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1. Introduction

The most rigid classical concept of curvature, and therefore containing most of the
information about a Riemannian manifold (M, g), is the sectional curvature (viewed as a
function on the Grassmann bundle of tangent two-planes to M). One aspect that makes
the concept of sectional curvature especially important is its connection to the topology of
a Riemannian manifold. For example, as a starting point when studying the geometry of
Riemannian manifolds of nonpositive sectional curvature, any geometer will first recall
the following well-known Cartan–Hadamard theorem, which is due to Hadamard in the case
of surfaces and by Cartan in the case of arbitrary Riemannian manifolds of nonpositive
curvature. Namely, let (M, g) be an n-dimensional (n ≥ 2) simply connected and complete
Riemannian manifold of nonpositive sectional curvature, then (M, g) is diffeomorphic to
the Euclidean space Rn. Therefore, a simply connected complete Riemannian manifold of
nonpositive curvature is called a Hadamard manifold after the Cartan–Hadamard theorem
(see, for example, [1], p. 241 and [2]). Well-known basic examples of such manifolds are
the Euclidean space Rn with zero sectional curvature and the hyperbolic space Hn with
constant negative sectional curvature. At the same time, it is well-known that the flat
torus Tn is a connected complete manifold of zero sectional curvature. However, Tn is not
simply connected and hence is not an example of a Hadamard manifold. Therefore, the
requirement of simple connectedness is essential here and, for example, strong enough to
distinguish the Euclidean space Rn from the flat torus Tn.

In addition, we formulate here the obvious consequences of the Cartan–Hadamard
theorem. First, from the theorem, we conclude that no compact simply connected manifold
admits a metric of nonpositive sectional curvature (see also [1], p. 162). Second, a Hadamard
manifold has an infinite volume, which follows from the Cartan–Hadamard theorem
(see also [3], p. 4732). Third, a Hadamard manifold of zero scalar curvature is isometric
to the Euclidean space of the same dimension. To prove this assertion, recall that the
scalar curvature of an n-dimensional Riemannian manifold is defined by the equality
s(x) = ∑i 6=j sec (ei ∧ ej) where sec (ei ∧ ej) denotes the section curvature of the two-plane
spanned by ei and ej for any orthonormal basis {e1, . . . , en} of Tx M at any point x ∈ M. In
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this case, from the conditions s ≡ 0 and sec ≤ 0, we conclude that sec ≡ 0. In this case, the
Riemannian manifold is flat. Moreover, if it is simply connected, then it is isometric to a
Euclidean space of the same dimension n (see generalizations of this assertion in [2]).

There are many papers on “geometry in the large” of Hadamard manifolds (see the
review [2] and other works [3–5]). However, now we are living in the era of geometric anal-
ysis and its applications in studying geometric and topological properties on Riemannian
manifolds (e.g., [6]). Therefore, we discuss in our paper the global geometry of Hadamard
manifolds using a generalized version of the Bochner technique, the purpose of which
is to apply geometric analysis to the study of the geometry in the large of Riemannian
manifolds (e.g., [7]). In particular, we demonstrate several Liouville-type theorems for
isometric and harmonic self-diffeomorphisms of Hadamard manifolds, as well as for Killing
and harmonic symmetric tensors on Hadamard manifolds. These theorems supplement
similar well-known vanishing theorems for Riemannian manifolds and, in particular, for
Hadamard manifolds proved by the classical Bochner technique (see [1], pp. 333–364) and
other methods of “geometry in the large” (see, for example, [2]). In turn, the proofs of our
theorems use well-known Liouville-type theorems on harmonic (resp. subharmonic and
convex) functions on complete Riemannian manifolds, which we partially modified for
Hadamard manifolds in the next section of our paper (see [2] for further generalizations of
this property of Hadamard manifolds).

Our results were presented at “XXI Geometrical Seminar” (26 June–2 July 2022, Uni-
versity of Belgrade, Serbia).

2. Subharmonic, Superharmonic, Harmonic and Convex Functions

This section is devoted to the relationships between the geometry of a complete
Riemannian manifold (in particular, a Hadamard manifold) and the global behavior of
its subharmonic and harmonic functions under assumptions on its sectional curvature.
For this study, methods of geometric analysis are used. Most of these results are called
Liouville-type theorems and belong to the generalized Bochner technique (e.g., [8], pp. 361–394
and [6,7,9–12]). Recall that the prototype of generalized Bochner technique is the celebrated
classical Bochner technique, first introduced by Solomon Bochner and dating back some
eighty years or so. Its fundamental principle is that some vector fields (e.g., conformal
Killing and Killing fields) or differential forms (e.g., harmonic and Killing–Yano forms)
must vanish on compact manifolds when conditions are imposed on the curvature sign
of those manifolds (e.g., [1], p. 333–364; [8], pp. 322–360 and [13,14]). Careful application
of this technique has led to a number of remarkable vanishing theorems, e.g., the famous
result of Kodaira in the 1950s (see [8], pp. 351, 361–363).

Below, we consider some facts of geometric analysis that underlie the generalized
Bochner technique (e.g., [8], p. 361–394). First, recall that a scalar function f ∈ C2(M) is
subharmonic (see [1], p. 281; [8], p. 35, 85) if it satisfies the differential inequality ∆ f ≥ 0
for the Beltrami Laplacian ∆ = div ◦ grad and, in particular, f ∈ C2(M) is harmonic (see [1],
p. 283) if it is a smooth solution of the Laplace equation ∆ f = 0.

