi − 1) + 4

(
n

∑
j=1

xj − 0.25

)
xi, c = 10−5, where E = Rn

+.

Problem A12 ([46]).

ωi(x) =
i
n

exi − 1, i = 1, 2, . . . , n, where E = Rn
+.
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Problem A13 ([47]).

ωi(x) = cos(xi) + xi − 1, i = 1, 2, . . . , where E = Rn
+.
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