In mathematics, subharmonic and harmonic functions are important classes of func-
tions that are widely used in partial differential equations, complex analysis and potential
theory and in the geometry of Riemannian manifolds. Simple application of the Hopf
maximum principle (alternatively the divergence theorem) shows that (see [1], p. 73) a compact
Riemannian manifold has no subharmonic, superharmonic and harmonic functions except
for constant functions. Note that this fact refers to the classical Bochner technique. On the
other hand, Huber (see [15]) proved that a complete two-dimensional Riemannian manifold
with non-negative curvature does not admit a nonconstant negative subharmonic func-
tion. Then, Karp (see [16]) discovered that a complete noncompact Riemannian manifold
does not admit a nonconstant negative subharmonic function if it has moderate volume
growth. For comparison, recall that the famous Liouville theorem states that a subharmonic
function defined over R2 (or a harmonic function defined over Rn) and bounded from
above is constant. Several further results on the properties of subharmonic and harmonic
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functions on complete Riemannian manifolds have been obtained by many authors such
as Yau, Wu, Li, Schoen and Hamilton et al (see, for example, [6–9]). They ushered in a
particularly productive era of applications of geometric analysis in differential geometry
that continues to this day. The applications of this new theory are of particular interest (see,
e.g., [11,17–19]).

Next, we study the interaction between the geometry of complete Riemannian man-
ifolds of nonpositive sectional curvature, in particular, Hadamard manifolds and some
aspects of the theory of functions on these spaces. A well-known question is still very
important: which subspaces of subharmonic (and harmonic) functions on complete Rie-
mannian manifolds contain only constant functions and, in particular, identically equal
to zero. For this case, the following Yau theorem is well-known (see [9]): if (M, g) is
a complete noncompact Riemannian manifold (without boundary) and f ∈ C2(M) is a
nonnegative subharmonic Lq-function for 1 < q< +∞, then f is a constant. By definition,
a scalar function f on a Riemannian manifold (M, g) belongs to Lq(M) for some positive
number q if

∫
M | f |q dvolg < ∞, where the integral is always understood in terms of the

volume form dvolg of the metric g.
In addition, here the situation falls into two cases. The first case: when (M, g) has finite

volume, then all constant functions are in Lq(M) for any positive number q. Second case:
when (M, g) has infinite volume, then among all constant functions, only zero one is in
Lq(M). Namely, if the function f ∈ Lq(M) for some positive number q is a constant function
C, then the inequality

∫
M | f |q dvolg < ∞ becomes |C|q ·

∫
M dvolg < +∞. Moreover, if

(M, g) has an infinite volume, then this makes the constant C equal to zero.
To which manifolds do the above definitions and results apply? For example, using

the information from the first part of the section on Hadamard manifolds, we conclude that
the following lemma is true.

Lemma 1. The Hadamard manifold (M, g) does not admit a nonzero non-negative subharmonic
Lq-function for at least one q ∈ (0, +∞).

Proof. Let (M, g) be a Hadamard manifold, that is, a simply connected complete Rieman-
nian manifold of nonpositive sectional curvature. It is known from [6] that on a complete
simply connected Riemannian manifold (M, g) of nonpositive sectional curvature every
non-negative subharmonic Lq-function for any q ∈ (0,+∞) is a constant function C. Recall
that a Hadamard manifold has an infinite volume, therefore, C = 0.

The well-known fundamental fact is that if f ∈ C2(M) is a harmonic function, then
| f |p is a non-negative subharmonic function for each p ≥ 1 (see also [8], p. 373). Therefore,
if every non-negative subharmonic Lq-function on (M, g) is constant, then every harmonic
Lq-function on (M, g) is also constant (see [6]). Thus, we can formulate a corollary from
Lemma 1.

Corollary 1. A Hadamard manifold (M, g) does not admit a nonzero harmonic Lq-function for at
least one 0 < q < +∞.

Remark 1. First, in the range 1 < q < +∞, we can formulate one more classical Lq-Liouville-
type result of Yau: Let f ∈ C2(M) be a harmonic Lq-function for some 1 < q < +∞ on an
arbitrary complete Riemannian manifold, then, f is constant. Therefore, our corollary completes
Yau’s theorem. Second, the effect of curvature on the behavior of harmonic functions is a classical
problem. For example, in contrast with Corollary 1, Sullivan proved that there is an abundance of
bounded harmonic functions on a strongly negatively curved Hadamard manifold (see [4]).

In the third part of the section, we consider convex functions. Recall that a function
f ∈ C2(M) is called convex if its Hessian Hessg f := ∇ d f is positive semidefinite at each
point x ∈ M, and f is called strictly convex if Hessg f is positive definite at each point x ∈ M
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(see [1], p. 281 and [5]). In this case, we have ∆ f ≥ 0 for a convex function f , hence f is a
subharmonic function.

In differential geometry, the existence of convex functions on (M, g) is a long-standing
problem. The first solution of this problem can be found in the article [5] by Bishop and
O’Neill. They proved that if (M, g) is complete and has finite volume, then it does not
possess a nonconstant smooth convex function, thus, nonconstant convex functions exist
only on Riemannian manifolds of infinite volume. We supplement their result on the basis
of Corollary 1 by the following (see also [12]).

Corollary 2. A Hadamard manifold does not admit nonzero non-negative convex Lq-functions for
at least one q ∈ (0, +∞).

Remark 2. Busemann functions (see [1], pp. 301–304) play a very important role in studying the
topology and geometry of complete Riemannian manifolds. In particular, the Busemann functions
are an example of convex functions on a Hadamard manifold (see [20]).

The fourth part of this section is devoted to Riemannian symmetric spaces. The
condition of the parallelism of the curvature tensor ∇R = 0 defines the class of Riemannian
locally symmetric spaces, which can be equivalently defined as those Riemannian manifolds
that are locally reflectively geodesically symmetric around any point x ∈ M (see [21],
pp. 231–234). A Riemannian locally symmetric space (M, g) is called a Riemannian globally
symmetric space if its locally geodesic symmetries are defined on its entire space. In this
case, a Riemannian symmetric space (M, g) is complete (see [21], p. 240). Riemannian
globally symmetric spaces can be classified using their isometry groups. The classification
distinguishes three basic types of such spaces: spaces of so-called compact type, spaces
of so-called noncompact type and spaces of Euclidean type (see, e.g., [21], p. 245). In
particular, a Riemannian globally symmetric space (M, g) of noncompact type is simply
connected and has nonpositive sectional curvature (see [21], pp. 245–246). Using the above,
we assert that a Riemannian globally symmetric space of noncompact type is a prime
example of a Hadamard manifold. In particular, a Riemannian globally symmetric space of
noncompact type has an infinite volume. Therefore, the following corollary of Lemma 1
holds (see also [12]).

Corollary 3. A Riemannian globally symmetric space of noncompact type does not admit a nonzero
non-negative subharmonic (and harmonic) Lq-function for at least one q ∈ (0, +∞).

Remark 3. The geometry of a Riemannian symmetric space with nonpositive sectional curvature is
described in detail in [22]. In addition to the above, we note that the Hopf maximum principle (see [1],
p. 75) shows that a Riemannian globally symmetric space of compact type has no subharmonic,
harmonic and convex functions, except for constant functions.

3. Harmonic Symmetric Tensors

Let C∞(Sp M) be the space of C∞-sections of the bundle Sp M = Sp(T∗M) of covariant
symmetric p-tensors (1 ≤ p < ∞) on a connected Riemannian manifold (M, g). Then, the
following equality is true:

dim Sp(T∗x M) =

(
n + p− 1

p

)
.

for the vector space Sp(T∗x M) of covariant symmetric p-tensors on Tx M at an arbitrary
point x ∈ M.

Now, we define the differential operator δ∗ : C∞Sp M→ C∞Sp+1M of degree one by
the formula δ∗ϕ = (p + 1) Sp+1(∇ ϕ) for an arbitrary ϕ ∈ C∞(Sp M) and the standard
pointwise symmetry operator Sp+1: T∗M ⊗ Sp(T∗M) → Sp+1(T∗M). There exists its
formal adjoint operator δ: C∞Sp+1M→ C∞Sp M for δ∗(see [23], pp. 34–35, 434). Using the
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above, Sampson determined in [24], p. 147 for an arbitrary Riemannian manifold (M, g)
the operator

∆S = δ δ∗ − δ∗δ: C∞Sp M→ C∞Sp M.

Moreover, he showed that the operator ∆S admits the Weitzenböck decomposition
(see also [10])

∆S = ∆−<, (1)

where < is the Weitzenböck curvature operator of the ordinary Lichnerowicz Laplacian
∆L = ∆ + < (see [23], p. 54 and [25], p. 315), which is restricted to covariant symmetric
p-tensors. The Weitzenböck curvature operator < of ∆L can be algebraically (even linearly)
expressed through the curvature R and Ricci tensors Ric of (M, g). Moreover, it satisfies
the identities (see [25], p. 315)

g (< (T), T
′
) = g (T, < (T

′
))

and
traceg < (T) = < (tracegT) (2)

for any T, T
′ ∈ ⊗pT∗M. In particular, from (2) any one concludes that <x : ⊗pT∗x M →

⊗pT∗x M is a symmetric endomorphism at any point x ∈ M.
For example, if p = 1, then we have the equality (see [10])

<(ϕ)i = gkl Rki ϕl (3)

where ϕl and Rkl denote the local components of ϕ ∈ C∞S1M and the Ricci tensor Ric,
respectively. In addition, gkl are the local contravariant components of the metric tensor g.
On the other hand, if p = 2, then we have the equality (see [23], p. 64; p. 356 and [10])

< (ϕ)ij = −2gkmgltRmijt ϕkl + gkl Rki ϕl j + gkl Rkj ϕli, (4)

where ϕij and Rijkl denote the local components of ϕ ∈ C∞S2M and the Riemannian
curvature tensor R, respectively. All local components of tensors in (3) and (4) are defined
by the following identities: ϕij = ϕ ( ei, ej), Rijkl = gim Rm

jkl and Rkl = Ri
kil where

R(ej, el) ek = Ri
kjl ei, gim = g(ei, em) and (gkl) = (gkl)

−1 for any frame e1 . . . , en of Tx M at
an arbitrary point x ∈ M and for any i, j, k, · · · = 1, 2, . . . , n.

Remark 4. The Sampson operator ∆S is a Laplacian. In particular, the kernel of ∆S is a finite-
dimensional vector space on a compact manifold (M, g). More information about the properties and
applications of ∆S can be found in the following list of articles: [10,11,26,27].

In accordance with the general theory, we define two vector spaces (see [7], p. 104).
First, by the condition

H(Sp M) = {ϕ ∈ C∞(Sp M) : ∆S ϕ = 0}

we define the vector space of ∆S-harmonic symmetric p-tensors ϕ ∈ C∞(Sp M). Second, by
the condition

LqH(Sp M) = {ϕ ∈ H(Sp) : ‖ϕ‖ ∈ Lq(M)}

we define the vector space of ∆S-harmonic symmetric Lq-tensors for some positive q. The
norm of ϕ ∈ C∞(Sp M) with respect to the Riemannian metric g is denoted by the symbol
‖ · ‖. Using these notations, we conclude from (1) and (2) that if ϕ ∈ H(Sp M), then
traceg ϕ ∈ H(Sp−2M). Moreover, we obtain the following.

Theorem 1. Let (M, g) be a Hadamard manifold, then the are no nonzero ∆S-harmonic symmetric
tensors ϕ ∈ C∞(S2M) such that ‖ϕ‖2 is a nonzero Lq-function for at least one q ∈ (0, +∞).
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Proof. We define the non-negative scalar function f = ‖ϕ‖ for ϕ ∈ H(Sp M). In this case,
from (1) we deduce the well-known Bochner–Weitzenböck formula (see also [10,27])

1
2

∆ f 2 = ‖∇ϕ‖2 − g(<(ϕ), ϕ) (5)

for an arbitrary ϕ ∈ H(Sp M). In particular, if p = 2, then from (5) in accordance with [23],
p. 436, we obtain the formula

g (<(ϕ), ϕ) = ∑
i<j

sec (ei, ej) (µi − µj)
2, (6)

where e1, e2, . . . , en is the orthonormal basis of Tx M at an arbitrary x ∈ M, such that
ϕ(ei, ej) = δijµi. For the sectional curvature sec(ei, ej) in the direction of the two-plane,
σ(x) = span{ei, ej}. From (6), we conclude that if the section curvature of (M, g) is
nonpositive, then g(<(ϕ), ϕ) ≤ 0 for any ϕ ∈ S2M. Then, from (4), we conclude that
∆ f 2 ≥ 0, where f = ‖ϕ‖ for ϕ ∈ H(S2M). Next, we can refer to Lemma 1.

As an application of Theorem 1, consider the Ricci tensor of the A-space. Recall that
a Riemannian manifold (M, g) is called Einstein-like of type A if its Ricci tensor Ric is
cyclically parallel, i.e., if (∇XRic)(X, X) = 0 for all X ∈ TM (see [23], pp. 450–451). In
particular, if (M, g) is a compact (without boundary) A-space with nonpositive sectional
curvature, then ∇Ric = 0. If, in addition, there exists a point in M at which the sectional
curvature of each two-plane is strictly negative, then (M, g) is Einstein, i.e., its Ricci tensor
satisfies the condition Ric = λ g for some constant λ (see [23], p. 451). As the same time,
the following generalized theorem holds.

Theorem 2. The Ricci tensor Ric of an n-dimensional A-space (M, g) belongs to the vector space
H(S2M). However, if (M, g) is a Hadamard A-space such that the square of the norm of its Ricci
tensor is a Lq-function for at least one q ∈ (0, ∞), then (M, g) is isometric to Euclidean space Rn.

Proof. Now let (M, g) be an n-dimensional A-space then its Ricci tensor Ric satisfies the
equations δ∗Ric = 0 and has a constant trace, i.e., the scalar curvature s = tracegRic is
constant. This also means that δ Ric = 0. In this case, we conclude that Ric ∈ H(S2M).
Moreover, if (M, g) is a Hadamard manifold and ‖Ric‖2 ∈ Lq(M) for at least one q ∈
(0,+∞), then Ric ≡ 0 by Theorem 1. In this case, from the conditions Ric ≡ 0 and sec ≤ 0,
we obtain sec ≡ 0; thus, (M, g) is a flat manifold. Again, (M, g) is simply connected, which
implies that (M, g) is isometric to the Euclidean space Rn.

Let Sp
0 (T

∗
x M) ⊂ Sp(T∗x M) be a space of covariant symmetric p-tensors which are

totally traceless, that is, traceless on any pair of indices at an arbitrary point x ∈ M. Then,

dim Sp
0 (Tx M) =

(
n + p− 1

p

)
−
(

n + p− 3
n− 1

)
.

The Sampson Laplacian ∆S maps Sp
0 M to itself for the bundle Sp

0 M of traceless sym-
metric p-tensors on (M, g), i.e., ∆S : C∞Sp

0 M → C∞Sp
0 M. This property is a corollary of

the identities (1) and (2). Then, in particular, the following theorem holds.

Theorem 3. The Hadamard manifold (M, g) does not admit a nonzero symmetric ∆S-harmonic p-
tensor ϕ ∈ C∞(Sp

0 M), such that the square of its norm is a Lq-function for at least one q ∈ (0, ∞).

Proof. Consider a nonzero symmetric ∆S-harmonic p-tensor ϕ ∈ C∞(Sp
0 M) on a Hadamard

manifold (M, g). Thus, (4) holds. In [28,29], it was proved that the inequality g(<(ϕx), ϕx) ≤ 0
holds at any point x of a manifold (M, g) of nonpositive sectional curvature. Then, we
deduce from (4) that ∆‖ϕ‖2 ≥ 0 holds for a symmetric tensor ϕ ∈ C∞(Sp

0 M); thus, ‖ϕ‖2 is



Mathematics 2022, 10, 2880 7 of 14

a subharmonic function. Moreover, if ‖ϕ‖2 ∈ Lq(M) is valid for at least one q > 0, then
ϕ ≡ 0 by Lemma 1.

4. Harmonic Self-Diffeomorphisms

The concept of harmonic mappings is an extension of one of the subharmonic func-
tions. Therefore, it is natural to expect that Liouville-type theorems are also valid for
harmonic mappings and, in particular, for harmonic mappings onto Hadamard manifolds
(see [19,30,31]). We take a closer look at this topic below.

Suppose we are given a smooth C∞-mapping f : (M, g)→ (M, g) between connected
Riemannian manifolds (M, g) and (M, g). The norm of the differential d f = f∗ : TM →
TM determines the energy density of f , which is calculated by e ( f ) = 1/2 G( f∗, f∗) for the
metric G determined by g and g on the bundle T∗M⊗ f ∗TM with a fiber T∗x M⊗ Tf (x)M
over each point x ∈ M. A harmonic map f : (M, g)→ (M, g) is defined using an extremum
of the energy functional E( f ) =

∫
M e( f ) dvolg of f for any open set Ω in M with respect to

compactly supported variations of f on Ω. A map f : (M, g)→ (M, g) is harmonic if and
only if it satisfies the Euler–Lagrange equation

traceg(D f∗) = 0 (7)

(see [32]) for the connection D induced by the Levi–Civita connections ∇ and ∇ of metrics
g and g on the bundle T∗M⊗ f ∗TM. Yau and Schoen proved the following celebrated the-
orem: If (M, g) is a complete manifold with non-negative Ricci curvature and (M, g) is a compact
manifold with nonpositive sectional curvature, then an arbitrary harmonic map f : (M, g)→ (M̄, ḡ)
with finite energy E( f ) is a constant map (see [8], pp. 467–468).

Remark 5. Since a complete (noncompact) manifold (M, g) of non-negative Ricci curvature has
infinite volume (see [9]), a harmonic map onto a compact manifold, as suggested by Yau and Schoen’s
theorem, cannot be a diffeomorphism.

In turn, we consider a connected smooth manifold M with two Riemannian metrics g
and g. If f : (M, g)→ (M, g) is a harmonic self-diffeomorphism, then it is called a harmonic
transformation of the manifold M. In this case, the Euler–Lagrange equation (7) takes the
form tracegT = 0 for the deformation tensor T = ∇−∇ of certain connections ∇ and ∇
(see [26]). Based on this result, we proved in [20] that id: (M, g)→ (M, g) is a harmonic
self-diffeomorphism if and only if div ḡ = −1/2 d(tracegg). At the same time, it is known
that div Ric = −1/2 d(tracegRic) for the Ricci tensor Ric of a Riemannian manifold (M, g).
Therefore, if (M, g) has negative Ricci curvature Ric , then id: (M, g) → (M, ḡ), where
ḡ = −Ric is a harmonic self-diffeomorphism (see also [33], p. 86). We can formulate the
following statement on the first example of harmonic self-diffeomorphisms.

Corollary 4. Let (M, g) be an n-dimensional (n ≥ 2) Hadamard manifold with negative Ricci
curvature, then id : (M, g)→ (M,−Ric) is a harmonic self-diffeomorphism.

Remark 6. The assumption of Corollary 4 holds when (M, g) is a symmetric space of noncompact
type of rank one. In this case, it is a Hadamard manifold of negative sectional and Ricci curvature
(see [34]).

The second example of a harmonic self-diffeomorphism f : (M, g) → (M, g) we
constructed in [26] as a composition of conformal and projective transformations, un-
der which the deformation tensor is T = dσ ⊗ idTM + idTM ⊗ dσ − 2/n dσ# ⊗ g, where
dσ = (n2 + n− 2)−1d ln(det g/det g) and (dσ#) is the vector field given by the identity
g(dσ#, X) = dσ(X) for all X ∈ TM. In turn, our first Liouville-type theorem of this section
is as follows:
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Theorem 4. Let (M, ḡ) be an n-dimensional (n ≥ 2) Hadamard manifold and g be another
complete Riemannian metric on M such that its Ricci tensor is non-negative. Then any harmonic
transformation f : (M, g)→ (M, g) is a constant map if its energy density e( f ) is a Lq-function
for at least one q ∈ (0, + ∞).

Proof. Consider a simply connected smooth manifold M with two complete Riemannian
metrics g and g. Let f : (M, g) → (M, g) be a harmonic transformation, then a standard
calculation gives (see also [32], p. 123):

∆e( f ) = Q( f ) + G(D f∗, D f∗), (8)

where
Q( f ) = g(Ric, f ∗g) − traceg (traceg( f ∗R)).

for the Riemannian curvature tensor R of (M, g) and the Ricci tensor Ric of (M, g). From
(8) we conclude that Q( f ) ≥ 0 holds if the Ricci curvature of g is non-negative and the
sectional curvature of g is nonpositive (see also [32]). In this case, from (8), we obtain that
∆e( f ) ≥ 0 under the above curvature assumptions, hence e( f ) is a subharmonic function
on (M, g). At the same time, recall that every non-negative subharmonic Lq-function for
q ∈ (0,+∞) is constant on a complete Riemannian manifold (M, g) with non-negative Ricci
curvature (see [6]). In turn, this constant must be equal to zero, since the volume of such
manifold (M, g) is infinite (see [9]). To conclude the proof, we note that a simply connected
manifold M with a complete Riemannian metric g of nonpositive sectional curvature is a
Hadamard manifold.

A vector field V on a complete Riemannian manifold (M, g) is called an infinitesimal
harmonic transformation (see [26]) if V generates a flow which is a local one-parameter group
of harmonic self-diffeomorphisms (in other words, harmonic diffeomorphisms of (M, g)
onto itself). Analytic characteristic of such vector field V has the form traceg(LV∇) = 0 for
the Lie derivative LV (see [26,27]). In addition, we have proved in [27] that a vector field V
is an infinitesimal harmonic transformation if and only if

∆S ϕ = 0, (9)

where ϕ is the one-form defined by the identity ϕ(X) = g(X, V) for all X ∈ TM. Then,
according to (3) and (9), the energy density function e(V) = 1/2 ‖V‖2 of an infinitesimal
harmonic transformation V satisfies the equation (see also [26])

∆e(V) = ‖∇V‖2 − Ric(V, V). (10)

In this case, using our Lemma 1, we can formulate the following:

Theorem 5. An n-dimensional Hadamard manifold does not admit a nonzero infinitesimal har-
monic transformation if its energy density function is an Lq-function for at least one q ∈ (0,+∞).

Self-similar solutions to Hamilton’s Ricci flow are called Ricci solitons; they play an im-
portant role in the study of singularities of the flow. For the past two decades, the geometry
of Ricci solitons has been the focus of attention of many mathematicians (e.g., [17]). Namely,
let M be a connected smooth manifold, then a triplet (g, V, λ) is a Ricci soliton if and only
if g is a complete Riemannian metric and V is a smooth vector field, both defined on M,
such that

Ric = λ g− 1
2

LV g,

for some real constant λ ∈ R. In turn, we proved (see [11,27]) that the vector field V of a
Ricci soliton (g, V, λ) is an infinitesimal harmonic transformation.
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The space of local solutions (g, V, λ) of (8) is quite large, but little is known about
its global properties. In contrast, the following statement is an obvious consequence of
Theorem 5.

Corollary 5. The metric g of the Hadamard manifold (M, g) cannot be the metric of a Ricci soliton
(g, V, λ), such that λ is an arbitrary real constant and the energy density function e(V) is a
Lq-function for at least one q ∈ (0,+∞).

5. Isometric Self-Diffeomorphisms

Let (M, g) be a complete Riemannian manifold of dimension n ≥ 2. In this case,
a diffeomorphism F: M → M of a Riemannian manifold (M, g) onto itself is called an
isometric transformation (or in other words an isometric self-diffeomorphism) if it preserves the
distance d, i.e., d(x, y) = d(F(x), F(y)) for all x, y ∈ M (see also [1], p. 202 and [35], p. 39).
In addition, any isometric self-diffeomorphism of (M, g) preserves the metric tensor g, i.e.
Fg = g. The converse is also true (see [35], p. 39). Therefore, an isometric transformation is
an example of harmonic transformations.

Given an isometric self-diffeomorphism F: M→ M, the function dF(x, F(x)) is called
the displacement function of F (see [2]). Recall that the displacement function dF of an
isometric self-diffeomorphism F : M → M of a Hadamard manifold (M, g) is convex
and its square d2

F is smooth and convex (see [2,5,36]). At the same time, by Corollary 2, a
Hadamard manifold does not admit nonzero non-negative convex Lq-functions for some
q ∈ (0,+∞). Therefore, the following theorem is true:

Theorem 6. Let dF be the displacement function of an isometric self-diffeomorphism F: M→ M
of a Hadamard manifold (M, g). If its square d2

F is a Lq-function for at least one q ∈ (0,+∞), then
F is the identity.

Recall that a vector field V on a Riemannian manifold (M, g) is an infinitesimal isometry
if it generates a local one-parameter group of local isometric diffeomorphisms (M, g) onto
itself. Moreover, a vector field V is an infinitesimal isometry if and only if LV g = 0, where
LV denotes the Lie derivation with respect to V (see [35], p. 42). In this case, one can obtain
(see also [35], p. 56)

(Hessg e(V)) (X, X) = ‖∇XV‖2 − g(R(V, X) X, V) (11)

for the energy density function e(V) = 1/2 ‖V‖2 of infinitesimal isometry V and an arbitrary
X ∈ TM. If, in addition, (M, g) is a Hadamard manifold, then g(R(V, X)X, V) ≤ 0,
hence (Hessg e(V)) (X, X) ≥ 0 for any X ∈ TM. Therefore, e(V) is a non-negative convex
function. Based of Corollary 2, we formulate the following:

Corollary 6. A Hadamard manifold (M, g) does not admit a nonzero infinitesimal isometry, such
that its energy density function is a Lq-function for at least one q ∈ (0, ∞).

On the other hand, by [35], p. 56 from (11), we obtain that the Laplacian of energy
density function e(V) = 1/2 ‖V‖2 of an infinitesimal isometric V has the form (10).

Based of (10) and Lemma 1, we formulate the following.

Corollary 7. A Hadamard manifold (M, g) does not admit a nonzero infinitesimal isometry, such
that its energy density function is a Lq-function for at least one q ∈ (0,+∞).

Remark 7. For comparison with our theorem and corollary, we refer to Theorem 1 from [31] on the
bounded isometry of a Hadamard manifold (M, g). In particular, from Theorem 1 we conclude that
every bounded isometry of a Hadamard manifold (M, g) is trivial if the Euclidean factor in the de
Rham decomposition of (M, g) is also trivial.
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6. Symmetric Killing Tensors and Killing Vectors

A tensor field ϕ ∈ C∞(Sp M) satisfying the equation δ∗ϕ = 0 is well-known in
general relativity as a symmetric Killing p-tensor (see [37], p. 559 and [38]). It is a natural
generalization of a Killing vector (see [35], pp. 42–43 and [37], p. 292). Killing vectors and
Killing symmetric tensors have many applications. For example, while Killing vectors
give linear first integrals of geodesic equations, Killing tensors give quadratic, cubic and
higher-order first integrals on Riemannian manifolds.

Dairbekov and Sharafutdinov in [28] and Heil in [39], proved the following: On a
compact Riemannian manifold (M, g) with nonpositive sectional curvature, every Killing tensor
is parallel. If there is a point in (M, g) at which the sectional curvature is negative on all two-
dimensional planes, then it is proportional to a power of the metric.

In this section, we consider symmetric Killing tensors on Hadamard manifolds and
supplement the above result. Recall that the Ricci tensor Ric of an A-space is a sym-
metric traceless Killing 2-tensor and, moreover, is a ∆S-harmonic tensor. We consider a
generalization of this concept to the case of a symmetric traceless Killing p-tensor for p ≥ 2.

Let a smooth symmetric Killing p-tensor ϕ be traceless, then from the equation δ∗ϕ = 0
we obtain δ ϕ = 0. In this case, ϕ ∈ H(Sp M) holds. Therefore, if ϕ ∈ C∞(Sp M) is a
divergence-free symmetric Killing tensor on a Riemannian manifold (M, g), then it satisfies
the following systems of differential equations: ∆S ϕ = 0 and δ ϕ = 0. Conversely, if (M, g)
is compact and ϕ ∈ C∞(Sp M) satisfies the equations ∆S ϕ = 0 and δ ϕ = 0, then ϕ is a
divergence-free symmetric Killing tensor (see [27]). This theorem is a natural generalization
of the classical theorem on Killing vectors (see [35], p. 44 and [14], p. 44). The following
theorem is also valid.

Theorem 7. A Hadamard manifold (M, g) does not admit a nonzero symmetric Killing p-tensor
ϕ ∈ C∞(Sp

0 M), such that the square of its norm belongs to Lq(M) for at least one q ∈ (0,+∞).

Killing vectors are a classical object of Riemannian geometry (e.g., [1], pp. 313–332).
Recall that a smooth vector field Von a Riemannian manifold (M, g) is a Killing vector field
if the Lie derivative of the metric tensor g with respect to V is zero, i.e., LV g = δ∗ϕ = 0
for ϕ = g (V, · ). Therefore, if V is a Killing vector field, then it satisfies the following
differential equations: ∆S ϕ = 0 and δ ϕ = 0 (see [10]). Conversely, if (M, g) is compact
and V satisfies the above equations, then V is a Killing vector. Thus, V is an example of
infinitesimal harmonic transformations. In this case, the following is valid.

Corollary 8. A Hadamard manifold does not admit a nonzero Killing tensor if its norm is an
Lq-function for at least one q ∈ (1,+∞).

Remark 8. Corollary 8 generalizes the classical Bochner theorem on Killing vector fields on compact
manifolds (see [1], p. 313 and [14], p. 44) and supplements the following theorem: If (M, g) is
a complete Riemannian manifold with nonpositive Ricci curvature, then every Killing vector on
(M, g) with finite global norm is parallel (see [40]).

7. Killing–Yano Tensors on Riemannian Globally Symmetric Spaces of Noncompact
Type

The concept of Killing–Yano tensors was introduced into physics by Penrose et al.
(see [41,42], etc.), and it played an important role in the development of general relativity
(e.g., [37], pp. 559–563). On the other hand, these tensors were introduced in differential
geometry thanks to K. Yano (see [14], p. 68 and [43]) and were fruitfully studied for a long
time in the geometry of Riemannian manifolds (e.g., [25,28,29,44]). In particular, in [44],
it was proved that a compact simply connected symmetric space carries a nonparallel
Killing–Yano p-tensor (p ≥ 2) if and only if it isometric to the Riemannian product Sk × N,
where Sk is a round sphere and k > p. In turn, here, we give some applications of results
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on subharmonic functions to the geometry of Killing–Yano p-tensors on symmetric spaces
of noncompact type.

Let (M, g) be an n-dimensional Riemannian manifold. Then, the following equality
holds:

dim Λp(T∗x M) =

(
n
p

)
for the vector space Λp(T∗x M) of covariant skew-symmetric p-tensors ( 1 ≤ p ≤ n− 1) on
Tx M at an arbitrary point x ∈ M. A Killing–Yano p-tensor (or, Killing p-form) on (M, g) is
a skew-symmetric tensor, whose covariant derivative is totally skew-symmetric, i.e., by
definition, if ω ∈ C∞(Λp M) is a Killing–Yano tensor, then ∇ω ∈ C∞(Λp+1M).

Let d: C∞(Λp M) → C∞(Λp+1M) be the operator of exterior derivative and δ :
C∞(Λp M)→ C∞(Λp−1M) be the codifferentiation operator, defined as the canonical for-
mal adjoint of d (see [1], pp. 334–335). Using these operators, one constructs the well-known
Hodge–de Rham Laplacian ∆H = δ d + d δ, which admits a Weitzenböck decomposition
(see [1], p. 347; [23], pp. 77–79 and [25])

∆H ω = ∆ ω +<(ω) (12)

for any ω ∈ C∞(Λp M), and an algebraic symmetric operator <: Λp M → Λp M, i.e., the
Weitzenböck curvature operator of the Lichnerowicz Laplacian, which is restricted to
skew-symmetric p-tensors.

We define a non-negative scalar function by the equality f = ‖ω‖. Then, using (12),
we write the well-known Bochner–Weizenböck formula (see also [25])

1
2

∆ f 2 = −g (∆Hω, ω) + ‖∇ω ‖2 + g (<(ω), ω). (13)

An arbitrary Killing–Yano tensor ω ∈ C∞(Λp M) satisfies the equation (see [25])

∆H ω =
p + 1

p
< (ω). (14)

In this case, from (13) and (14), we obtain the inequality

1
2

∆ f 2 ≥ − 1
p

g(< (ω), ω). (15)

Recall that the Riemannian curvature tensor R of (M, g) defines a symmetric algebraic
operator R : Λ2(Tx M) → Λ2(Tx M) on the vector space Λ2(Tx M) of 2-forms over tangent
space Tx M at an arbitrary point x ∈ M (see [1], pp. 82–83 and [23], p. 51). There are
many papers on the relationship between the behavior of the curvature operator R of a
Riemannian manifold (M, g) and some of its global characteristics, such as its homotopy
type and topological type. We say that a manifold (M, g) has a nonpositive curvature operator
R if the quadratic form g(R(θ), θ) ≤ 0 for all nonzero two-forms θ 6= 0. At the same time, it
can be also concluded here that if the curvature operator R is nonpositive then the quadratic
form g(<(ω), ω) ≤ 0 for any ω ∈ Λp M by the formulas from [1], pp. 345–346. Moreover, a
Riemannian symmetric space has a nonpositive curvature operator R if and only if it has
nonpositive sectional curvature (see [22]). In this case, we deduce from (15) that

∆ f 2 ≥ 0

for f = ‖ω‖. Hence f 2 = ‖ω‖2 is a subharmonic function. At the same time, it is
known that a Riemannian globally symmetric space of noncompact type does not admit a
nonzero non-negative subharmonic Lq-function for q ∈ (0, ∞). Therefore, we formulate
the following.
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Theorem 8. An n-dimensional Riemannian globally symmetric space of noncompact type does not
admit a nonzero Killing–Yano p-tensor (1 ≤ p ≤ n− 1) such that the square of its norm is an
Lq-function for at least one q ∈ (0,+∞).

For any p with 0 ≤ p ≤ n, they define the Hodge operator ∗ to be the unique
vector-bundle isomorphism (see [23], p. 33)

∗ : Λp M→ Λn−p M

such that ∗2 = (−1)p (n−p) and ω ∧ (∗ω′) = g(ω, ω′) dvolg for any ω, ω
′ ∈ Λp M and the

volume form dvolg of (M, g). Moreover, a p-tensor ω for an arbitrary Killing–Yano (n− p)-
tensor ω is called closed conformal Killing–Yano p-tensor or, closed conformal Killing p-form
(see [18,45]). In particular, for any closed conformal Killing–Yano tensor ω ∈ C∞(Λp M) we
have (see [45])

∆H ω =
n− p + 1

n− p
< (ω). (16)

By a direct calculation based on (13) and (16), we obtain the inequality

1
2

∆ f 2 ≥ − 1
n− p

g (< (ω), ω)

for a closed conformal Killing–Yano p-tensor ω.
Then, arguments similar to those carried out above for the Killing–Yano p-tensor allow

us to formulate the following.

Theorem 9. An n-dimensional Riemannian globally symmetric space of noncompact type does not
admit a nonzero closed conformal Killing–Yano p-tensor (1 ≤ p ≤ n− 1), such that the square of
its norm is an Lq-function for at least one q ∈ (0,+∞).

Remark 9. The results of this section generalize the classical theorems on Killing–Yano and closed
conformal Killing–Yano tensors on compact manifolds (see [14], p. 68–70 and [45]) and supplement
results from [18] and also results from [12], where q > 1 in the corresponding theorems.

8. Conclusions

In our article, we supplemented the information about Hadamard manifolds using a
generalized version of the Bochner technique or, in other words, using modern methods of
geometric analysis. Most of our theorems have analogues in the scientific literature, but
unlike our results, they are obtained by the methods of the classical Bochner technique or
by other methods of geometry in the large under more stringent restrictions, for example,
for compact manifolds. This is the importance and difference of our article from other
scientific works on Hadamard manifolds.
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